Pulser: An open-source package for the design of pulse sequences in programmable neutral-atom arrays

Henrique Silvério1, Sebastián Grijalva1, Constantin Dalyac1, Lucas Leclerc1, Peter J. Karalekas2, Nathan Shammah2, Mourad Beji1, Louis-Paul Henry1, and Loïc Henriet1

1Pasqal, 2 avenue Augustin Fresnel, 91120 Palaiseau, France
2Unitary Fund, Walnut, CA 91789, USA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Programmable arrays of hundreds of Rydberg atoms have recently enabled the exploration of remarkable phenomena in many-body quantum physics. In addition, the development of high-fidelity quantum gates are making them promising architectures for the implementation of quantum circuits.
We present here $Pulser$, an open-source Python library for programming neutral-atom devices at the pulse level. The low-level nature of Pulser makes it a versatile framework for quantum control both in the digital and analog settings. The library also contains simulation routines for studying and exploring the outcome of pulse sequences for small systems.

► BibTeX data

► References

[1] M. Saffman, T. G. Walker, and K. Mølmer. Quantum information with Rydberg atoms. Reviews of Modern Physics, 82 (3): 2313–2363, Jul 2010. 10.1103/​RevModPhys.82.2313.
https:/​/​doi.org/​10.1103/​RevModPhys.82.2313

[2] M. Saffman. Quantum computing with atomic qubits and Rydberg interactions: progress and challenges. Journal of Physics B Atomic Molecular Physics, 49 (20): 202001, October 2016. 10.1088/​0953-4075/​49/​20/​202001.
https:/​/​doi.org/​10.1088/​0953-4075/​49/​20/​202001

[3] Daniel Barredo, Sylvain de Léséleuc, Vincent Lienhard, Thierry Lahaye, and Antoine Browaeys. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science, 354 (6315): 1021–1023, November 2016. ISSN 0036-8075, 1095-9203. 10.1126/​science.aah3778. URL https:/​/​science.sciencemag.org/​content/​354/​6315/​1021.
https:/​/​doi.org/​10.1126/​science.aah3778
https:/​/​science.sciencemag.org/​content/​354/​6315/​1021

[4] Manuel Endres, Hannes Bernien, Alexander Keesling, Harry Levine, Eric R. Anschuetz, Alexandre Krajenbrink, Crystal Senko, Vladan Vuletic, Markus Greiner, and Mikhail D. Lukin. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science, 354 (6315): 1024–1027, November 2016. ISSN 0036-8075, 1095-9203. 10.1126/​science.aah3752. URL https:/​/​science.sciencemag.org/​content/​354/​6315/​1024.
https:/​/​doi.org/​10.1126/​science.aah3752
https:/​/​science.sciencemag.org/​content/​354/​6315/​1024

[5] Daniel Barredo, Vincent Lienhard, Sylvain de Léséleuc, Thierry Lahaye, and Antoine Browaeys. Synthetic three-dimensional atomic structures assembled atom by atom. Nature, 561 (7721): 79–82, September 2018. ISSN 1476-4687. 10.1038/​s41586-018-0450-2. URL https:/​/​www.nature.com/​articles/​s41586-018-0450-2.
https:/​/​doi.org/​10.1038/​s41586-018-0450-2
https:/​/​www.nature.com/​articles/​s41586-018-0450-2

[6] Antoine Browaeys and Thierry Lahaye. Many-body physics with individually controlled Rydberg atoms. Nature Physics, 16 (2): 132–142, 2020. 10.1038/​s41567-019-0733-z. URL https:/​/​doi.org/​10.1038/​s41567-019-0733-z.
https:/​/​doi.org/​10.1038/​s41567-019-0733-z

[7] Loïc Henriet, Lucas Beguin, Adrien Signoles, Thierry Lahaye, Antoine Browaeys, Georges-Olivier Reymond, and Christophe Jurczak. Quantum computing with neutral atoms. Quantum, 4: 327, September 2020. ISSN 2521-327X. 10.22331/​q-2020-09-21-327. URL https:/​/​doi.org/​10.22331/​q-2020-09-21-327.
https:/​/​doi.org/​10.22331/​q-2020-09-21-327

