QuantumCumulants.jl: A Julia framework for generalized mean-field equations in open quantum systems

David Plankensteiner, Christoph Hotter, and Helmut Ritsch

Institut für Theoretische Physik, Universität Innsbruck, Technikerstr. 21a, A-6020 Innsbruck, Austria

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

A full quantum mechanical treatment of open quantum systems via a Master equation is often limited by the size of the underlying Hilbert space. As an alternative, the dynamics can also be formulated in terms of systems of coupled differential equations for operators in the Heisenberg picture. This typically leads to an infinite hierarchy of equations for products of operators. A well-established approach to truncate this infinite set at the level of expectation values is to neglect quantum correlations of high order. This is systematically realized with a so-called cumulant expansion, which decomposes expectation values of operator products into products of a given lower order, leading to a closed set of equations. Here we present an open-source framework that fully automizes this approach: first, the equations of motion of operators up to a desired order are derived symbolically using predefined canonical commutation relations. Next, the resulting equations for the expectation values are expanded employing the cumulant expansion approach, where moments up to a chosen order specified by the user are included. Finally, a numerical solution can be directly obtained from the symbolic equations. After reviewing the theory we present the framework and showcase its usefulness in a few example problems.

► BibTeX data

► References

[1] S. M. Tan. J. Opt. B: Quantum Semiclassical Optics 1, 424 (1999).
https:/​/​doi.org/​10.1088/​1464-4266/​1/​4/​312

[2] J. Johansson, P. Nation, and F. Nori. Comput. Phys. Commun. 184, 1234 (2013).
https:/​/​doi.org/​10.1016/​j.cpc.2012.02.021

[3] J. R. Johansson, P. D. Nation, and F. Nori. Comp. Phys. Comm. 184, 1234–1240 (2013).
https:/​/​doi.org/​10.1016/​j.cpc.2012.11.019

[4] A Vukics and H Ritsch. The European Physical Journal D 44, 585–599 (2007).
https:/​/​doi.org/​10.1140/​epjd/​e2007-00210-x

[5] Xiu-Zhe Luo, Jin-Guo Liu, Pan Zhang, and Lei Wang. Quantum 4, 341 (2020).
https:/​/​doi.org/​10.22331/​q-2020-10-11-341

[6] Bela Bauer, LD Carr, Hans Gerd Evertz, Adrian Feiguin, J Freire, S Fuchs, Lukas Gamper, Jan Gukelberger, E Gull, Siegfried Guertler, et al. Journal of Statistical Mechanics: Theory and Experiment 2011, P05001 (2011).
https:/​/​doi.org/​10.1088/​1742-5468/​2011/​05/​P05001

[7] Damian S Steiger, Thomas Häner, and Matthias Troyer. Quantum 2, 49 (2018).
https:/​/​doi.org/​10.22331/​q-2018-01-31-49

[8] Juha Javanainen. Comput. Phys. Commun. 212, 1–7 (2017).
https:/​/​doi.org/​10.1016/​j.cpc.2016.09.017

[9] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. SIAM Rev. 59, 65–98 (2017).
https:/​/​doi.org/​10.1137/​141000671

[10] S. Krämer, D. Plankensteiner, L. Ostermann, and H. Ritsch. Comput. Phys. Commun. 227, 109–116 (2018).
https:/​/​doi.org/​10.1016/​j.cpc.2018.02.004

[11] Sergei V Isakov, Ilia N Zintchenko, Troels F Rønnow, and Matthias Troyer. Comput. Phys. Commun. 192, 265–271 (2015).
https:/​/​doi.org/​10.1016/​j.cpc.2015.02.015

[12] Steven R. White. Phys. Rev. Lett. 69, 2863–2866 (1992).
https:/​/​doi.org/​10.1103/​PhysRevLett.69.2863

[13] U. Schollwöck. Ann. Phys. 326, 96–192 (2011).
https:/​/​doi.org/​10.1016/​j.aop.2010.09.012

[14] Ryogo Kubo. J. Phys. Soc. Jpn. 17, 1100–1120 (1962).
https:/​/​doi.org/​10.1143/​JPSJ.17.1100

[15] Ren Fang Chang, Victor Korenman, Carroll O Alley, and Robert W Detenbeck. Phys. Rev. 178, 612 (1969).
https:/​/​doi.org/​10.1103/​PhysRev.178.612

[16] Michael Fleischhauer. Phys. Rev. A 50, 2773 (1994).
https:/​/​doi.org/​10.1103/​PhysRevA.50.2773

