Tailoring Term Truncations for Electronic Structure Calculations Using a Linear Combination of Unitaries

Richard Meister1, Simon C. Benjamin1, and Earl T. Campbell2,3

1Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom
2Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
3AWS Center for Quantum Computing, Pasadena, CA 91125, USA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


A highly anticipated use of quantum computers is the simulation of complex quantum systems including molecules and other many-body systems. One promising method involves directly applying a linear combination of unitaries (LCU) to approximate a Taylor series by truncating after some order. Here we present an adaptation of that method, optimized for Hamiltonians with terms of widely varying magnitude, as is commonly the case in electronic structure calculations. We show that it is more efficient to apply LCU using a truncation that retains larger magnitude terms as determined by an iterative procedure. We obtain bounds on the simulation error for this generalized truncated Taylor method, and for a range of molecular simulations, we report these bounds as well as exact numerical results. We find that our adaptive method can typically improve the simulation accuracy by an order of magnitude, for a given circuit depth.

Simulating the time evolution of complex quantum systems is of interest for many applications in physics. Quantum computers promise to offer the ability to calculate such dynamics much more efficiently than classical computers. One approach to achieve this is to approximate the time evolution operator with a truncated Taylor series, where all terms above a certain order are discarded. As sums of operators are not native instructions on quantum hardware, this requires an elaborate construction known as linear combination of unitaries. In this paper, we modify the well-known method of the truncated Taylor series to use a different truncation scheme. Instead of dropping all terms above some order in the expansion, our approach retains them depending on their magnitude. We show that this method of truncating is advantageous for many Hamiltonians describing the electronic structures of molecules, typically reducing the simulation error by roughly one order of magnitude compared to the canonical method for a given circuit depth.

► BibTeX data

► References

[1] R. P. Feynman. Simulating physics with computers. International Journal of Theoretical Physics, 21 (6): 467–488, Jun 1982. 10.1007/​BF02650179.

[2] S. Lloyd. Universal quantum simulators. Science, 273: 1073–1078, Aug 1996. 10.1126/​science.273.5278.1073.

[3] D. S. Abrams and S. Lloyd. Simulation of many-body Fermi systems on a universal quantum computer. Physical Review Letters, 79 (13): 2586–2589, Sep 1997. 10.1103/​PhysRevLett.79.2586.

[4] G. Ortiz, J. E. Gubernatis, E. Knill, and R. La-flamme. Quantum algorithms for fermionic simulations. Physical Review A, 64 (2), Jul 2001. 10.1103/​PhysRevA.64.022319.

[5] A. Aspuru-Guzik. Simulated quantum computation of molecular energies. Science, 309 (5741): 1704–1707, Sep 2005. 10.1126/​science.1113479.

[6] D. W. Berry, G. Ahokas, R. Cleve, and B. C. Sanders. Efficient quantum algorithms for simulating sparse Hamiltonians. Communications in Mathematical Phy-sics, 270 (2): 359–371, Dec 2006. 10.1007/​s00220-006-0150-x.

[7] H. Wang, S. Kais, A. Aspuru-Guzik, and M. R. Hoffmann. Quantum algorithm for obtaining the energy spectrum of molecular systems. Physical Chemistry Chemical Physics, 10 (35): 5388, 2008. 10.1039/​b804804e.

[8] J. D. Whitfield, J. Biamonte, and A. Aspuru-Guzik. Simulation of electronic structure Hamiltonians using quantum computers. Molecular Physics, 109 (5): 735–750, 2011. 10.1080/​00268976.2011.552441.

[9] E. Campbell. Random compiler for fast Hamiltonian simulation. Physical Review Letters, 123 (7): 070503, Aug 2019. 10.1103/​physrevlett.123.070503.

[10] A. M. Childs and Y. Su. Nearly optimal lattice simulation by product formulas. Physical Review Letters, 123 (5): 050503, Aug 2019. 10.1103/​physrevlett.123.050503.

