Roads to objectivity: Quantum Darwinism, Spectrum Broadcast Structures, and Strong quantum Darwinism – a review

J. K. Korbicz

Center for Theoretical Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


The problem of objectivity, i.e. how to explain on quantum grounds the objective character of the macroscopic world, is one of the aspects of the celebrated quantum-to-classical transition. Initiated by W. H. Zurek and collaborators, this problem gained some attention recently with several approaches being developed. The aim of this work is to compare three of them: quantum Darwinism, Spectrum Broadcast Structures, and strong quantum Darwinism. The paper is concentrated on foundations, providing a synthetic analysis of how the three approaches realize the idea of objectivity and how they are related to each other. As a byproduct of this analysis, a proof of a generalized Spectrum Broadcast Structure theorem is presented. Recent quantum Darwinism experiments are also briefly discussed.

► BibTeX data

► References

[1] H. Ollivier, D. Poulin, W. H. Zurek, Objective properties from subjective quantum states: Environment as a witness, Phys. Rev. Lett. 93, 220401 (2004). DOI: https:/​/​​10.1103/​PhysRevLett.93.220401.

[2] R. Blume-Kohout and W. H. Zurek Quantum Darwinism: Entanglement, branches, and the emergent classicality of redundantly stored quantum information, Phys. Rev. A 73, 062310 (2006). DOI: https:/​/​​10.1103/​PhysRevA.73.062310.

[3] W. H. Zurek, Quantum Darwinism, Nature Phys. 5, 181 (2009). DOI: https:/​/​​10.1038/​nphys1202.

[4] J. K. Korbicz, R. Horodecki, and P. Horodecki, Objectivity Through State Broadcasting: The Origins Of Quantum Darwinism, Phys. Rev. Lett. 112, 120402 (2014). DOI: https:/​/​​10.1103/​PhysRevLett.112.120402.

[5] R. Horodecki, J. K. Korbicz, and P. Horodecki, Quantum origins of objectivity , Phys. Rev. A 91, 032122 (2015). DOI: https:/​/​​10.1103/​PhysRevA.91.032122.

[6] T. P. Le and A. Olaya-Castro, Strong Quantum Darwinism and Strong Independence is equivalent to Spectrum Broadcast Structure, Phys. Rev. Lett. 122, 010403 (2019). DOI: https:/​/​​10.1103/​PhysRevLett.122.010403.

[7] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, Oxford University Press, Oxford (2002); E. Joos, et al., Decoherence and the Appearancs of a Classical World in Quantum Theory, Springer, Berlin (2003); M. Schlosshauer, Decoherence and the Quantumto- Classical Transition, Springer, Berlin (2007).

[8] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge (2002).

[9] W. H. Zurek, Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse?, Phys. Rev. D, 24, 1516 (1981). DOI: https:/​/​​10.1103/​PhysRevD.24.1516.

[10] C. J. Riedel and W. H. Zurek, Quantum Darwinism in an Everyday Environment: Huge Redundancy in Scattered Photons, Phys. Rev. Lett. 105, 020404 (2010). DOI: https:/​/​​10.1103/​PhysRevLett.105.020404.

[11] R. Blume-Kohout and W. H. Zurek, Quantum Darwinism in Quantum Brownian Motion, Phys. Rev. Lett. 101, 240405 (2008). DOI: https:/​/​​10.1103/​PhysRevLett.101.240405.

[12] J. P. Paz and A. J. Roncaglia, Redundancy of classical and quantum correlations during decoherence, Phys. Rev. A 80, 042111 (2009). DOI :https:/​/​​10.1103/​PhysRevA.80.042111.

[13] F. M. Cucchietti, J. P. Paz, W. H. Zurek, Decoherence from spin environments, Phys. Rev. A 72, 052113 (2005) DOI: https:/​/​​10.1103/​PhysRevA.72.052113; M. Zwolak, C. J. Riedel, and W. H. Zurek, Amplification, Decoherence, and the Acquisition of Information by Spin Environments, Scientific Reports 6, 25277 (2016). DOI: https:/​/​​10.1038/​srep25277.

