Almost-linear time decoding algorithm for topological codes

Nicolas Delfosse1,2,3 and Naomi H. Nickerson4

1IQIM, California Institute of Technology, Pasadena, CA, USA
2Department of Physics and Astronomy, University of California, Riverside, CA, USA
3Station Q Quantum Architectures and Computation Group, Microsoft Research, Redmond, WA 98052, USA
4Quantum Optics and Laser Science, Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ, United Kingdom

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

In order to build a large scale quantum computer, one must be able to correct errors extremely fast. We design a fast decoding algorithm for topological codes to correct for Pauli errors and erasure and combination of both errors and erasure. Our algorithm has a worst case complexity of $O(n \alpha(n))$, where $n$ is the number of physical qubits and $\alpha$ is the inverse of Ackermann's function, which is very slowly growing. For all practical purposes, $\alpha(n) \leq 3$. We prove that our algorithm performs optimally for errors of weight up to $(d-1)/2$ and for loss of up to $d-1$ qubits, where $d$ is the minimum distance of the code. Numerically, we obtain a threshold of $9.9\%$ for the 2d-toric code with perfect syndrome measurements and $2.6\%$ with faulty measurements.

► BibTeX data

► References

[1] Hussain Anwar, Benjamin J Brown, Earl T Campbell, and Dan E Browne. Fast decoders for qudit topological codes. New Journal of Physics, 16 (6): 063038, 2014. 10.1088/​1367-2630/​16/​6/​063038.
https:/​/​doi.org/​10.1088/​1367-2630/​16/​6/​063038

[2] CJ Ballance, TP Harty, NM Linke, and DM Lucas. High-fidelity two-qubit quantum logic gates using trapped calcium-43 ions. arXiv preprint arXiv:1406.5473, 2014. 10.1103/​PhysRevLett.117.060504.
https:/​/​doi.org/​10.1103/​PhysRevLett.117.060504
arXiv:1406.5473

[3] Rami Barends, Julian Kelly, Anthony Megrant, Andrzej Veitia, Daniel Sank, Evan Jeffrey, Ted C White, Josh Mutus, Austin G Fowler, Brooks Campbell, et al. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature, 508 (7497): 500–503, 2014. 10.1038/​nature13171.
https:/​/​doi.org/​10.1038/​nature13171

[4] Sean D Barrett and Thomas M Stace. Fault tolerant quantum computation with very high threshold for loss errors. Physical review letters, 105 (20): 200502, 2010a. 10.1103/​PhysRevLett.105.200502.
https:/​/​doi.org/​10.1103/​PhysRevLett.105.200502

[5] Sean D Barrett and Thomas M Stace. Fault tolerant quantum computation with very high threshold for loss errors. Physical review letters, 105 (20): 200502, 2010b. 10.1103/​PhysRevLett.105.200502.
https:/​/​doi.org/​10.1103/​PhysRevLett.105.200502

[6] Hector Bombin and Miguel Angel Martin-Delgado. Topological quantum distillation. Physical review letters, 97 (18): 180501, 2006. 10.1103/​PhysRevLett.97.180501.
https:/​/​doi.org/​10.1103/​PhysRevLett.97.180501

[7] Hector Bombin, Guillaume Duclos-Cianci, and David Poulin. Universal topological phase of two-dimensional stabilizer codes. New Journal of Physics, 14 (7): 073048, 2012. 10.1088/​1367-2630/​14/​7/​073048.
https:/​/​doi.org/​10.1088/​1367-2630/​14/​7/​073048

[8] S. B. Bravyi and A. Y. Kitaev. Quantum codes on a lattice with boundary. arXiv preprint arXiv:9811052, 1998.
arXiv:quant-ph/9811052

[9] Sergey Bravyi and Jeongwan Haah. Quantum self-correction in the 3d cubic code model. Physical review letters, 111 (20): 200501, 2013. 10.1103/​PhysRevLett.111.200501.
https:/​/​doi.org/​10.1103/​PhysRevLett.111.200501

[10] Sergey Bravyi, Martin Suchara, and Alexander Vargo. Efficient algorithms for maximum likelihood decoding in the surface code. Physical Review A, 90 (3): 032326, 2014. 10.1103/​PhysRevA.90.032326.
https:/​/​doi.org/​10.1103/​PhysRevA.90.032326

[11] Nikolas P Breuckmann and Barbara M Terhal. Constructions and noise threshold of hyperbolic surface codes. IEEE Transactions on Information Theory, 62 (6): 3731–3744, 2016. 10.1109/​TIT.2016.2555700.
https:/​/​doi.org/​10.1109/​TIT.2016.2555700

