Groups, Platonic solids and Bell inequalities
1Department of Statistical Methods, Faculty of Economics and Sociology University of Lodz, 41/43 Rewolucji 1905 St., 90-214 Lodz, Poland
2Department of Computer Science, Faculty of Physics and Applied Informatics University of Lodz, 149/153 Pomorska St., 90-236 Lodz, Poland
Published: | 2021-11-29, volume 5, page 593 |
Eprint: | arXiv:2009.04347v3 |
Doi: | https://doi.org/10.22331/q-2021-11-29-593 |
Citation: | Quantum 5, 593 (2021). |
Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.
Abstract
The construction of Bell inequalities based on Platonic and Archimedean solids (Quantum 4 (2020), 293) is generalized to the case of orbits generated by the action of some finite groups. A number of examples with considerable violation of Bell inequalities is presented.
► BibTeX data
► References
[1] J.S. Bell, Physics 1, 195 (1964).
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
[2] Y-C. Liang, R. Spekkens, H. Wiseman, Phys. Rep. 506 (1-2), 1 (2011).
https://doi.org/10.1016/j.physrep.2011.05.001
[3] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, S. Wehner, Rev. Mod. Phys. 86, 419 (2014).
https://doi.org/10.1103/RevModPhys.86.419
[4] V.U. Güney, M. Hillery, Phys. Rev. A90, 062121 (2014).
https://doi.org/10.1103/PhysRevA.90.062121
[5] V.U. Güney, M. Hillery, Phys. Rev. A91, 052110 (2015).
https://doi.org/10.1103/PhysRevA.91.052110
[6] K. Bolonek-Lasoń, Phys. Rev. A94, 022107 (2016).
https://doi.org/10.1103/PhysRevA.94.022107
[7] K. Bolonek-Lasoń, Ścibór Sobieski, Quantum Inf. Process. 16, 38 (2017).
https://doi.org/10.1007/s11128-016-1470-1
[8] K. Bolonek-Lasoń, P. Kosiński, Phys. Rev. A99, 052122 (2019).
https://doi.org/10.1103/PhysRevA.99.052122
[9] K. Bolonek-Lasoń, P. Kosiński, Quantum Inf. Process. 19, 63 (2020).
https://doi.org/10.1007/s11128-019-2557-2
[10] A. Fine, Phys. Rev. Lett. 48, 291 (1982).
https://doi.org/10.1103/PhysRevLett.48.291
[11] A. Tavakoli, N. Gisin, Quantum 4, 293 (2020).
https://doi.org/10.22331/q-2020-07-09-293
[12] M. Hamermesh, Group Theory and its Application to Physical Problems, Pergamon Press, (1962).
[13] S. Hossenfelder, Lost in Math: How Beauty Leads Physics Astray, Basic Book, (2018).
https://doi.org/10.1007/s00016-019-00233-0
[14] T. Vertesi, Phys. Rev. A78, 032112 (2008).
https://doi.org/10.1103/PhysRevA.78.032112
[15] S. Brierley, M. Navascues, T. Vertesi, Convex separation from convex optimization for large-scale problems, arXiv:1609.05011.
arXiv:1609.05011
[16] A. Peres, Found. Phys. 29, 589 (1999).
https://doi.org/10.1023/A:1018816310000
[17] T. Vertesi, N. Brunner, Nature Communications 5, 5297 (2014).
https://doi.org/10.1038/ncomms6297
Cited by
[1] Károly F. Pál and Tamás Vértesi, "Platonic Bell inequalities for all dimensions", Quantum 6, 756 (2022).
[2] José I. Latorre and Germán Sierra, "Platonic Entanglement", arXiv:2107.04329, (2021).
[3] Junseo Lee and Kabgyun Jeong, "High-dimensional Private Quantum Channels and Regular Polytopes", Communications in Physics 31 2, 189 (2021).
The above citations are from Crossref's cited-by service (last updated successfully 2023-09-28 02:20:17) and SAO/NASA ADS (last updated successfully 2023-09-28 02:20:18). The list may be incomplete as not all publishers provide suitable and complete citation data.
This Paper is published in Quantum under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Copyright remains with the original copyright holders such as the authors or their institutions.