[14] M. Zwolak and W. H. Zurek, Complementarity of quantum discord and classically accessible information, Scientific Reports 3, 1729 (2013). DOI: https:/​/​​10.1038/​srep01729.

[15] M. Zwolak, C. J. Riedel, and W. H. Zurek, Amplification, redundancy, and quantum Chernoff information, Phys. Rev. Lett. 112, 140406 (2014). DOI: https:/​/​​10.1103/​PhysRevLett.112.140406.

[16] F. G. S. L. Brandao, M. Piani, P. Horodecki, Generic emergence of classical features in quantum Darwinism, Nat. Comm. 6, 7908 (2015). DOI: https:/​/​​10.1038/​ncomms8908.

[17] S. Lorenzo, M. Paternostro, G. M. Palma, (Anti-)Zeno-based dynamical control of the unfolding of quantum Darwinism, Phys. Rev. Research 2, 013164 (2020) DOI: https:/​/​​10.1103/​PhysRevResearch.2.013164; S. M. Oliveira, A. L. de Paula Jr., R. C. Drumond, Quantum Darwinism and non-Markovianity in a model of quantum harmonic oscillators, Phys. Rev. A 100, 052110 (2019). DOI: https:/​/​​10.1103/​PhysRevA.100.052110.

[18] M. A. Ciampini, G. Pinna, P. Mataloni, and M. Paternostro, Phys. Rev. A 98, 020101 (2018). DOI: https:/​/​​10.1103/​PhysRevA.98.020101.

[19] M.-C. Chen, H.-S. Zhong, Y. Li, D. Wu, X.-L. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, Emergence of classical objectivity of quantum Darwinism in a photonic quantum simulator, Sci. Bull. 64, 580 (2019). DOI: https:/​/​​10.1016/​j.scib.2019.03.032.

[20] T. Unden, D. Louzon, M. Zwolak, W. H. Zurek, and F. Jelezko, Revealing the Emergence of Classicality Using Nitrogen-Vacancy Centers, Phys. Rev. Lett. 123, 140402 (2019). DOI: https:/​/​​10.1103/​PhysRevLett.123.140402.

[21] B. Groisman, S. Popescu, and A. Winter, Quantum, classical, and total amount of correlations in a quantum state, Phys. Rev. A 72, 032317 (2005). DOI: https:/​/​​10.1103/​PhysRevA.72.032317.

[22] C. H. Bennett, P. W. Shor, J. A. Smolin, A. V. Thapliyal, Entanglement-Assisted Classical Capacity of Noisy Quantum Channels, Phys. Rev. Lett. 83, 3081 (1999). DOI: https:/​/​​10.1103/​PhysRevLett.83.3081.

[23] H. Ollivier and W. H. Zurek, Quantum Discord: A Measure of the Quantumness of Correlations, Phys. Rev. Lett. 88, 017901 (2001). DOI: https:/​/​​10.1103/​PhysRevLett.88.017901.

[24] K. Modi, A pedagogical overview of quantum discord, Open Syst. Inf. Dyn., 21, 1440006 (2014). DOI: https:/​/​​10.1142/​S123016121440006X.

[25] S. Luo, Using measurement-induced disturbance to characterize correlations as classical or quantum, Phys. Rev. A 77, 022301 (2008), DOI: https:/​/​​10.1103/​PhysRevA.77.022301. S. Wu, U. V. Poulsen, and K. Molmer, Correlations in local measurements on a quantum state, and complementarity as an explanation of nonclassicality, Phys Rev A 80, 032319 (2009). DOI: https:/​/​​10.1103/​PhysRevA.80.032319.

[26] A. Ferraro, L. Aolita, D. Cavalcanti, F. M. Cucchietti, and A. Acin, Almost all quantum states have non-classical correlations, Phys. Rev. A 81, 052318 (2010). DOI: https:/​/​​10.1103/​PhysRevA.81.052318.