[12] Nikolas P Breuckmann, Christophe Vuillot, Earl Campbell, Anirudh Krishna, and Barbara M Terhal. Hyperbolic and semi-hyperbolic surface codes for quantum storage. arXiv preprint arXiv:1703.00590, 2017. 10.1088/​2058-9565/​aa7d3b.
https:/​/​doi.org/​10.1088/​2058-9565/​aa7d3b
arXiv:1703.00590

[13] Daniel E Browne and Terry Rudolph. Resource-efficient linear optical quantum computation. Physical Review Letters, 95 (1): 010501, 2005. 10.1103/​PhysRevLett.95.010501.
https:/​/​doi.org/​10.1103/​PhysRevLett.95.010501

[14] Jacques Carolan, Christopher Harrold, Chris Sparrow, Enrique Martín-López, Nicholas J Russell, Joshua W Silverstone, Peter J Shadbolt, Nobuyuki Matsuda, Manabu Oguma, Mikitaka Itoh, et al. Universal linear optics. Science, 349 (6249): 711–716, 2015. 10.1126/​science.aab3642.
https:/​/​doi.org/​10.1126/​science.aab3642

[15] S Debnath, NM Linke, C Figgatt, KA Landsman, K Wright, and C Monroe. Demonstration of a small programmable quantum computer with atomic qubits. Nature, 536 (7614): 63–66, 2016. 10.1038/​nature18648.
https:/​/​doi.org/​10.1038/​nature18648

[16] Nicolas Delfosse. Tradeoffs for reliable quantum information storage in surface codes and color codes. In Information Theory Proceedings (ISIT), 2013 IEEE International Symposium on, pages 917–921. IEEE, 2013. 10.1109/​ISIT.2013.6620360.
https:/​/​doi.org/​10.1109/​ISIT.2013.6620360

[17] Nicolas Delfosse. Decoding color codes by projection onto surface codes. Physical Review A, 89 (1): 012317, 2014. 10.1103/​PhysRevA.89.012317.
https:/​/​doi.org/​10.1103/​PhysRevA.89.012317

[18] Nicolas Delfosse and Gilles Zémor. Linear-time maximum likelihood decoding of surface codes over the quantum erasure channel. arXiv preprint arXiv:1703.01517, 2017. 10.1103/​PhysRevResearch.2.033042.
https:/​/​doi.org/​10.1103/​PhysRevResearch.2.033042
arXiv:1703.01517

[19] Eric Dennis. Purifying quantum states: Quantum and classical algorithms. arXiv preprint quant-ph/​0503169, 2005.
arXiv:quant-ph/0503169

[20] Eric Dennis, Alexei Kitaev, Andrew Landahl, and John Preskill. Topological quantum memory. Journal of Mathematical Physics, 43 (9): 4452–4505, 2002. 10.1063/​1.1499754.
https:/​/​doi.org/​10.1063/​1.1499754

[21] Guillaume Duclos-Cianci and David Poulin. Fast decoders for topological quantum codes. Physical review letters, 104 (5): 050504, 2010. 10.1103/​PhysRevLett.104.050504.
https:/​/​doi.org/​10.1103/​PhysRevLett.104.050504

[22] Guillaume Duclos-Cianci and David Poulin. Kitaev's z d-code threshold estimates. Physical Review A, 87 (6): 062338, 2013. 10.1103/​PhysRevA.87.062338.
https:/​/​doi.org/​10.1103/​PhysRevA.87.062338

[23] Guillaume Duclos-Cianci and David Poulin. Fault-tolerant renormalization group decoder for abelian topological codes. Quantum Info. Comput., 14 (9 & 10): 721–740, jul 2014. ISSN 1533-7146. 10.5555/​2638670.2638671.
https:/​/​doi.org/​10.5555/​2638670.2638671

[24] Austin Fowler. Towards sufficiently fast quantum error correction. Conference QEC 2017, 2017.
https:/​/​qec2017.gatech.edu/​

[25] Austin G Fowler. Minimum weight perfect matching of fault-tolerant topological quantum error correction in average $ o (1) $ parallel time. Quantum Information and Computation, 15 (1&2): 0145–0158, 2015. 10.5555/​2685188.2685197.
https:/​/​doi.org/​10.5555/​2685188.2685197

[26] Austin G Fowler, Adam C Whiteside, and Lloyd CL Hollenberg. Towards practical classical processing for the surface code. Physical review letters, 108 (18): 180501, 2012a. 10.1103/​PhysRevLett.108.180501.
https:/​/​doi.org/​10.1103/​PhysRevLett.108.180501

[27] Austin G Fowler, Adam C Whiteside, Angus L McInnes, and Alimohammad Rabbani. Topological code autotune. Physical Review X, 2 (4): 041003, 2012b. 10.1103/​PhysRevX.2.041003.
https:/​/​doi.org/​10.1103/​PhysRevX.2.041003