[17] D. Meiser, Y. Jun, D. R. Carlson, and M. J. Holland. Phys. Rev. Lett. 102, 163601 (2009).
https:/​/​doi.org/​10.1103/​PhysRevLett.102.163601

[18] D Meiser and MJ Holland. Phys. Rev. A 81, 033847 (2010).
https:/​/​doi.org/​10.1103/​PhysRevA.81.033847

[19] K Sandner, H Ritsch, R Amsüss, Ch Koller, T Nöbauer, S Putz, J Schmiedmayer, and J Majer. Phys. Rev. A 85, 053806 (2012).
https:/​/​doi.org/​10.1103/​PhysRevA.85.053806

[20] Kamanasish Debnath, Yuan Zhang, and Klaus Mølmer. Phys. Rev. A 98, 063837 (2018).
https:/​/​doi.org/​10.1103/​PhysRevA.98.063837

[21] Stefan A Schäffer, Mikkel Tang, Martin R Henriksen, Asbjørn A Jørgensen, Bjarke TR Christensen, and Jan W Thomsen. Phys. Rev. A 101, 013819 (2020).
https:/​/​doi.org/​10.1103/​PhysRevA.101.013819

[22] Christoph Hotter, David Plankensteiner, and Helmut Ritsch. New J. Phys. 22, 113021 (2020).
https:/​/​doi.org/​10.1088/​1367-2630/​abc70c

[23] Peter Kirton and Jonathan Keeling. Phys. Rev. Lett. 118, 123602 (2017).
https:/​/​doi.org/​10.1103/​PhysRevLett.118.123602

[24] Peter Kirton and Jonathan Keeling. New J. Phys. 20, 015009 (2018).
https:/​/​doi.org/​10.1088/​1367-2630/​aaa11d

[25] Florentin Reiter, Thanh Long Nguyen, Jonathan P. Home, and Susanne F. Yelin. Phys. Rev. Lett. 125, 233602 (2020).
https:/​/​doi.org/​10.1103/​PhysRevLett.125.233602

[26] Mikkel Tang, Stefan A Schäffer, Asbjørn A Jørgensen, Martin R Henriksen, Bjarke TR Christensen, Jörg H Müller, and Jan W Thomsen. Physical Review Research 3, 033258 (2021).
https:/​/​doi.org/​10.1103/​PhysRevResearch.3.033258

[27] Sebastian Krämer and Helmut Ritsch. EPJ D 69, 1–11 (2015).
https:/​/​doi.org/​10.1140/​epjd/​e2015-60266-5

[28] F. Robicheaux and Deepak A. Suresh. Phys. Rev. A 104, 023702 (2021).
https:/​/​doi.org/​10.1103/​PhysRevA.104.023702

[29] Mark D. Lee, Stewart D. Jenkins, and Janne Ruostekoski. Phys. Rev. A 93, 063803 (2016).
https:/​/​doi.org/​10.1103/​PhysRevA.93.063803

[30] Crispin Gardiner, Peter Zoller, and Peter Zoller. ``Quantum noise: a handbook of markovian and non-markovian quantum stochastic methods with applications to quantum optics''. Springer Science & Business Media.

[31] ``Documentation of QuantumCumulants.jl''. https:/​/​qojulia.github.io/​QuantumCumulants.jl/​stable/​ (Accessed: December 20, 2021).
https:/​/​qojulia.github.io/​QuantumCumulants.jl/​stable/​

[32] ``GitHub repository of QuantumCumulants.jl''. https:/​/​github.com/​qojulia/​QuantumCumulants.jl (Accessed: December 20, 2021).
https:/​/​github.com/​qojulia/​QuantumCumulants.jl

[33] Shashi Gowda, Yingbo Ma, Alessandro Cheli, Maja Gwozdz, Viral B Shah, Alan Edelman, and Christopher Rackauckas. (2021). url: arxiv.org/​abs/​2105.03949.
arXiv:2105.03949

[34] Yingbo Ma, Shashi Gowda, Ranjan Anantharaman, Chris Laughman, Viral Shah, and Chris Rackauckas. (2021). arXiv:2103.05244.
arXiv:2103.05244

[35] Christopher Rackauckas and Qing Nie. Journal of Open Research Software 5 (2017).
https:/​/​doi.org/​10.5334/​jors.151

[36] ``GitHub repository of Combinatorics.jl''. https:/​/​github.com/​JuliaMath/​Combinatorics.jl. Accessed: December 20, 2021.
https:/​/​github.com/​JuliaMath/​Combinatorics.jl