[27] A. Einstein, B. Podolsky, and N. Rosen, Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?, Phys. Rev. 47, 777 (1935). DOI: https:/​/​​10.1103/​PhysRev.47.777.

[28] N. Bohr, Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?, Phys. Rev. 48, 696 (1935). DOI: https:/​/​​10.1103/​PhysRev.48.696.

[29] H. M. Wiseman, Quantum discord is Bohr's notion of non-mechanical disturbance introduced to counter the Einstein-Podolsky-Rosen argument, Ann. Phys. 338, 361 (2013). DOI: https:/​/​​10.1016/​j.aop.2013.05.002.

[30] T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiley & Sons, New Jersey (1991).

[31] E. H. Lieb and M. B. Ruskai, Proof of the strong subadditivity of quantum-mechanical entropy, J. Math. Phys., 14, 1938 (1973). DOI: https:/​/​​10.1063/​1.1666274.

[32] D. Petz, Sufficiency of channels over von Neumann algebras Q. J. Math. 39, 97 (1988). DOI: https:/​/​​10.1093/​qmath/​39.1.97.

[33] P. Hayden, R. Jozsa, D. Petz, and A. Winter, Structure of states which satisfy strong subadditivity of quantum entropy with equality, Comm. Math. Phys. 246, 359 (2004). DOI: DOIhttps:/​/​​10.1007/​s00220-004-1049-z.

[34] A. S. Holevo, Bounds for the quantity of information transmitted by a quantum communication channel, Probl. Peredachi Inf. 9, 3 (1973).

[35] G. Pleasance and B. M. Garraway, Application of quantum Darwinism to a structured environment, Phys. Rev. A 96, 062105 (2017). DOI: https:/​/​​10.1103/​PhysRevA.96.062105.

[36] T. P. Le and A. Olaya-Castro, Objectivity (or lack thereof): Comparison between predictions of quantum Darwinism and spectrum broadcast structure, Phys. Rev. A 98, 032103 (2018). DOI: https:/​/​​10.1103/​PhysRevA.98.032103.

[37] P. Mironowicz, P. Należyty, P. Horodecki, and J. K. Korbicz, System information propagation for spin structures , Phys. Rev. A 98, 022124 (2018). DOI: https:/​/​​10.1103/​PhysRevA.98.022124.

[38] A. Feller, B. Roussel, I. Frérot, and P. Degiovanni , Comment on "Strong Quantum Darwinism and Strong Independence are Equivalent to Spectrum Broadcast Structure", Phys. Rev. Lett. 126, 188901 (2021). DOI: https:/​/​​10.1103/​PhysRevLett.126.188901.

[39] P. Mironowicz, J. K. Korbicz, and P. Horodecki, Monitoring of the process of system information broadcasting in time, Phys. Rev. Lett. 118, 150501 (2017). DOI: https:/​/​​10.1103/​PhysRevLett.118.150501.

[40] C. A. Fuchs and J. van de Graaf, Cryptographic distinguishability measures for quantum-mechanical states, IEEE Trans. on Inf. Theor. 45, 1216 (1999). https:/​/​​10.1109/​18.761271.

[41] J. Tuziemski and J. K. Korbicz, Dynamical Objectivity in Quantum Brownian Motion, EPL 112, 40008 (2015) DOI: https:/​/​​10.1209/​0295-5075/​112/​40008; J. Tuziemski and J. K. Korbicz, Analytical studies of Spectrum Broadcast Structures in Quantum Brownian Motion, J. Phys. A 49, 445301 (2016). DOI: https:/​/​​10.1088/​1751-8113/​49/​44/​445301.

[42] A. Lampo, J. Tuziemski, M. Lewenstein, and J. K. Korbicz, Objectivity in non-Markovian spin-boson model, Phys. Rev. A 96, 012120 (2017). DOI: https:/​/​​10.1103/​PhysRevA.96.012120.