[8] M. Morgado and S. Whitlock. Quantum simulation and computing with Rydberg-interacting qubits. arXiv e-prints, art. arXiv:2011.03031, November 2020. URL https:/​/​doi.org/​10.1116/​5.0036562.
https:/​/​doi.org/​10.1116/​5.0036562
arXiv:2011.03031

[9] I. I. Beterov. Quantum Computers Based on Cold Atoms. Optoelectronics, Instrumentation and Data Processing, 56 (4): 317–324, July 2020. 10.3103/​S8756699020040020.
https:/​/​doi.org/​10.3103/​S8756699020040020

[10] Xiaoling Wu, Xinhui Liang, Yaoqi Tian, Fan Yang, Cheng Chen, Yong-Chun Liu, Meng Khoon Tey, and Li You. A concise review of Rydberg atom based quantum computation and quantum simulation. arXiv e-prints, art. arXiv:2012.10614, December 2020. 10.1088/​1674-1056/​abd76f.
https:/​/​doi.org/​10.1088/​1674-1056/​abd76f
arXiv:2012.10614

[11] D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin. Fast quantum gates for neutral atoms. Phys. Rev. Lett., 85: 2208–2211, Sep 2000. 10.1103/​PhysRevLett.85.2208. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.85.2208.
https:/​/​doi.org/​10.1103/​PhysRevLett.85.2208

[12] L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman. Demonstration of a neutral atom controlled-not quantum gate. Phys. Rev. Lett., 104: 010503, Jan 2010. 10.1103/​PhysRevLett.104.010503. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.104.010503.
https:/​/​doi.org/​10.1103/​PhysRevLett.104.010503

[13] Harry Levine, Alexander Keesling, Ahmed Omran, Hannes Bernien, Sylvain Schwartz, Alexander S. Zibrov, Manuel Endres, Markus Greiner, Vladan Vuletić, and Mikhail D. Lukin. High-Fidelity Control and Entanglement of Rydberg-Atom Qubits. Phys. Rev. Lett., 121 (12): 123603, September 2018. 10.1103/​PhysRevLett.121.123603. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.121.123603.
https:/​/​doi.org/​10.1103/​PhysRevLett.121.123603

[14] Harry Levine, Alexander Keesling, Giulia Semeghini, Ahmed Omran, Tout T. Wang, Sepehr Ebadi, Hannes Bernien, Markus Greiner, Vladan Vuletić, Hannes Pichler, and Mikhail D. Lukin. Parallel implementation of high-fidelity multiqubit gates with neutral atoms. Phys. Rev. Lett., 123: 170503, Oct 2019. 10.1103/​PhysRevLett.123.170503. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.123.170503.
https:/​/​doi.org/​10.1103/​PhysRevLett.123.170503

[15] Henning Labuhn, Daniel Barredo, Sylvain Ravets, Sylvain De Léséleuc, Tommaso Macrì, Thierry Lahaye, and Antoine Browaeys. Tunable two-dimensional arrays of single rydberg atoms for realizing quantum Ising models. Nature, 534 (7609): 667–670, 2016. 10.1038/​nature18274.
https:/​/​doi.org/​10.1038/​nature18274

[16] Hannes Bernien, Sylvain Schwartz, Alexander Keesling, Harry Levine, Ahmed Omran, Hannes Pichler, Soonwon Choi, Alexander S. Zibrov, Manuel Endres, Markus Greiner, Vladan Vuletić, and Mikhail D. Lukin. Probing many-body dynamics on a 51-atom quantum simulator. Nature, 551 (7682): 579–584, November 2017. 10.1038/​nature24622.
https:/​/​doi.org/​10.1038/​nature24622

[17] Vincent Lienhard, Sylvain de Léséleuc, Daniel Barredo, Thierry Lahaye, Antoine Browaeys, Michael Schuler, Louis-Paul Henry, and Andreas M. Läuchli. Observing the space- and time-dependent growth of correlations in dynamically tuned synthetic ising models with antiferromagnetic interactions. Phys. Rev. X, 8: 021070, Jun 2018a. 10.1103/​PhysRevX.8.021070.
https:/​/​doi.org/​10.1103/​PhysRevX.8.021070