[11] A. M. Childs, A. Ostrander, and Y. Su. Faster quantum simulation by randomization. Quantum, 3: 182, Sep 2019. 10.22331/​q-2019-09-02-182.

[12] Y. Ouyang, D. R. White, and E. T. Campbell. Compilation by stochastic Hamiltonian sparsification. Quantum, 4: 235, Feb 2020. 10.22331/​q-2020-02-27-235.

[13] H. F. Trotter. On the product of semi-groups of operators. Proceedings of the American Mathematical Society, 10 (4): 545–551, 1959. 10.2307/​2033649.

[14] M. Suzuki. Generalized Trotter's formula and systematic approximants of exponential operators and inner derivations with applications to many-body problems. Communications in Mathematical Physics, 51 (2): 183–190, 1976. 10.1007/​BF01609348.

[15] D. Wecker, B. Bauer, B. K. Clark, M. B. Hastings, and M. Troyer. Gate-count estimates for performing quantum chemistry on small quantum computers. Physical Review A, 90: 022305, Aug 2014. 10.1103/​PhysRevA.90.022305.

[16] R. Babbush, J. McClean, D. Wecker, A. Aspuru-Guzik, and N. Wiebe. Chemical basis of Trotter-Suzuki errors in quantum chemistry simulation. Physical Review A, 91 (2), Feb 2015. 10.1103/​PhysRevA.91.022311.

[17] M. B. Hastings, D. Wecker, B. Bauer, and M. Tro-yer. Improving quantum algorithms for quantum chemistry, 2014. 1403.1539.

[18] D. Poulin, M. B. Hastings, D. Wecker, N. Wiebe, A. C. Doherty, and M. Troyer. The Trotter step size required for accurate quantum simulation of quantum chemistry, 2014. 1406.4920.

[19] J. R. McClean, R. Babbush, P. J. Love, and A. Aspuru-Guzik. Exploiting locality in quantum computation for quantum chemistry. The Journal of Physical Chemistry Letters, 5 (24): 4368–4380, Dec 2014. 10.1021/​jz501649m.

[20] A. M. Childs, Y. Su, M. C. Tran, N. Wiebe, and S. Zhu. Theory of Trotter Error with Commutator Scaling. Physical Review X, 11: 011020, Feb 2021. 10.1103/​PhysRevX.11.011020.

[21] A. M. Childs and N. Wiebe. Hamiltonian simulation using linear combinations of unitary operations. Quantum Information & Computation, 12 (11–12): 901–924, Nov 2012. 10.26421/​QIC12.11-12.

[22] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma. Exponential improvement in precision for simulating sparse Hamiltonians. In Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing, STOC ’14, page 283–292, New York, NY, USA, 2014. Association for Computing Machinery. 10.1145/​2591796.2591854.

[23] G. H. Low, V. Kliuchnikov, and N. Wiebe. Well-conditioned multiproduct Hamiltonian simulation, 2019. 1907.11679.

[24] D. W. Berry, A. M. Childs, and R. Kothari. Hamiltonian Simulation with nearly optimal dependence on all parameters. In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pages 792–809, 2015a. 10.1109/​FOCS.2015.54.

[25] G. H. Low and I. L. Chuang. Optimal Hamiltonian simulation by quantum signal processing. Physical Review Letters, 118 (1): 010501, Jan 2017. 10.1103/​physrevlett.118.010501.

[26] A. Gilyén, Y. Su, G. H. Low, and N. Wiebe. Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC ’19, pages 193–204. ACM Press, 2019. 10.1145/​3313276.3316366.

[27] G. H. Low and I. L. Chuang. Hamiltonian simulation by qubitization. Quantum, 3: 163, Jul 2019. 10.22331/​q-2019-07-12-163.

[28] D. W. Berry, C. Gidney, M. Motta, J. R. McClean, and R. Babbush. Qubitization of arbitrary basis quantum chemistry leveraging sparsity and low rank factorization. Quantum, 3: 208, Dec 2019. 10.22331/​q-2019-12-02-208.