[28] Michael Fredman and Michael Saks. The cell probe complexity of dynamic data structures. In Proceedings of the twenty-first annual ACM symposium on Theory of computing, pages 345–354. ACM, 1989. 10.1145/​73007.73040.
https:/​/​doi.org/​10.1145/​73007.73040

[29] M. H. Freedman and D. A. Meyer. Projective plane and planar quantum codes. Foundations of Computational Mathematics, 1 (3): 325–332, 2001. 10.1007/​s102080010013.
https:/​/​doi.org/​10.1007/​s102080010013

[30] M.H. Freedman, D.A. Meyer, F. Luo, and Computer Society (IEEE) Washington DC. Z(2)-Systolic Freedom and Quantum Codes. Defense Technical Information Center, 2002. 10.2140/​gtm.1999.2.113. URL https:/​/​books.google.com/​books?id=KieaDAEACAAJ.
https:/​/​doi.org/​10.2140/​gtm.1999.2.113
https:/​/​books.google.com/​books?id=KieaDAEACAAJ

[31] Bernard A Galler and Michael J Fisher. An improved equivalence algorithm. Communications of the ACM, 7 (5): 301–303, 1964. 10.1145/​364099.364331.
https:/​/​doi.org/​10.1145/​364099.364331

[32] James William Harrington. Analysis of quantum error-correcting codes: symplectic lattice codes and toric codes. PhD thesis, California Institute of Technology, 2004.

[33] Reinier W Heeres, Philip Reinhold, Nissim Ofek, Luigi Frunzio, Liang Jiang, Michel H Devoret, and Robert J Schoelkopf. Implementing a universal gate set on a logical qubit encoded in an oscillator. Nature Communications, 8, 2017. 10.1038/​s41467-017-00045-1.
https:/​/​doi.org/​10.1038/​s41467-017-00045-1

[34] Michael Herold, Michael J Kastoryano, Earl T Campbell, and Jens Eisert. Fault tolerant dynamical decoders for topological quantum memories. arXiv preprint arXiv:1511.05579, 2015. 10.1088/​1367-2630/​aa7099.
https:/​/​doi.org/​10.1088/​1367-2630/​aa7099
arXiv:1511.05579

[35] Charles D Hill, Eldad Peretz, Samuel J Hile, Matthew G House, Martin Fuechsle, Sven Rogge, Michelle Y Simmons, and Lloyd CL Hollenberg. A surface code quantum computer in silicon. Science advances, 1 (9): e1500707, 2015. 10.1038/​npjqi.2015.19.
https:/​/​doi.org/​10.1038/​npjqi.2015.19

[36] John Hopcroft and Robert Tarjan. Algorithm 447: efficient algorithms for graph manipulation. Communications of the ACM, 16 (6): 372–378, 1973. 10.1145/​362248.362272.
https:/​/​doi.org/​10.1145/​362248.362272

[37] Adrian Hutter, James R Wootton, and Daniel Loss. Efficient markov chain monte carlo algorithm for the surface code. Physical Review A, 89 (2): 022326, 2014. 10.1103/​PhysRevA.89.022326.
https:/​/​doi.org/​10.1103/​PhysRevA.89.022326

[38] Adrian Hutter, Daniel Loss, and James R Wootton. Improved hdrg decoders for qudit and non-abelian quantum error correction. New Journal of Physics, 17 (3): 035017, 2015. 10.1088/​1367-2630/​17/​3/​035017.
https:/​/​doi.org/​10.1088/​1367-2630/​17/​3/​035017

[39] IBM. Quantum experience API. https:/​/​github.com/​QISKit, 2017.
https:/​/​github.com/​QISKit

[40] Norbert Kalb, Andreas A Reiserer, Peter C Humphreys, Jacob JW Bakermans, Sten J Kamerling, Naomi H Nickerson, Simon C Benjamin, Daniel J Twitchen, Matthew Markham, and Ronald Hanson. Entanglement distillation between solid-state quantum network nodes. Science, 356 (6341): 928–932, 2017. 10.1126/​science.aan0070.
https:/​/​doi.org/​10.1126/​science.aan0070

[41] Konrad Kieling, Terry Rudolph, and Jens Eisert. Percolation, renormalization, and quantum computing with nondeterministic gates. Physical Review Letters, 99 (13): 130501, 2007. 10.1103/​PhysRevLett.99.130501.
https:/​/​doi.org/​10.1103/​PhysRevLett.99.130501

[42] A Yu Kitaev. Fault-tolerant quantum computation by anyons. Annals of Physics, 303 (1): 2–30, 2003. 10.1016/​S0003-4916(02)00018-0.
https:/​/​doi.org/​10.1016/​S0003-4916(02)00018-0