[37] T. H. Maiman. nature 187, 493–494 (1960).
https:/​/​doi.org/​10.1038/​187493a0

[38] Claudiu Genes, David Vitali, Paolo Tombesi, Sylvain Gigan, and Markus Aspelmeyer. Phys. Rev. A 77, 033804 (2008).
https:/​/​doi.org/​10.1103/​PhysRevA.77.033804

[39] C. Benkert, M. . Scully, J. Bergou, L. Davidovich, M. Hillery, and M. Orszag. Phys. Rev. A 41, 2756 (1990).
https:/​/​doi.org/​10.1103/​PhysRevA.41.2756

[40] M. Orszag. ``Quantum optics: including noise reduction, trapped ions, quantum trajectories, and decoherence''. Springer.

[41] Christopher Rackauckas and Qing Nie. Discrete Cont. Dyn.-B 22, 2731 (2017).
https:/​/​doi.org/​10.3934/​dcdsb.2017133

[42] J. D. Hunter. Computing in Science & Engineering 9, 90–95 (2007).
https:/​/​doi.org/​10.1109/​MCSE.2007.55

Cited by

[1] Christian Liedl, Felix Tebbenjohanns, Constanze Bach, Sebastian Pucher, Arno Rauschenbeutel, and Philipp Schneeweiss, "Observation of Superradiant Bursts in a Cascaded Quantum System", Physical Review X 14 1, 011020 (2024).

[2] Christoph Hotter, David Plankensteiner, Georgy Kazakov, and Helmut Ritsch, "Continuous multi-step pumping of the optical clock transition in alkaline-earth atoms with minimal perturbation", Optics Express 30 4, 5553 (2022).

[3] Wouter Verstraelen, Dolf Huybrechts, Tommaso Roscilde, and Michiel Wouters, "Quantum and Classical Correlations in Open Quantum Spin Lattices via Truncated-Cumulant Trajectories", PRX Quantum 4 3, 030304 (2023).

[4] Sampreet Kalita and Amarendra K. Sarma, Lecture Notes in Networks and Systems 694, 581 (2023) ISBN:978-981-99-3090-6.

[5] Christoph Hotter, Laurin Ostermann, and Helmut Ritsch, "Cavity sub- and superradiance for transversely driven atomic ensembles", Physical Review Research 5 1, 013056 (2023).

[6] Karol Gietka, Christoph Hotter, and Helmut Ritsch, "Unique Steady-State Squeezing in a Driven Quantum Rabi Model", Physical Review Letters 131 22, 223604 (2023).

[7] Kasper Jan Kusmierek, Sahand Mahmoodian, Martin Cordier, Jakob Hinney, Arno Rauschenbeutel, Maximilian Schemmer, Philipp Schneeweiss, Jürgen Volz, and Klemens Hammerer, "Higher-order mean-field theory of chiral waveguide QED", SciPost Physics Core 6 2, 041 (2023).

[8] Oriol Rubies-Bigorda, Stefan Ostermann, and Susanne F. Yelin, "Characterizing superradiant dynamics in atomic arrays via a cumulant expansion approach", Physical Review Research 5 1, 013091 (2023).

[9] Yuan Zhang, Qilong Wu, Shi-Lei Su, Qing Lou, Chongxin Shan, and Klaus Mølmer, "Cavity Quantum Electrodynamics Effects with Nitrogen Vacancy Center Spins Coupled to Room Temperature Microwave Resonators", Physical Review Letters 128 25, 253601 (2022).

[10] Christian Liedl, Sebastian Pucher, Felix Tebbenjohanns, Philipp Schneeweiss, and Arno Rauschenbeutel, "Collective Radiation of a Cascaded Quantum System: From Timed Dicke States to Inverted Ensembles", Physical Review Letters 130 16, 163602 (2023).

[11] Janne Ruostekoski, "Cooperative quantum-optical planar arrays of atoms", Physical Review A 108 3, 030101 (2023).

[12] Y Liu, W J Munro, and J Twamley, "A quantum ticking self-oscillator using delayed feedback", New Journal of Physics 25 12, 123032 (2023).

[13] Noel Araujo Moreira, Robin Kaiser, and Romain Bachelard, "Nonlinear effects in Anderson localization of light by two-level atoms", Physical Review A 109 3, L031501 (2024).

[14] Tobias Nadolny and Christoph Bruder, "Macroscopic Quantum Synchronization Effects", Physical Review Letters 131 19, 190402 (2023).