[43] J. Tuziemski, P. Witas, J. K. Korbicz, Redundant information encoding in QED during decoherence, Phys. Rev. A 97, 012110 (2018). DOI: DOI:https:/​/​​10.1103/​PhysRevA.97.012110.

[44] J. K. Korbicz and J. Tuziemski, Information transfer during the universal gravitational decoherence, Gen. Relativ. Gravit. 49:152 (2017). DOI: https:/​/​​10.1007/​s10714-017-2319-3.

[45] J. K. Korbicz, E. A. Aguilar, P. Ć wikliński, and P. Horodecki Generic appearance of objective results in quantum measurements, Phys. Rev. A 96, 032124 (2017). DOI: https:/​/​​10.1103/​PhysRevA.96.032124.

[46] C. M. Scandolo, R. Salazar, J. K. Korbicz, and P. Horodecki, Universal structure of objective states in all fundamental causal theories, Phys. Rev. Research 3, 033148 (2021). DOI: https:/​/​​10.1103/​PhysRevResearch.3.033148.

[47] K. Roszak and J. K. Korbicz, Entanglement and objectivity in pure dephasing models , Phys. Rev. A 100, 062127 (2019). DOI: https:/​/​​10.1103/​PhysRevA.100.062127.

[48] T. P. Le, P. Mironowicz, and P. Horodecki, Blurred quantum Darwinism across quantum reference frames, Phys. Rev. A 102, 062420 (2020). DOI: https:/​/​​10.1103/​PhysRevA.102.062420.

[49] J. Tuziemski, Decoherence and information encoding in quantum reference frames, arXiv:2006.07298 (2020).

[50] T. P. Le and A. Olaya-Castro, Witnessing non-objectivity in the framework of strong quantum Darwinism, Quantum Sci. Technol. 5, 045012 (2020). DOI: https:/​/​​10.1088/​2058-9565/​abac4e.

[51] M. Kiciński and J. K. Korbicz, Decoherence and objectivity in higher spin environments, Phys. Rev. A 104, 042216. DOI: https:/​/​​10.1103/​PhysRevA.104.042216.

[52] H. J. Briegel and R. Raussendorf, Persistent Entanglement in Arrays of Interacting Particles, Phys. Rev. Lett. 86, 910 (2001). DOI: https:/​/​​10.1103/​PhysRevLett.86.910.

[53] D. Kwiatkowski, Ł. Cywiński, and J. K. Korbicz, New J. Phys. 23, 043036 (2021). DOI: https:/​/​​10.1088/​1367-2630/​abeffd.

Cited by

[1] Zhiqiang Huang and Xiao-Kan Guo, "Classical and quantum parts of conditional mutual information for open quantum systems", Physical Review A 106 4, 042412 (2022).

[2] Davide Girolami and Michele Minervini, "Quantitative bounds to propagation of quantum correlations in many-body systems", Physics Letters A 496, 129315 (2024).

[3] Nina Megier, Andrea Smirne, Steve Campbell, and Bassano Vacchini, "Correlations, Information Backflow, and Objectivity in a Class of Pure Dephasing Models", Entropy 24 2, 304 (2022).

[4] Wojciech Hubert Zurek, "Emergence of the Classical World from Within Our Quantum Universe", From Quantum to Classical; Essays in Honour of H.-Dieter Zeh Fundamental Theories of Physics 204, 23 (2022) ISBN:978-3-030-88780-3.

[5] Fattah Sakuldee, Philip Taranto, and Simon Milz, "Connecting commutativity and classicality for multitime quantum processes", Physical Review A 106 2, 022416 (2022).

[6] Davide Girolami, Akram Touil, Bin Yan, Sebastian Deffner, and Wojciech H. Zurek, "Redundantly Amplified Information Suppresses Quantum Correlations in Many-Body Systems", Physical Review Letters 129 1, 010401 (2022).

[7] Piotr Mironowicz, Paweł Horodecki, and Ryszard Horodecki, "Non-Perfect Propagation of Information to a Noisy Environment with Self-Evolution", Entropy 24 4, 467 (2022).