[43] Emanuel Knill, Raymond Laflamme, and Gerald J Milburn. A scheme for efficient quantum computation with linear optics. nature, 409 (6816): 46–52, 2001. 10.1038/​35051009.
https:/​/​doi.org/​10.1038/​35051009

[44] Vladimir Kolmogorov. Blossom v: a new implementation of a minimum cost perfect matching algorithm. Mathematical Programming Computation, 1 (1): 43–67, 2009. 10.1007/​s12532-009-0002-8.
https:/​/​doi.org/​10.1007/​s12532-009-0002-8

[45] Aleksander Marek Kubica. The ABCs of the Color Code: A Study of Topological Quantum Codes as Toy Models for Fault-Tolerant Quantum Computation and Quantum Phases Of Matter. PhD thesis, California Institute of Technology, 2018.

[46] Andrew J Landahl, Jonas T Anderson, and Patrick R Rice. Fault-tolerant quantum computing with color codes. arXiv preprint arXiv:1108.5738, 2011.
arXiv:1108.5738

[47] Bjoern Lekitsch, Sebastian Weidt, Austin G Fowler, Klaus Mølmer, Simon J Devitt, Christof Wunderlich, and Winfried K Hensinger. Blueprint for a microwave trapped ion quantum computer. Science Advances, 3 (2): e1601540, 2017. 10.1126/​sciadv.1601540.
https:/​/​doi.org/​10.1126/​sciadv.1601540

[48] Thomas Monz, Daniel Nigg, Esteban A Martinez, Matthias F Brandl, Philipp Schindler, Richard Rines, Shannon X Wang, Isaac L Chuang, and Rainer Blatt. Realization of a scalable shor algorithm. Science, 351 (6277): 1068–1070, 2016. 10.1126/​science.aad9480.
https:/​/​doi.org/​10.1126/​science.aad9480

[49] Michael A Nielsen. Optical quantum computation using cluster states. Physical review letters, 93 (4): 040503, 2004. 10.1103/​PhysRevLett.93.040503.
https:/​/​doi.org/​10.1103/​PhysRevLett.93.040503

[50] R. Raussendorf and J. Harrington. Fault-tolerant quantum computation with high threshold in two dimensions. Physical Review Letters, 98 (19): 190504, 2007. 10.1103/​PhysRevLett.98.190504.
https:/​/​doi.org/​10.1103/​PhysRevLett.98.190504

[51] R. Raussendorf, J. Harrington, and K. Goyal. Topological fault-tolerance in cluster state quantum computation. New Journal of Physics, 9: 199, 2007. 10.1088/​1367-2630/​9/​6/​199.
https:/​/​doi.org/​10.1088/​1367-2630/​9/​6/​199

[52] Robert Raussendorf, Jim Harrington, and Kovid Goyal. A fault-tolerant one-way quantum computer. Annals of physics, 321 (9): 2242–2270, 2006. 10.1016/​j.aop.2006.01.012.
https:/​/​doi.org/​10.1016/​j.aop.2006.01.012

[53] Pradeep Sarvepalli and Robert Raussendorf. Efficient decoding of topological color codes. Physical Review A, 85 (2): 022317, 2012. 10.1103/​PhysRevA.85.022317.
https:/​/​doi.org/​10.1103/​PhysRevA.85.022317

[54] Thomas M Stace and Sean D Barrett. Error correction and degeneracy in surface codes suffering loss. Physical Review A, 81 (2): 022317, 2010a. 10.1103/​PhysRevA.81.022317.
https:/​/​doi.org/​10.1103/​PhysRevA.81.022317

[55] Thomas M Stace and Sean D Barrett. Error correction and degeneracy in surface codes suffering loss. Physical Review A, 81 (2): 022317, 2010b. 10.1103/​PhysRevA.81.022317.
https:/​/​doi.org/​10.1103/​PhysRevA.81.022317

[56] T.M. Stace, S.D. Barrett, and A.C. Doherty. Thresholds for topological codes in the presence of loss. Physical Review Letters, 102 (20): 200501, 2009. 10.1103/​PhysRevLett.102.200501.
https:/​/​doi.org/​10.1103/​PhysRevLett.102.200501

[57] Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm. Journal of the ACM (JACM), 22 (2): 215–225, 1975. 10.1145/​321879.321884.
https:/​/​doi.org/​10.1145/​321879.321884

[58] Robert Endre Tarjan. A class of algorithms which require nonlinear time to maintain disjoint sets. Journal of computer and system sciences, 18 (2): 110–127, 1979. 10.1016/​0022-0000(79)90042-4.
https:/​/​doi.org/​10.1016/​0022-0000(79)90042-4