[18] Sylvain de Léséleuc, Vincent Lienhard, Pascal Scholl, Daniel Barredo, Sebastian Weber, Nicolai Lang, Hans Peter Büchler, Thierry Lahaye, and Antoine Browaeys. Observation of a symmetry-protected topological phase of interacting bosons with Rydberg atoms. Science, page eaav9105, August 2019. ISSN 0036-8075, 1095-9203. 10.1126/​science.aav9105. URL https:/​/​science.sciencemag.org/​content/​early/​2019/​07/​31/​science.aav9105.
https:/​/​doi.org/​10.1126/​science.aav9105
https:/​/​science.sciencemag.org/​content/​early/​2019/​07/​31/​science.aav9105

[19] Ahmed Omran, Harry Levine, Alexander Keesling, Giulia Semeghini, Tout T. Wang, Sepehr Ebadi, Hannes Bernien, Alexander S. Zibrov, Hannes Pichler, Soonwon Choi, Jian Cui, Marco Rossignolo, Phila Rembold, Simone Montangero, Tommaso Calarco, Manuel Endres, Markus Greiner, Vladan Vuletić, and Mikhail D. Lukin. Generation and manipulation of Schrödinger cat states in Rydberg atom arrays. arXiv:1905.05721 [cond-mat, physics:physics, physics:quant-ph], May 2019. URL http:/​/​arxiv.org/​abs/​1905.05721. arXiv: 1905.05721. https:/​/​doi.org/​10.1126/​science.aax9743.
https:/​/​doi.org/​10.1126/​science.aax9743
arXiv:1905.05721

[20] Henrique Silvério, Sebastian Grijalva, Loïc Henriet, Peter Karalekas, Lucas Leclerc, Nathan Shammah, and Constantin Dalyac. Pulser, April 2021. URL https:/​/​doi.org/​10.5281/​zenodo.4709401.
https:/​/​doi.org/​10.5281/​zenodo.4709401

[21] Adrian Parra-Rodriguez, Pavel Lougovski, Lucas Lamata, Enrique Solano, and Mikel Sanz. Digital-analog quantum computation. Phys. Rev. A, 101 (2): 022305, February 2020. 10.1103/​PhysRevA.101.022305.
https:/​/​doi.org/​10.1103/​PhysRevA.101.022305

[22] J.R. Johansson, P.D. Nation, and Franco Nori. QuTiP: An open-source Python framework for the dynamics of open quantum systems. Computer Physics Communications, 183 (8): 1760–1772, Aug 2012. ISSN 0010-4655. 10.1016/​j.cpc.2012.02.021. URL http:/​/​dx.doi.org/​10.1016/​j.cpc.2012.02.021.
https:/​/​doi.org/​10.1016/​j.cpc.2012.02.021

[23] J.R. Johansson, P.D. Nation, and Franco Nori. QuTiP 2: A Python framework for the dynamics of open quantum systems. Computer Physics Communications, 184 (4): 1234–1240, Apr 2013. ISSN 0010-4655. 10.1016/​j.cpc.2012.11.019. URL http:/​/​dx.doi.org/​10.1016/​j.cpc.2012.11.019.
https:/​/​doi.org/​10.1016/​j.cpc.2012.11.019

[24] Will Zeng, Blake Johnson, Robert Smith, Nick Rubin, Matt Reagor, Colm Ryan, and Chad Rigetti. First quantum computers need smart software. Nature News, 549 (7671): 149, 2017. http:/​/​doi.org/​10.1038/​549149a.
https:/​/​doi.org/​10.1038/​549149a

[25] Peter J Karalekas, Nikolas A Tezak, Eric C Peterson, Colm A Ryan, Marcus P da Silva, and Robert S Smith. A quantum-classical cloud platform optimized for variational hybrid algorithms. Quantum Science and Technology, 5 (2): 024003, Apr 2020. 10.1088/​2058-9565/​ab7559. URL https:/​/​doi.org/​10.1088.
https:/​/​doi.org/​10.1088/​2058-9565/​ab7559

[26] Jarrod R McClean, Jonathan Romero, Ryan Babbush, and Alán Aspuru-Guzik. The theory of variational hybrid quantum-classical algorithms. New Journal of Physics, 18 (2): 023023, 2016. 10.1088/​1367-2630/​18/​2/​023023.
https:/​/​doi.org/​10.1088/​1367-2630/​18/​2/​023023

[27] Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav Anand, Matthias Degroote, Hermanni Heimonen, Jakob S. Kottmann, Tim Menke, Wai-Keong Mok, Sukin Sim, Leong-Chuan Kwek, and Alán Aspuru-Guzik. Noisy intermediate-scale quantum (NISQ) algorithms, 2021.