[29] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma. Simulating Hamiltonian dynamics with a truncated Taylor series. Physical Review Letters, 114: 090502, Mar 2015b. 10.1103/​PhysRevLett.114.090502.

[30] A. M. Childs, D. Maslov, Y. Nam, N. J. Ross, and Y. Su. Toward the first quantum simulation with quantum speedup. Proceedings of the National Academy of Sciences, 115 (38): 9456–9461, Sep 2018. 10.1073/​pnas.1801723115.

[31] R. Babbush, C. Gidney, D. W. Berry, N. Wiebe, J. McClean, A. Paler, A. Fowler, and H. Neven. Encoding electronic spectra in quantum circuits with linear T complexity. Physical Review X, 8: 041015, Oct 2018. 10.1103/​PhysRevX.8.041015.

[32] G. H. Low and N. Wiebe. Hamiltonian simulation in the interaction picture, 2018. 1805.00675.

[33] R. Babbush, D. W. Berry, J. R. McClean, and H. Neven. Quantum simulation of chemistry with sublinear scaling in basis size. npj Quantum Information, 5 (1), Nov 2019. 10.1038/​s41534-019-0199-y.

[34] G. H. Low, V. Kliuchnikov, and L. Schaeffer. Trading T-gates for dirty qubits in state preparation and unitary synthesis, 2018. 1812.00954.

[35] S. Bravyi and A. Kitaev. Universal quantum computation with ideal Clifford gates and noisy ancillas. Phys. Rev. A, 71: 022316, Feb 2005. 10.1103/​PhysRevA.71.022316.

[36] M. Howard, J. Wallman, V. Veitch, and J. Emerson. Contextuality supplies the magic for quantum computation. Nature, 510 (7505): 351–355, Jun 2014. 10.1038/​nature13460.

[37] E. T. Campbell, B. M. Terhal, and C. Vuillot. Roads towards fault-tolerant universal quantum computation. Nature, 549 (7671): 172–179, Sep 2017. 10.1038/​nature23460.

[38] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information, chapter 4, pages 182–184. Cambridge University Press, 2nd edition, 2010. 978 1 107 00217 3.

[39] T. Helgaker, P. Jorgensen, and J. Olsen. Molecular electronic-structure theory. John Wiley & Sons, 2000. 978 1 118 53147 1.

[40] J. R. McClean, K. J. Sung, I. D. Kivlichan, Y. Cao, C. Dai, E. S. Fried, C. Gidney, B. Gimby, P. Gok-hale, T. Häner, T. Hardikar, V. Havlíček, O. Higgott, C. Huang, J. Izaac, Z. Jiang, X. Liu, S. McArdle, M. Neeley, T. O'Brien, B. O'Gor-man, I. Ozfidan, M. D. Radin, J. Romero, N. Rubin, N. P. D. Sawaya, K. Setia, S. Sim, D. S. Steiger, M. Steudtner, Q. Sun, W. Sun, D. Wang, F. Zhang, and R. Babbush. OpenFermion: The electronic structure package for quantum computers, 2017. 1710.07629.

[41] Q. Sun, T. C. Berkelbach, N. S. Blunt, G. H. Booth, S. Guo, Z. Li, J. Liu, J. D. McClain, E. R. Sayfutyarova, S. Sharma, S. Wouters, and G. K. Chan. PySCF: the Python‐based simulations of chemistry framework, 2017. 10.1002/​wcms.1340.

[42] W. J. Hehre, R. F. Stewart, and J. A. Pople. Self‐consistent molecular‐orbital methods. I. Use of Gaussian expansions of Slater‐type atomic orbitals. The Journal of Chemical Physics, 51 (6): 2657–2664, 1969. 10.1063/​1.1672392.

[43] S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B. A. Shoemaker, P. A. Thiessen, B. Yu, L. Zaslavsky, J. Zhang, and E. E. Bolton. PubChem 2019 update: improved access to chemical data. Nucleic Acids Research, 47 (D1): D1102–D1109, Oct 2018. 10.1093/​nar/​gky1033.