[15] Christopher D. Mink and Michael Fleischhauer, "Collective radiative interactions in the discrete truncated Wigner approximation", SciPost Physics 15 6, 233 (2023).

[16] Drilon Zenelaj, Patrick P. Potts, and Peter Samuelsson, "Full counting statistics of the photocurrent through a double quantum dot embedded in a driven microwave resonator", Physical Review B 106 20, 205135 (2022).

[17] Piper Fowler-Wright, Kristín B. Arnardóttir, Peter Kirton, Brendon W. Lovett, and Jonathan Keeling, "Determining the validity of cumulant expansions for central spin models", Physical Review Research 5 3, 033148 (2023).

[18] Yuan Zhang, Qilong Wu, Hao Wu, Xun Yang, Shi-Lei Su, Chongxin Shan, and Klaus Mølmer, "Microwave mode cooling and cavity quantum electrodynamics effects at room temperature with optically cooled nitrogen-vacancy center spins", npj Quantum Information 8 1, 125 (2022).

[19] Nicholas Werren, Erik M Gauger, and Peter Kirton, "A quantum model of lasing without inversion", New Journal of Physics 24 9, 093027 (2022).

[20] Kevin C. Stitely, Fabian Finger, Rodrigo Rosa-Medina, Francesco Ferri, Tobias Donner, Tilman Esslinger, Scott Parkins, and Bernd Krauskopf, "Quantum Fluctuation Dynamics of Dispersive Superradiant Pulses in a Hybrid Light-Matter System", Physical Review Letters 131 14, 143604 (2023).

[21] Gage W. Harmon, Jarrod T. Reilly, Murray J. Holland, and Simon B. Jäger, "Mean-field Floquet theory for a three-level cold-atom laser", Physical Review A 106 1, 013706 (2022).

[22] Oriol Rubies-Bigorda, Stefan Ostermann, and Susanne F. Yelin, "Dynamic population of multiexcitation subradiant states in incoherently excited atomic arrays", Physical Review A 107 5, L051701 (2023).

[23] Eliot A. Bohr, Sofus L. Kristensen, Christoph Hotter, Stefan A. Schäffer, Julian Robinson-Tait, Jan W. Thomsen, Tanya Zelevinsky, Helmut Ritsch, and Jörg H. Müller, "Collectively enhanced Ramsey readout by cavity sub- to superradiant transition", Nature Communications 15 1, 1084 (2024).

[24] Grzegorz Chimczak, Anna Kowalewska-Kudłaszyk, Ewelina Lange, Karol Bartkiewicz, and Jan Peřina, "The effect of thermal photons on exceptional points in coupled resonators", Scientific Reports 13 1, 5859 (2023).

[25] G. Ferioli, A. Glicenstein, F. Robicheaux, R. T. Sutherland, A. Browaeys, and I. Ferrier-Barbut, "Laser-Driven Superradiant Ensembles of Two-Level Atoms near Dicke Regime", Physical Review Letters 127 24, 243602 (2021).

[26] F. Robicheaux and Deepak A. Suresh, "Beyond lowest order mean-field theory for light interacting with atom arrays", Physical Review A 104 2, 023702 (2021).

[27] Qilong Wu, Yuan Zhang, Xigui Yang, Shi-Lei Su, Chongxin Shan, and Klaus Mølmer, "A superradiant maser with nitrogen-vacancy center spins", Science China Physics, Mechanics, and Astronomy 65 1, 217311 (2022).

[28] Anna Bychek, Christoph Hotter, David Plankensteiner, and Helmut Ritsch, "Superradiant lasing in inhomogeneously broadened ensembles with spatially varying coupling", arXiv:2105.11023, (2021).

[29] Youssef Trifa and Tommaso Roscilde, "Scalable spin squeezing in two-dimensional arrays of dipolar large-$S$ spins", arXiv:2309.05368, (2023).

[30] Yuan Zhang, Qilong Wu, Hao Wu, Xun Yang, Shi-Lei Su, Chongxin Shan, and Klaus Mølmer, "Cavity Quantum Electrodynamics Effects of Optically Cooled Nitrogen-Vacancy Centers Coupled to a High Frequency Microwave Resonator", arXiv:2203.04102, (2022).

[31] Alessandro Cheli, "Automated Code Optimization with E-Graphs", arXiv:2112.14714, (2021).

The above citations are from Crossref's cited-by service (last updated successfully 2024-03-29 03:03:20) and SAO/NASA ADS (last updated successfully 2024-03-29 03:03:21). The list may be incomplete as not all publishers provide suitable and complete citation data.