QuantumCumulants.jl: A Julia framework for generalized mean-field equations in open quantum systems

David Plankensteiner, Christoph Hotter, and Helmut Ritsch

Institut für Theoretische Physik, Universität Innsbruck, Technikerstr. 21a, A-6020 Innsbruck, Austria

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


A full quantum mechanical treatment of open quantum systems via a Master equation is often limited by the size of the underlying Hilbert space. As an alternative, the dynamics can also be formulated in terms of systems of coupled differential equations for operators in the Heisenberg picture. This typically leads to an infinite hierarchy of equations for products of operators. A well-established approach to truncate this infinite set at the level of expectation values is to neglect quantum correlations of high order. This is systematically realized with a so-called cumulant expansion, which decomposes expectation values of operator products into products of a given lower order, leading to a closed set of equations. Here we present an open-source framework that fully automizes this approach: first, the equations of motion of operators up to a desired order are derived symbolically using predefined canonical commutation relations. Next, the resulting equations for the expectation values are expanded employing the cumulant expansion approach, where moments up to a chosen order specified by the user are included. Finally, a numerical solution can be directly obtained from the symbolic equations. After reviewing the theory we present the framework and showcase its usefulness in a few example problems.

► BibTeX data

► References

[1] S. M. Tan. J. Opt. B: Quantum Semiclassical Optics 1, 424 (1999).

[2] J. Johansson, P. Nation, and F. Nori. Comput. Phys. Commun. 184, 1234 (2013).

[3] J. R. Johansson, P. D. Nation, and F. Nori. Comp. Phys. Comm. 184, 1234–1240 (2013).

[4] A Vukics and H Ritsch. The European Physical Journal D 44, 585–599 (2007).

[5] Xiu-Zhe Luo, Jin-Guo Liu, Pan Zhang, and Lei Wang. Quantum 4, 341 (2020).

[6] Bela Bauer, LD Carr, Hans Gerd Evertz, Adrian Feiguin, J Freire, S Fuchs, Lukas Gamper, Jan Gukelberger, E Gull, Siegfried Guertler, et al. Journal of Statistical Mechanics: Theory and Experiment 2011, P05001 (2011).

[7] Damian S Steiger, Thomas Häner, and Matthias Troyer. Quantum 2, 49 (2018).

[8] Juha Javanainen. Comput. Phys. Commun. 212, 1–7 (2017).

[9] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. SIAM Rev. 59, 65–98 (2017).

[10] S. Krämer, D. Plankensteiner, L. Ostermann, and H. Ritsch. Comput. Phys. Commun. 227, 109–116 (2018).

[11] Sergei V Isakov, Ilia N Zintchenko, Troels F Rønnow, and Matthias Troyer. Comput. Phys. Commun. 192, 265–271 (2015).

[12] Steven R. White. Phys. Rev. Lett. 69, 2863–2866 (1992).

[13] U. Schollwöck. Ann. Phys. 326, 96–192 (2011).

[14] Ryogo Kubo. J. Phys. Soc. Jpn. 17, 1100–1120 (1962).

[15] Ren Fang Chang, Victor Korenman, Carroll O Alley, and Robert W Detenbeck. Phys. Rev. 178, 612 (1969).

[16] Michael Fleischhauer. Phys. Rev. A 50, 2773 (1994).

[17] D. Meiser, Y. Jun, D. R. Carlson, and M. J. Holland. Phys. Rev. Lett. 102, 163601 (2009).

[18] D Meiser and MJ Holland. Phys. Rev. A 81, 033847 (2010).

[19] K Sandner, H Ritsch, R Amsüss, Ch Koller, T Nöbauer, S Putz, J Schmiedmayer, and J Majer. Phys. Rev. A 85, 053806 (2012).

[20] Kamanasish Debnath, Yuan Zhang, and Klaus Mølmer. Phys. Rev. A 98, 063837 (2018).

[21] Stefan A Schäffer, Mikkel Tang, Martin R Henriksen, Asbjørn A Jørgensen, Bjarke TR Christensen, and Jan W Thomsen. Phys. Rev. A 101, 013819 (2020).

[22] Christoph Hotter, David Plankensteiner, and Helmut Ritsch. New J. Phys. 22, 113021 (2020).

[23] Peter Kirton and Jonathan Keeling. Phys. Rev. Lett. 118, 123602 (2017).

[24] Peter Kirton and Jonathan Keeling. New J. Phys. 20, 015009 (2018).

[25] Florentin Reiter, Thanh Long Nguyen, Jonathan P. Home, and Susanne F. Yelin. Phys. Rev. Lett. 125, 233602 (2020).

[26] Mikkel Tang, Stefan A Schäffer, Asbjørn A Jørgensen, Martin R Henriksen, Bjarke TR Christensen, Jörg H Müller, and Jan W Thomsen. Physical Review Research 3, 033258 (2021).