[59] Giacomo Torlai and Roger G Melko. Neural decoder for topological codes. Physical Review Letters, 119 (3): 030501, 2017. 10.1103/​PhysRevLett.119.030501.
https:/​/​doi.org/​10.1103/​PhysRevLett.119.030501

[60] David K Tuckett, Stephen D Bartlett, and Steven T Flammia. Ultra-high error threshold for surface codes with biased noise. arXiv preprint arXiv:1708.08474, 2017. 10.1103/​PhysRevLett.120.050505.
https:/​/​doi.org/​10.1103/​PhysRevLett.120.050505
arXiv:1708.08474

[61] Savvas Varsamopoulos, Ben Criger, and Koen Bertels. Decoding small surface codes with feedforward neural networks. arXiv preprint arXiv:1705.00857, 2017. 10.1088/​2058-9565/​aa955a.
https:/​/​doi.org/​10.1088/​2058-9565/​aa955a
arXiv:1705.00857

[62] Chenyang Wang, Jim Harrington, and John Preskill. Confinement-higgs transition in a disordered gauge theory and the accuracy threshold for quantum memory. Annals of Physics, 303 (1): 31–58, 2003. 10.1016/​S0003-4916(02)00019-2.
https:/​/​doi.org/​10.1016/​S0003-4916(02)00019-2

[63] David S Wang, Austin G Fowler, Charles D Hill, and Lloyd Christopher L Hollenberg. Graphical algorithms and threshold error rates for the 2d colour code. Quantum Info. Comput., 10 (9): 780–802, sep 2009. ISSN 1533-7146. 10.5555/​2011464.2011469.
https:/​/​doi.org/​10.5555/​2011464.2011469

[64] Fern HE Watson, Hussain Anwar, and Dan E Browne. Fast fault-tolerant decoder for qubit and qudit surface codes. Physical Review A, 92 (3): 032309, 2015. 10.1103/​PhysRevA.92.032309.
https:/​/​doi.org/​10.1103/​PhysRevA.92.032309

[65] Adam C. Whiteside and Austin G. Fowler. Upper bound for loss in practical topological-cluster-state quantum computing. Phys. Rev. A, 90: 052316, Nov 2014. 10.1103/​PhysRevA.90.052316.
https:/​/​doi.org/​10.1103/​PhysRevA.90.052316

[66] James Wootton. A simple decoder for topological codes. Entropy, 17 (4): 1946–1957, 2015. 10.3390/​e17041946.
https:/​/​doi.org/​10.3390/​e17041946

[67] James R Wootton and Daniel Loss. High threshold error correction for the surface code. Physical review letters, 109 (16): 160503, 2012. 10.1103/​PhysRevLett.109.160503.
https:/​/​doi.org/​10.1103/​PhysRevLett.109.160503

[68] Gilles Zémor. On cayley graphs, surface codes, and the limits of homological coding for quantum error correction. In IWCC, pages 259–273. Springer, 2009. 10.1007/​978-3-642-01877-0_21.
https:/​/​doi.org/​10.1007/​978-3-642-01877-0_21

Cited by

[1] Oscar Higgott, "PyMatching: A Python Package for Decoding Quantum Codes with Minimum-Weight Perfect Matching", arXiv:2105.13082, ACM Transactions on Quantum Computing 3 3, 1 (2022).

[2] Karl Hammar, Alexei Orekhov, Patrik Wallin Hybelius, Anna Katariina Wisakanto, Basudha Srivastava, Anton Frisk Kockum, and Mats Granath, "Error-rate-agnostic decoding of topological stabilizer codes", Physical Review A 105 4, 042616 (2022).

[3] Poulami Das, Aditya Locharla, and Cody Jones, Proceedings of the 27th ACM International Conference on Architectural Support for Programming Languages and Operating Systems 541 (2022) ISBN:9781450392051.

[4] Isaac H. Kim, Ye-Hua Liu, Sam Pallister, William Pol, Sam Roberts, and Eunseok Lee, "Fault-tolerant resource estimate for quantum chemical simulations: Case study on Li-ion battery electrolyte molecules", Physical Review Research 4 2, 023019 (2022).

[5] Ramon W. J. Overwater, Masoud Babaie, and Fabio Sebastiano, "Neural-Network Decoders for Quantum Error Correction Using Surface Codes: A Space Exploration of the Hardware Cost-Performance Tradeoffs", arXiv:2202.05741, IEEE Transactions on Quantum Engineering 3, 1 (2022).

[6] Nicolas Delfosse, Vivien Londe, and Michael E. Beverland, "Toward a Union-Find Decoder for Quantum LDPC Codes", arXiv:2103.08049, IEEE Transactions on Information Theory 68 5, 3187 (2022).