[28] Suguru Endo, Zhenyu Cai, Simon C. Benjamin, and Xiao Yuan. Hybrid quantum-classical algorithms and quantum error mitigation. Journal of the Physical Society of Japan, 90 (3): 032001, Mar 2021. ISSN 1347-4073. 10.7566/​jpsj.90.032001. URL http:/​/​dx.doi.org/​10.7566/​JPSJ.90.032001.
https:/​/​doi.org/​10.7566/​jpsj.90.032001

[29] Thomas Alexander, Naoki Kanazawa, Daniel J Egger, Lauren Capelluto, Christopher J Wood, Ali Javadi-Abhari, and David C McKay. Qiskit pulse: programming quantum computers through the cloud with pulses. Quantum Science and Technology, 5 (4): 044006, Aug 2020. ISSN 2058-9565. 10.1088/​2058-9565/​aba404. URL http:/​/​dx.doi.org/​10.1088/​2058-9565/​aba404.
https:/​/​doi.org/​10.1088/​2058-9565/​aba404

[30] Harrison Ball, Michael J. Biercuk, Andre Carvalho, Jiayin Chen, Michael Hush, Leonardo A. De Castro, Li Li, Per J. Liebermann, Harry J. Slatyer, Claire Edmunds, Virginia Frey, Cornelius Hempel, and Alistair Milne. Software tools for quantum control: Improving quantum computer performance through noise and error suppression, 2020.

[31] Nicolas Wittler, Federico Roy, Kevin Pack, Max Werninghaus, Anurag Saha Roy, Daniel J. Egger, Stefan Filipp, Frank K. Wilhelm, and Shai Machnes. Integrated tool set for control, calibration, and characterization of quantum devices applied to superconducting qubits. Physical Review Applied, 15 (3), Mar 2021. ISSN 2331-7019. 10.1103/​physrevapplied.15.034080. URL http:/​/​dx.doi.org/​10.1103/​PhysRevApplied.15.034080.
https:/​/​doi.org/​10.1103/​physrevapplied.15.034080

[32] Gal Winer, Yoav Romach, Satya Bade, Ilan Mitnikov, Tal Shani, Dor Israeli, Yonatan Cohen, Uri Abend, and Lior Ella. qua-libs: Open source libraries in qua, May 2021. URL https:/​/​doi.org/​10.5281/​zenodo.4769470.
https:/​/​doi.org/​10.5281/​zenodo.4769470

[33] Boxi Li, Shahnawaz Ahmed, Sidhant Saraogi, Neill Lambert, Franco Nori, Alexander Pitchford, and Nathan Shammah. Pulse-level noisy quantum circuits with qutip. arXiv preprint arXiv:2105.09902, 2021. URL https:/​/​doi.org/​10.22331/​q-2022-01-24-630.
https:/​/​doi.org/​10.22331/​q-2022-01-24-630
arXiv:2105.09902

[34] Michael H. Goerz, Daniel Basilewitsch, Fernando Gago-Encinas, Matthias G. Krauss, Karl P. Horn, Daniel M. Reich, and Christiane P. Koch. Krotov: A Python implementation of Krotov's method for quantum optimal control. SciPost Phys., 7: 80, 2019. 10.21468/​SciPostPhys.7.6.080. URL https:/​/​scipost.org/​10.21468/​SciPostPhys.7.6.080.
https:/​/​doi.org/​10.21468/​SciPostPhys.7.6.080

[35] John Preskill. Quantum computing in the nisq era and beyond. Quantum, 2: 79, Aug 2018. ISSN 2521-327X. 10.22331/​q-2018-08-06-79. URL http:/​/​dx.doi.org/​10.22331/​q-2018-08-06-79.
https:/​/​doi.org/​10.22331/​q-2018-08-06-79

[36] F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys. Single-atom trapping in holographic 2d arrays of microtraps with arbitrary geometries. Phys. Rev. X, 4: 021034, May 2014. 10.1103/​PhysRevX.4.021034. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevX.4.021034.
https:/​/​doi.org/​10.1103/​PhysRevX.4.021034