[27] Sebastian Krämer and Helmut Ritsch. EPJ D 69, 1–11 (2015).

[28] F. Robicheaux and Deepak A. Suresh. Phys. Rev. A 104, 023702 (2021).

[29] Mark D. Lee, Stewart D. Jenkins, and Janne Ruostekoski. Phys. Rev. A 93, 063803 (2016).

[30] Crispin Gardiner, Peter Zoller, and Peter Zoller. ``Quantum noise: a handbook of markovian and non-markovian quantum stochastic methods with applications to quantum optics''. Springer Science & Business Media.

[31] ``Documentation of QuantumCumulants.jl''. https:/​/​qojulia.github.io/​QuantumCumulants.jl/​stable/​ (Accessed: December 20, 2021).

[32] ``GitHub repository of QuantumCumulants.jl''. https:/​/​github.com/​qojulia/​QuantumCumulants.jl (Accessed: December 20, 2021).

[33] Shashi Gowda, Yingbo Ma, Alessandro Cheli, Maja Gwozdz, Viral B Shah, Alan Edelman, and Christopher Rackauckas. (2021). url: arxiv.org/​abs/​2105.03949.

[34] Yingbo Ma, Shashi Gowda, Ranjan Anantharaman, Chris Laughman, Viral Shah, and Chris Rackauckas. (2021). arXiv:2103.05244.

[35] Christopher Rackauckas and Qing Nie. Journal of Open Research Software 5 (2017).

[36] ``GitHub repository of Combinatorics.jl''. https:/​/​github.com/​JuliaMath/​Combinatorics.jl. Accessed: December 20, 2021.

[37] T. H. Maiman. nature 187, 493–494 (1960).

[38] Claudiu Genes, David Vitali, Paolo Tombesi, Sylvain Gigan, and Markus Aspelmeyer. Phys. Rev. A 77, 033804 (2008).

[39] C. Benkert, M. . Scully, J. Bergou, L. Davidovich, M. Hillery, and M. Orszag. Phys. Rev. A 41, 2756 (1990).

[40] M. Orszag. ``Quantum optics: including noise reduction, trapped ions, quantum trajectories, and decoherence''. Springer.

[41] Christopher Rackauckas and Qing Nie. Discrete Cont. Dyn.-B 22, 2731 (2017).

[42] J. D. Hunter. Computing in Science & Engineering 9, 90–95 (2007).

Cited by

[1] Christoph Hotter, David Plankensteiner, Georgy Kazakov, and Helmut Ritsch, "Continuous multi-step pumping of the optical clock transition in alkaline-earth atoms with minimal perturbation", Optics Express 30 4, 5553 (2022).

[2] Qilong Wu, Yuan Zhang, Xigui Yang, Shi-Lei Su, Chongxin Shan, and Klaus Mølmer, "A superradiant maser with nitrogen-vacancy center spins", Science China Physics, Mechanics, and Astronomy 65 1, 217311 (2022).

[3] Yuan Zhang, Qilong Wu, Shi-Lei Su, Qing Lou, ChongXin Shan, and Klaus Mølmer, "Cavity Quantum Electrodynamics Effects with Nitrogen Vacancy Center Spins in Diamond and Microwave Resonators at Room Temperature", arXiv:2110.10950.

[4] Yuan Zhang, Qilong Wu, Hao Wu, Xun Yang, Shi-Lei Su, Chongxin Shan, and Klaus Mølmer, "Cavity Quantum Electrodynamics Effects of Optically Cooled Nitrogen-Vacancy Centers Coupled to a High Frequency Microwave Resonator", arXiv:2203.04102.

[5] G. Ferioli, A. Glicenstein, F. Robicheaux, R. T. Sutherland, A. Browaeys, and I. Ferrier-Barbut, "Laser-Driven Superradiant Ensembles of Two-Level Atoms near Dicke Regime", Physical Review Letters 127 24, 243602 (2021).

[6] Alessandro Cheli, "Automated Code Optimization with E-Graphs", arXiv:2112.14714.

[7] F. Robicheaux and Deepak A. Suresh, "Beyond lowest order mean-field theory for light interacting with atom arrays", Physical Review A 104 2, 023702 (2021).

[8] Anna Bychek, Christoph Hotter, David Plankensteiner, and Helmut Ritsch, "Superradiant lasing in inhomogeneously broadened ensembles with spatially varying coupling", arXiv:2105.11023.

The above citations are from Crossref's cited-by service (last updated successfully 2022-05-20 07:10:22) and SAO/NASA ADS (last updated successfully 2022-05-20 07:10:23). The list may be incomplete as not all publishers provide suitable and complete citation data.