[7] Kai Meinerz, Chae-Yeun Park, and Simon Trebst, "Scalable Neural Decoder for Topological Surface Codes", Physical Review Letters 128 8, 080505 (2022).

[8] John R. Scott and Krishna C. Balram, "Timing Constraints Imposed by Classical Digital Control Systems on Photonic Implementations of Measurement-Based Quantum Computing", IEEE Transactions on Quantum Engineering 3, 1 (2022).

[9] Yasunari Suzuki, Suguru Endo, Keisuke Fujii, and Yuuki Tokunaga, "Quantum error mitigation as a universal error-minimization technique: applications from NISQ to FTQC eras", arXiv:2010.03887.

[10] Christopher Chamberland, Kyungjoo Noh, Patricio Arrangoiz-Arriola, Earl T. Campbell, Connor T. Hann, Joseph Iverson, Harald Putterman, Thomas C. Bohdanowicz, Steven T. Flammia, Andrew Keller, Gil Refael, John Preskill, Liang Jiang, Amir H. Safavi-Naeini, Oskar Painter, and Fernando G. S. L. Brandão, "Building a fault-tolerant quantum computer using concatenated cat codes", arXiv:2012.04108, PRX Quantum 3 1, 010329 (2020).

[11] Hector Bombin, Chris Dawson, Ryan V. Mishmash, Naomi Nickerson, Fernando Pastawski, and Sam Roberts, "Logical blocks for fault-tolerant topological quantum computation", arXiv:2112.12160.

[12] Kyungjoo Noh, Christopher Chamberland, and Fernando G. S. L. Brandão, "Low-Overhead Fault-Tolerant Quantum Error Correction with the Surface-GKP Code", PRX Quantum 3 1, 010315 (2022).

[13] Nikolas P. Breuckmann and Jens Niklas Eberhardt, "Quantum Low-Density Parity-Check Codes", PRX Quantum 2 4, 040101 (2021).

[14] Naomi Nickerson and Héctor Bombín, "Measurement based fault tolerance beyond foliation", arXiv:1810.09621.

[15] Poulami Das, Christopher A. Pattison, Srilatha Manne, Douglas Carmean, Krysta Svore, Moinuddin Qureshi, and Nicolas Delfosse, "A Scalable Decoder Micro-architecture for Fault-Tolerant Quantum Computing", arXiv:2001.06598.

[16] Michael Vasmer, Dan E. Browne, and Aleksander Kubica, "Cellular automaton decoders for topological quantum codes with noisy measurements and beyond", Scientific Reports 11, 2027 (2021).

[17] Michael J. Gullans, Stefan Krastanov, David A. Huse, Liang Jiang, and Steven T. Flammia, "Quantum Coding with Low-Depth Random Circuits", Physical Review X 11 3, 031066 (2021).

[18] Michael Newman, Leonardo Andreta de Castro, and Kenneth R. Brown, "Generating Fault-Tolerant Cluster States from Crystal Structures", arXiv:1909.11817.

[19] David K. Tuckett, Stephen D. Bartlett, Steven T. Flammia, and Benjamin J. Brown, "Fault-Tolerant Thresholds for the Surface Code in Excess of 5 % Under Biased Noise", Physical Review Letters 124 13, 130501 (2020).

[20] Michael Vasmer and Dan E. Browne, "Three-dimensional surface codes: Transversal gates and fault-tolerant architectures", Physical Review A 100 1, 012312 (2019).

[21] Aleksander Kubica and Nicolas Delfosse, "Efficient color code decoders in $d\geq 2$ dimensions from toric code decoders", arXiv:1905.07393.

[22] Christopher Chamberland, Aleksander Kubica, Theodore J. Yoder, and Guanyu Zhu, "Triangular color codes on trivalent graphs with flag qubits", New Journal of Physics 22 2, 023019 (2020).

[23] Muyuan Li, Daniel Miller, Michael Newman, Yukai Wu, and Kenneth R. Brown, "2D Compass Codes", Physical Review X 9 2, 021041 (2019).

[24] Benjamin J. Brown and Dominic J. Williamson, "Parallelized quantum error correction with fracton topological codes", Physical Review Research 2 1, 013303 (2020).

[25] J. Eli Bourassa, Rafael N. Alexander, Michael Vasmer, Ashlesha Patil, Ilan Tzitrin, Takaya Matsuura, Daiqin Su, Ben Q. Baragiola, Saikat Guha, Guillaume Dauphinais, Krishna K. Sabapathy, Nicolas C. Menicucci, and Ish Dhand, "Blueprint for a Scalable Photonic Fault-Tolerant Quantum Computer", arXiv:2010.02905.