[37] Peter Schauß, Johannes Zeiher, Takeshi Fukuhara, Sebastian Hild, Marc Cheneau, Tommaso Macrì, Thomas Pohl, Immanuel Bloch, and Christian Groß. Crystallization in Ising quantum magnets. Science, 347 (6229): 1455–1458, 2015. 10.1126/​science.1258351.
https:/​/​doi.org/​10.1126/​science.1258351

[38] Sylvain de Léséleuc, Sebastian Weber, Vincent Lienhard, Daniel Barredo, Hans Peter Büchler, Thierry Lahaye, and Antoine Browaeys. Accurate mapping of multilevel Rydberg atoms on interacting spin-$1/​2$ particles for the quantum simulation of Ising models. Phys. Rev. Lett., 120: 113602, Mar 2018. 10.1103/​PhysRevLett.120.113602. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.120.113602.
https:/​/​doi.org/​10.1103/​PhysRevLett.120.113602

[39] Daniel Barredo, Henning Labuhn, Sylvain Ravets, Thierry Lahaye, Antoine Browaeys, and Charles S. Adams. Coherent excitation transfer in a spin chain of three Rydberg atoms. Phys. Rev. Lett., 114: 113002, Mar 2015. 10.1103/​PhysRevLett.114.113002. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.114.113002.
https:/​/​doi.org/​10.1103/​PhysRevLett.114.113002

[40] A. Piñeiro Orioli, A. Signoles, H. Wildhagen, G. Günter, J. Berges, S. Whitlock, and M. Weidemüller. Relaxation of an isolated dipolar-interacting Rydberg quantum spin system. Phys. Rev. Lett., 120: 063601, Feb 2018. 10.1103/​PhysRevLett.120.063601. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.120.063601.
https:/​/​doi.org/​10.1103/​PhysRevLett.120.063601

[41] P. Scholl, H. J. Williams, G. Bornet, F. Wallner, D. Barredo, T. Lahaye, A. Browaeys, L. Henriet, A. Signoles, C. Hainaut, T. Franz, S. Geier, A. Tebben, A. Salzinger, G. Zürn, and M. Weidemüller. Microwave-engineering of programmable XXZ Hamiltonians in arrays of Rydberg atoms. arXiv e-prints, art. arXiv:2107.14459, July 2021.
arXiv:2107.14459

[42] D. Bluvstein, A. Omran, H. Levine, A. Keesling, G. Semeghini, S. Ebadi, T. T. Wang, A. A. Michailidis, N. Maskara, W. W. Ho, S. Choi, M. Serbyn, M. Greiner, V. Vuletić, and M. D. Lukin. Controlling quantum many-body dynamics in driven rydberg atom arrays. Science, 2021. ISSN 0036-8075. 10.1126/​science.abg2530. URL https:/​/​science.sciencemag.org/​content/​early/​2021/​02/​24/​science.abg2530.
https:/​/​doi.org/​10.1126/​science.abg2530
https:/​/​science.sciencemag.org/​content/​early/​2021/​02/​24/​science.abg2530

[43] Pascal Scholl, Michael Schuler, Hannah J Williams, Alexander A Eberharter, Daniel Barredo, Kai-Niklas Schymik, Vincent Lienhard, Louis-Paul Henry, Thomas C Lang, Thierry Lahaye, et al. Programmable quantum simulation of 2d antiferromagnets with hundreds of rydberg atoms. arXiv preprint arXiv:2012.12268, 2020. 10.1038/​s41586-021-03585-1.
https:/​/​doi.org/​10.1038/​s41586-021-03585-1
arXiv:2012.12268

[44] Sepehr Ebadi, Tout T Wang, Harry Levine, Alexander Keesling, Giulia Semeghini, Ahmed Omran, Dolev Bluvstein, Rhine Samajdar, Hannes Pichler, Wen Wei Ho, et al. Quantum phases of matter on a 256-atom programmable quantum simulator. arXiv preprint arXiv:2012.12281, 2020. 10.1038/​s41586-021-03582-4.
https:/​/​doi.org/​10.1038/​s41586-021-03582-4
arXiv:2012.12281