[44] R. D. Johnson III. NIST Computational Chem-is-try Comparison and Benchmark Database, NIST Standard Reference Database Number 101, Release 20, Aug 2019. 10.18434/​T47C7Z.

[45] P. Jordan and E. Wigner. Über das Paulische Äquivalenzverbot. Zeitschrift für Physik, 47 (9): 631–651, 1928. 10.1007/​BF01331938.

[46] T. H. Dunning Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. The Journal of chemical physics, 90 (2): 1007–1023, 1989. 10.1063/​1.456153.

[47] B. P. Prascher, D. E. Woon, K. A. Peterson, T. H. Dunning, and A. K. Wilson. Gaussian basis sets for use in correlated molecular calculations. VII. Valence, core-valence, and scalar relativistic basis sets for Li, Be, Na, and Mg. Theoretical Chemistry Accounts, 128 (1): 69–82, 2011. 10.1007/​s00214-010-0764-0.

[48] L. Novo and D. W. Berry. Improved Hamiltonian simulation via a truncated Taylor series and corrections, 2016. 1611.10033.

Cited by

[1] Guang Hao Low, Yuan Su, Yu Tong, and Minh C. Tran, "Complexity of Implementing Trotter Steps", PRX Quantum 4 2, 020323 (2023).

[2] Nobuyuki Yoshioka, Tsuyoshi Okubo, Yasunari Suzuki, Yuki Koizumi, and Wataru Mizukami, "Hunting for quantum-classical crossover in condensed matter problems", npj Quantum Information 10 1, 45 (2024).

[3] Mingxia Huo and Ying Li, "Error-resilient Monte Carlo quantum simulation of imaginary time", Quantum 7, 916 (2023).

[4] Dean Lee, "Quantum techniques for eigenvalue problems", The European Physical Journal A 59 11, 275 (2023).

[5] Alexander M. Dalzell, Sam McArdle, Mario Berta, Przemyslaw Bienias, Chi-Fang Chen, András Gilyén, Connor T. Hann, Michael J. Kastoryano, Emil T. Khabiboulline, Aleksander Kubica, Grant Salton, Samson Wang, and Fernando G. S. L. Brandão, "Quantum algorithms: A survey of applications and end-to-end complexities", arXiv:2310.03011, (2023).

[6] Guang Hao Low, Yuan Su, Yu Tong, and Minh C. Tran, "On the complexity of implementing Trotter steps", arXiv:2211.09133, (2022).

[7] Kenneth Choi, Dean Lee, Joey Bonitati, Zhengrong Qian, and Jacob Watkins, "Rodeo Algorithm for Quantum Computing", Physical Review Letters 127 4, 040505 (2021).

[8] Yuan Su, Hsin-Yuan Huang, and Earl T. Campbell, "Nearly tight Trotterization of interacting electrons", Quantum 5, 495 (2021).

[9] Yongdan Yang, Bing-Nan Lu, and Ying Li, "Accelerated Quantum Monte Carlo with Mitigated Error on Noisy Quantum Computer", PRX Quantum 2 4, 040361 (2021).

[10] Earl T. Campbell, "Early fault-tolerant simulations of the Hubbard model", arXiv:2012.09238, (2020).

[11] Sam McArdle, Earl Campbell, and Yuan Su, "Exploiting fermion number in factorized decompositions of the electronic structure Hamiltonian", Physical Review A 105 1, 012403 (2022).

[12] Earl T. Campbell, "Early fault-tolerant simulations of the Hubbard model", Quantum Science and Technology 7 1, 015007 (2022).

[13] Qi Zhao and Xiao Yuan, "Exploiting anticommutation in Hamiltonian simulation", Quantum 5, 534 (2021).

The above citations are from Crossref's cited-by service (last updated successfully 2024-06-22 02:47:41) and SAO/NASA ADS (last updated successfully 2024-06-22 02:47:42). The list may be incomplete as not all publishers provide suitable and complete citation data.