[26] Christopher Chamberland and Pooya Ronagh, "Deep neural decoders for near term fault-tolerant experiments", Quantum Science and Technology 3 4, 044002 (2018).

[27] Cupjin Huang, Xiaotong Ni, Fang Zhang, Michael Newman, Dawei Ding, Xun Gao, Tenghui Wang, Hui-Hai Zhao, Feng Wu, Gengyan Zhang, Chunqing Deng, Hsiang-Sheng Ku, Jianxin Chen, and Yaoyun Shi, "Alibaba Cloud Quantum Development Platform: Surface Code Simulations with Crosstalk", arXiv:2002.08918.

[28] Aleksander Kubica and John Preskill, "Cellular-Automaton Decoders with Provable Thresholds for Topological Codes", Physical Review Letters 123 2, 020501 (2019).

[29] Andrew S. Darmawan and David Poulin, "Linear-time general decoding algorithm for the surface code", Physical Review E 97 5, 051302 (2018).

[30] Ye-Hua Liu and David Poulin, "Neural Belief-Propagation Decoders for Quantum Error-Correcting Codes", Physical Review Letters 122 20, 200501 (2019).

[31] Agustin Di Paolo, Arne L. Grimsmo, Peter Groszkowski, Jens Koch, and Alexandre Blais, "Control and coherence time enhancement of the 0-π qubit", New Journal of Physics 21 4, 043002 (2019).

[32] Hendrik Poulsen Nautrup, Nicolas Delfosse, Vedran Dunjko, Hans J. Briegel, and Nicolai Friis, "Optimizing Quantum Error Correction Codes with Reinforcement Learning", arXiv:1812.08451.

[33] Nishad Maskara, Aleksander Kubica, and Tomas Jochym-O'Connor, "Advantages of versatile neural-network decoding for topological codes", arXiv:1802.08680, Physical Review A 99 5, 052351 (2019).

[34] Oscar Higgott and Nikolas P. Breuckmann, "Subsystem Codes with High Thresholds by Gauge Fixing and Reduced Qubit Overhead", Physical Review X 11 3, 031039 (2021).

[35] Christopher A. Pattison, Michael E. Beverland, Marcus P. da Silva, and Nicolas Delfosse, "Improved quantum error correction using soft information", arXiv:2107.13589.

[36] Robert J. Harris, Elliot Coupe, Nathan A. McMahon, Gavin K. Brennen, and Thomas M. Stace, "Decoding Holographic Codes with an Integer Optimisation Decoder", arXiv:2008.10206, Physical Review A 102 6, 062417 (2020).

[37] Shilin Huang, Michael Newman, and Kenneth R. Brown, "Fault-tolerant weighted union-find decoding on the toric code", Physical Review A 102 1, 012419 (2020).

[38] Hector Bombin, Isaac H. Kim, Daniel Litinski, Naomi Nickerson, Mihir Pant, Fernando Pastawski, Sam Roberts, and Terry Rudolph, "Interleaving: Modular architectures for fault-tolerant photonic quantum computing", arXiv:2103.08612.

[39] Yasunari Suzuki, Suguru Endo, Keisuke Fujii, and Yuuki Tokunaga, "Quantum Error Mitigation as a Universal Error Reduction Technique: Applications from the NISQ to the Fault-Tolerant Quantum Computing Eras", PRX Quantum 3 1, 010345 (2022).

[40] Christopher T. Chubb, "General tensor network decoding of 2D Pauli codes", arXiv:2101.04125.

[41] Robert J. Harris, Nathan A. McMahon, Gavin K. Brennen, and Thomas M. Stace, "Calderbank-Shor-Steane holographic quantum error-correcting codes", Physical Review A 98 5, 052301 (2018).

[42] Nicolas Delfosse, "Hierarchical decoding to reduce hardware requirements for quantum computing", arXiv:2001.11427.

[43] Adam Holmes, Mohammad Reza Jokar, Ghasem Pasandi, Yongshan Ding, Massoud Pedram, and Frederic T. Chong, "NISQ+: Boosting quantum computing power by approximating quantum error correction", arXiv:2004.04794.

[44] Yosuke Ueno, Masaaki Kondo, Masamitsu Tanaka, Yasunari Suzuki, and Yutaka Tabuchi, "QECOOL: On-Line Quantum Error Correction with a Superconducting Decoder for Surface Code", arXiv:2103.14209.

[45] G. Dauphinais, L. Ortiz, S. Varona, and M. A. Martin-Delgado, "Quantum error correction with the semion code", New Journal of Physics 21 5, 053035 (2019).

[46] Tomas Jochym-O'Connor and Theodore J. Yoder, "Four-dimensional toric code with non-Clifford transversal gates", Physical Review Research 3 1, 013118 (2021).