[45] Hannes Pichler, Sheng-Tao Wang, Leo Zhou, Soonwon Choi, and Mikhail D Lukin. Quantum optimization for maximum independent set using rydberg atom arrays. arXiv preprint arXiv:1808.10816, 2018.
arXiv:1808.10816

[46] Loïc Henriet. Robustness to spontaneous emission of a variational quantum algorithm. Physical Review A, 101 (1): 012335, 2020. 10.1103/​PhysRevA.101.012335.
https:/​/​doi.org/​10.1103/​PhysRevA.101.012335

[47] Constantin Dalyac, Loïc Henriet, Emmanuel Jeandel, Wolfgang Lechner, Simon Perdrix, Marc Porcheron, and Margarita Veshchezerova. Qualifying quantum approaches for hard industrial optimization problems. a case study in the field of smart-charging of electric vehicles. arXiv preprint arXiv:2012.14859, 2020. 10.1140/​epjqt/​s40507-021-00100-3.
https:/​/​doi.org/​10.1140/​epjqt/​s40507-021-00100-3
arXiv:2012.14859

[48] David C. McKay, Christopher J. Wood, Sarah Sheldon, Jerry M. Chow, and Jay M. Gambetta. Efficient $z$ gates for quantum computing. Phys. Rev. A, 96: 022330, Aug 2017. 10.1103/​PhysRevA.96.022330. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.96.022330.
https:/​/​doi.org/​10.1103/​PhysRevA.96.022330

[49] A. Fuhrmanek, R. Bourgain, Y. R. P. Sortais, and A. Browaeys. Free-space lossless state detection of a single trapped atom. Phys. Rev. Lett., 106: 133003, Mar 2011. 10.1103/​PhysRevLett.106.133003. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.106.133003.
https:/​/​doi.org/​10.1103/​PhysRevLett.106.133003

[50] Vincent Lienhard, Sylvain de Léséleuc, Daniel Barredo, Thierry Lahaye, Antoine Browaeys, Michael Schuler, Louis-Paul Henry, and Andreas M Läuchli. Observing the space-and time-dependent growth of correlations in dynamically tuned synthetic ising models with antiferromagnetic interactions. Physical Review X, 8 (2): 021070, 2018b.

[51] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A Quantum Approximate Optimization Algorithm. arXiv e-prints, art. arXiv:1411.4028, Nov 2014.
arXiv:1411.4028

[52] Kai-Niklas Schymik, Vincent Lienhard, Daniel Barredo, Pascal Scholl, Hannah Williams, Antoine Browaeys, and Thierry Lahaye. Enhanced atom-by-atom assembly of arbitrary tweezer arrays. Phys. Rev. A, 102 (6): 063107, December 2020. 10.1103/​PhysRevA.102.063107.
https:/​/​doi.org/​10.1103/​PhysRevA.102.063107

[53] Hannes Pichler, Sheng-Tao Wang, Leo Zhou, Soonwon Choi, and Mikhail D. Lukin. Quantum Optimization for Maximum Independent Set Using Rydberg Atom Arrays. arXiv e-prints, art. arXiv:1808.10816, Aug 2018.
arXiv:1808.10816

[54] Leo Zhou, Sheng-Tao Wang, Soonwon Choi, Hannes Pichler, and Mikhail D. Lukin. Quantum approximate optimization algorithm: Performance, mechanism, and implementation on near-term devices. Phys. Rev. X, 10: 021067, Jun 2020. 10.1103/​PhysRevX.10.021067. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevX.10.021067.
https:/​/​doi.org/​10.1103/​PhysRevX.10.021067

[55] Louis-Paul Henry, Slimane Thabet, Constantin Dalyac, and Loïc Henriet. Quantum evolution kernel: Machine learning on graphs with programmable arrays of qubits. Phys. Rev. A, 104: 032416, Sep 2021. 10.1103/​PhysRevA.104.032416. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.104.032416.
https:/​/​doi.org/​10.1103/​PhysRevA.104.032416

[56] Cirq Developers. Cirq, March 2021. URL https:/​/​doi.org/​10.5281/​zenodo.4586899. See full list of authors on Github: Cirq/​graphs/​contributors.
https:/​/​doi.org/​10.5281/​zenodo.4586899

[57] Qiskit Developers. Qiskit: An open-source framework for quantum computing, 2019.