[8] Akram Touil, Bin Yan, Davide Girolami, Sebastian Deffner, and Wojciech Hubert Zurek, "Eavesdropping on the Decohering Environment: Quantum Darwinism, Amplification, and the Origin of Objective Classical Reality", Physical Review Letters 128 1, 010401 (2022).

[9] Uttam Singh, Adam Sawicki, and Jarosław K. Korbicz, "Pointer States in the Born-Markov Approximation", Physical Review Letters 132 3, 030203 (2024).

[10] Wojciech Hubert Zurek, "Quantum Theory of the Classical: Einselection, Envariance, Quantum Darwinism and Extantons", Entropy 24 11, 1520 (2022).

[11] Xiao-Kan Guo and Zhiqiang Huang, "On the relation between quantum Darwinism and approximate quantum Markovianity", Physics Letters A 491, 129204 (2023).

[12] Eoghan Ryan, Eoin Carolan, Steve Campbell, and Mauro Paternostro, "Commutativity and the emergence of classical objectivity", Journal of Physics Communications 6 9, 095005 (2022).

[13] P Mironowicz, "Quantum security and theory of decoherence", New Journal of Physics 24 11, 113054 (2022).

[14] Philipp Strasberg, "Classicality with(out) decoherence: Concepts, relation to Markovianity, and a random matrix theory approach", SciPost Physics 15 1, 024 (2023).

[15] Diana A. Chisholm, Luca Innocenti, and G. Massimo Palma, "The meaning of redundancy and consensus in quantum objectivity", Quantum 7, 1074 (2023).

[16] Michael Zwolak, "Amplification, Inference, and the Manifestation of Objective Classical Information", Entropy 24 6, 781 (2022).

[17] Marcos L. W. Basso and Jonas Maziero, "Reality variation under monitoring with weak measurements", Quantum Information Processing 21 7, 255 (2022).

[18] Tae-Hun Lee and Jarosław K. Korbicz, "Encoding position by spins: Objectivity in the boson-spin model", arXiv:2401.07690, (2024).

[19] Barış Çakmak, Özgür E. Müstecaplıoğlu, Mauro Paternostro, Bassano Vacchini, and Steve Campbell, "Quantum Darwinism in a Composite System: Objectivity versus Classicality", Entropy 23 8, 995 (2021).

[20] Carlo Maria Scandolo, Roberto Salazar, Jarosław K. Korbicz, and Paweł Horodecki, "Universal structure of objective states in all fundamental causal theories", Physical Review Research 3 3, 033148 (2021).

[21] Carlo Maria Scandolo, Roberto Salazar, Jarosław K. Korbicz, and Paweł Horodecki, "Universal structure of objective states in all fundamental causal theories", arXiv:1805.12126, (2018).

[22] Damian Kwiatkowski, Łukasz Cywiński, and Jarosław K. Korbicz, "Appearance of objectivity for NV centers interacting with dynamically polarized nuclear environment", New Journal of Physics 23 4, 043036 (2021).

[23] M. Kiciński and J. K. Korbicz, "Decoherence and objectivity in higher spin environments", Physical Review A 104 4, 042216 (2021).

[24] Wilson S. Martins and Diogo O. Soares-Pinto, "Suppressing information storage in a structured thermal bath: Objectivity and non-Markovianity", arXiv:2110.03490, (2021).

[25] Akram Touil and Sebastian Deffner, "Environment-Assisted Shortcuts to Adiabaticity", Entropy 23 11, 1479 (2021).

[26] Feng Tian, Jian Zou, Hai Li, and Bin Shao, "Relevance between Information scrambling and quantum Darwinism", arXiv:2205.06939, (2022).

The above citations are from Crossref's cited-by service (last updated successfully 2024-02-26 03:52:36) and SAO/NASA ADS (last updated successfully 2024-02-26 03:52:37). The list may be incomplete as not all publishers provide suitable and complete citation data.