[47] Shilin Huang and Kenneth R. Brown, "Fault-tolerant compass codes", Physical Review A 101 4, 042312 (2020).

[48] Savvas Varsamopoulos, Koen Bertels, and Carmen G. Almudever, "Comparing neural network based decoders for the surface code", arXiv:1811.12456.

[49] Earl Campbell, Ankur Khurana, and Ashley Montanaro, "Applying quantum algorithms to constraint satisfaction problems", arXiv:1810.05582.

[50] Omar Fawzi, Antoine Grospellier, and Anthony Leverrier, "Efficient decoding of random errors for quantum expander codes", arXiv:1711.08351.

[51] Poulami Das, Aditya Locharla, and Cody Jones, "LILLIPUT: A Lightweight Low-Latency Lookup-Table Based Decoder for Near-term Quantum Error Correction", arXiv:2108.06569.

[52] Milap Sheth, Sara Zafar Jafarzadeh, and Vlad Gheorghiu, "Neural ensemble decoding for topological quantum error-correcting codes", Physical Review A 101 3, 032338 (2020).

[53] Vivien Londe and Anthony Leverrier, "Golden codes: quantum LDPC codes built from regular tessellations of hyperbolic 4-manifolds", arXiv:1712.08578.

[54] Naomi H. Nickerson and Benjamin J. Brown, "Analysing correlated noise on the surface code using adaptive decoding algorithms", arXiv:1712.00502.

[55] Nicolas Delfosse and Matthew B. Hastings, "Union-Find Decoders For Homological Product Codes", arXiv:2009.14226.

[56] Yaping Yuan and Chung-Chin Lu, "A Modified MWPM Decoding Algorithm for Quantum Surface Codes Over Depolarizing Channels", arXiv:2202.11239.

[57] Rui Chao, Michael E. Beverland, Nicolas Delfosse, and Jeongwan Haah, "Optimization of the surface code design for Majorana-based qubits", arXiv:2007.00307.

[58] Armanda O. Quintavalle and Earl T. Campbell, "Lifting decoders for classical codes to decoders for quantum codes", arXiv:2105.02370.

[59] Kao-Yueh Kuo and Ching-Yi Lai, "Exploiting Degeneracy in Belief Propagation Decoding of Quantum Codes", arXiv:2104.13659.

[60] Arun B. Aloshious and Pradeep Kiran Sarvepalli, "Projecting three-dimensional color codes onto three-dimensional toric codes", Physical Review A 98 1, 012302 (2018).

[61] David Amaro, Jemma Bennett, Davide Vodola, and Markus Müller, "Analytical percolation theory for topological color codes under qubit loss", Physical Review A 101 3, 032317 (2020).

[62] Georgia M. Nixon and Benjamin J. Brown, "Correcting spanning errors with a fractal code", arXiv:2002.11738.

[63] Eric Sabo, Arun B. Aloshious, and Kenneth R. Brown, "Trellis Decoding For Qudit Stabilizer Codes And Its Application To Qubit Topological Codes", arXiv:2106.08251.

[64] Muyuan Li and Theodore J. Yoder, "A Numerical Study of Bravyi-Bacon-Shor and Subsystem Hypergraph Product Codes", arXiv:2002.06257.

[65] Arun B. Aloshious and Pradeep Kiran Sarvepalli, "Decoding toric codes on three dimensional simplical complexes", arXiv:1911.06056.

[66] Shilin Huang and Kenneth R. Brown, "Between Shor and Steane: A Unifying Construction for Measuring Error Syndromes", Physical Review Letters 127 9, 090505 (2021).

[67] Kaavya Sahay and Benjamin J. Brown, "Decoder for the Triangular Color Code by Matching on a Möbius Strip", PRX Quantum 3 1, 010310 (2022).

[68] Shilin Huang and Kenneth R. Brown, "Constructions for measuring error syndromes in Calderbank-Shor-Steane codes between Shor and Steane methods", Physical Review A 104 2, 022429 (2021).

[69] James R. Cruise, Neil I. Gillespie, and Brendan Reid, "Practical Quantum Computing: The value of local computation", arXiv:2009.08513.

[70] Julien du Crest, Mehdi Mhalla, and Valentin Savin, "Stabilizer Inactivation for Message-Passing Decoding of Quantum LDPC Codes", arXiv:2205.06125.

[71] Oscar Higgott and Nikolas P. Breuckmann, "Improved single-shot decoding of higher dimensional hypergraph product codes", arXiv:2206.03122.

The above citations are from Crossref's cited-by service (last updated successfully 2022-07-05 18:14:39) and SAO/NASA ADS (last updated successfully 2022-07-05 18:14:40). The list may be incomplete as not all publishers provide suitable and complete citation data.