[58] Ville Bergholm, Josh Izaac, Maria Schuld, Christian Gogolin, M. Sohaib Alam, Shahnawaz Ahmed, Juan Miguel Arrazola, Carsten Blank, Alain Delgado, Soran Jahangiri, Keri McKiernan, Johannes Jakob Meyer, Zeyue Niu, Antal Száva, and Nathan Killoran. PennyLane: Automatic differentiation of hybrid quantum-classical computations. arXiv e-prints, art. arXiv:1811.04968, November 2018.
arXiv:1811.04968

[59] Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Simmons, Alec Edgington, and Ross Duncan. t|ket⟩: a retargetable compiler for NISQ devices. Quantum Science and Technology, 6 (1): 014003, January 2021. 10.1088/​2058-9565/​ab8e92.
https:/​/​doi.org/​10.1088/​2058-9565/​ab8e92

[60] Sylvain de Léséleuc, Daniel Barredo, Vincent Lienhard, Antoine Browaeys, and Thierry Lahaye. Analysis of imperfections in the coherent optical excitation of single atoms to Rydberg states. Phys. Rev. A, 97 (5): 053803, May 2018. 10.1103/​PhysRevA.97.053803.
https:/​/​doi.org/​10.1103/​PhysRevA.97.053803

Cited by

[1] Boxi Li, Shahnawaz Ahmed, Sidhant Saraogi, Neill Lambert, Franco Nori, Alexander Pitchford, and Nathan Shammah, "Pulse-level noisy quantum circuits with QuTiP", arXiv:2105.09902, Quantum 6, 630 (2022).

[2] Julian David Teske, Pascal Cerfontaine, and Hendrik Bluhm, "qopt: An Experiment-Oriented Software Package for Qubit Simulation and Quantum Optimal Control", Physical Review Applied 17 3, 034036 (2022).

[3] Andrew Cross, Ali Javadi-Abhari, Thomas Alexander, Niel De Beaudrap, Lev S. Bishop, Steven Heidel, Colm A. Ryan, Prasahnt Sivarajah, John Smolin, Jay M. Gambetta, and Blake R. Johnson, "OpenQASM 3: A Broader and Deeper Quantum Assembly Language", ACM Transactions on Quantum Computing 3 3, 1 (2022).

[4] Piotr Migdał, Klementyna Jankiewicz, Paweł Grabarz, Chiara Decaroli, and Philippe Cochin, "Visualizing quantum mechanics in an interactive simulation – Virtual Lab by Quantum Flytrap", arXiv:2203.13300, Optical Engineering 61 08(2022).

[5] Ryan LaRose, Andrea Mari, Sarah Kaiser, Peter J. Karalekas, Andre A. Alves, Piotr Czarnik, Mohamed El Mandouh, Max H. Gordon, Yousef Hindy, Aaron Robertson, Purva Thakre, Misty Wahl, Danny Samuel, Rahul Mistri, Maxime Tremblay, Nick Gardner, Nathaniel T. Stemen, Nathan Shammah, and William J. Zeng, "Mitiq: A software package for error mitigation on noisy quantum computers", arXiv:2009.04417, Quantum 6, 774 (2022).

[6] Dylan Herman, Cody Googin, Xiaoyuan Liu, Alexey Galda, Ilya Safro, Yue Sun, Marco Pistoia, and Yuri Alexeev, "A Survey of Quantum Computing for Finance", arXiv:2201.02773.

[7] Louis-Paul Henry, Slimane Thabet, Constantin Dalyac, and Loïc Henriet, "Quantum evolution kernel: Machine learning on graphs with programmable arrays of qubits", Physical Review A 104 3, 032416 (2021).

[8] Andy J. Goldschmidt, Jonathan L. DuBois, Steven L. Brunton, and J. Nathan Kutz, "Model predictive control for robust quantum state preparation", arXiv:2201.05266.

The above citations are from Crossref's cited-by service (last updated successfully 2022-10-04 12:21:20) and SAO/NASA ADS (last updated successfully 2022-10-04 12:21:21). The list may be incomplete as not all publishers provide suitable and complete citation data.

1 thought on “Pulser: An open-source package for the design of pulse sequences in programmable neutral-atom arrays

  1. Pingback: News - Quantum Computing Report