Dynamically Generated Logical Qubits

Matthew B. Hastings1,2 and Jeongwan Haah2

1Station Q, Microsoft Quantum, Santa Barbara, CA 93106-6105, USA
2Microsoft Quantum and Microsoft Research, Redmond, WA 98052, USA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


We present a quantum error correcting code with $\textit{dynamically generated logical qubits}$. When viewed as a subsystem code, the code has no logical qubits. Nevertheless, our measurement patterns generate logical qubits, allowing the code to act as a fault-tolerant quantum memory. Our particular code gives a model very similar to the two-dimensional toric code, but each measurement is a $two$-qubit Pauli measurement.

► BibTeX data

► References

[1] A. Kitaev, ``Fault-tolerant quantum computation by anyons,'' Annals of Physics 303, 2–30 (2003), arXiv:quant-ph/​9707021.

[2] D. Poulin, ``Stabilizer formalism for operator quantum error correction,'' Physical Review Letters 95, 230504 (2005), arXiv:quant-ph/​0508131.

[3] S. Bravyi, G. Duclos-Cianci, D. Poulin, and M. Suchara, ``Subsystem surface codes with three-qubit check operators,'' Quantum Information and Computation 13, 963–985 (2013), arXiv:1207.1443.

[4] H. Bombin, ``Topological subsystem codes,'' Physical Review A 81, 032301 (2010), arXiv:0908.4246.

[5] D. Bacon, ``Operator quantum error-correcting subsystems for self-correcting quantum memories,'' Physical Review A 73, 012340 (2006), arXiv:quant-ph/​0506023.

[6] T. Karzig, C. Knapp, R. M. Lutchyn, P. Bonderson, M. B. Hastings, C. Nayak, J. Alicea, K. Flensberg, S. Plugge, Y. Oreg, C. M. Marcus, and M. H. Freedman, ``Scalable designs for quasiparticle-poisoning-protected topological quantum computation with majorana zero modes,'' Physical Review B 95, 235305 (2017), arXiv:1610.05289.

[7] Y. Li, X. Chen, and M. P. A. Fisher, ``Quantum zeno effect and the many-body entanglement transition,'' Phys. Rev. B 98, 205136 (2018), arXiv:1808.06134.

[8] B. Skinner, J. Ruhman, and A. Nahum, ``Measurement-induced phase transitions in the dynamics of entanglement,'' Phys. Rev. X 9, 031009 (2019), arXiv:1808.05953.

[9] M. J. Gullans and D. A. Huse, ``Dynamical purification phase transition induced by quantum measurements,'' Physical Review X 10, 041020 (2020), arXiv:1905.05195.

[10] A. Kitaev, ``Anyons in an exactly solved model and beyond,'' Annals of Physics 321, 2–111 (2006), arXiv:cond-mat/​0506438.

[11] K. Kawagoe and M. Levin, ``Microscopic definitions of anyon data,'' Physical Review B 101, 1910.11353 (2020), arXiv:115113.

[12] S. A. Kivelson, D. S. Rokhsar, and J. P. Sethna, ``2e or not 2e : Flux quantization in the resonating valence bond state,'' Europhysics Letters (EPL) 6, 353–358 (1988).

[13] L. Fidkowski, J. Haah, and M. B. Hastings, ``How dynamical quantum memories forget,'' Quantum 5, 382 (2021), arXiv:2008.10611.

Cited by

[1] Adithya Sriram, Tibor Rakovszky, Vedika Khemani, and Matteo Ippoliti, "Topology, criticality, and dynamically generated qubits in a stochastic measurement-only Kitaev model", Physical Review B 108 9, 094304 (2023).

[2] Jeongwan Haah and Matthew B. Hastings, "Boundaries for the Honeycomb Code", Quantum 6, 693 (2022).

[3] Andreas Bartschi and Stephan Eidenbenz, 2022 IEEE International Conference on Quantum Computing and Engineering (QCE) 87 (2022) ISBN:978-1-6654-9113-6.

[4] Basudha Srivastava, Anton Frisk Kockum, and Mats Granath, "The XYZ2 hexagonal stabilizer code", Quantum 6, 698 (2022).

[5] Tyler D. Ellison, Yu-An Chen, Arpit Dua, Wilbur Shirley, Nathanan Tantivasadakarn, and Dominic J. Williamson, "Pauli topological subsystem codes from Abelian anyon theories", Quantum 7, 1137 (2023).

[6] Tyler D. Ellison, Yu-An Chen, Arpit Dua, Wilbur Shirley, Nathanan Tantivasadakarn, and Dominic J. Williamson, "Pauli Stabilizer Models of Twisted Quantum Doubles", PRX Quantum 3 1, 010353 (2022).

[7] Manuel H. Muñoz-Arias, "Statistical complexity and the road to equilibrium in many-body chaotic quantum systems", Physical Review E 106 4, 044103 (2022).

[8] Craig Gidney, "A Pair Measurement Surface Code on Pentagons", Quantum 7, 1156 (2023).

[9] Benjamin A. Cordier, Nicolas P. D. Sawaya, Gian Giacomo Guerreschi, and Shannon K. McWeeney, "Biology and medicine in the landscape of quantum advantages", Journal of The Royal Society Interface 19 196, 20220541 (2022).

[10] Hossein Dehghani, Ali Lavasani, Mohammad Hafezi, and Michael J. Gullans, "Neural-network decoders for measurement induced phase transitions", Nature Communications 14 1, 2918 (2023).

[11] Margarita Davydova, Nathanan Tantivasadakarn, and Shankar Balasubramanian, "Floquet Codes without Parent Subsystem Codes", PRX Quantum 4 2, 020341 (2023).

[12] Armands Strikis, Simon C. Benjamin, and Benjamin J. Brown, "Quantum Computing is Scalable on a Planar Array of Qubits with Fabrication Defects", Physical Review Applied 19 6, 064081 (2023).

[13] Vaibhav Sharma, Chao-Ming Jian, and Erich J. Mueller, "Subsystem symmetry, spin-glass order, and criticality from random measurements in a two-dimensional Bacon-Shor circuit", Physical Review B 108 2, 024205 (2023).

[14] Howard M. Wiseman, Eric G. Cavalcanti, and Eleanor G. Rieffel, "A "thoughtful" Local Friendliness no-go theorem: a prospective experiment with new assumptions to suit", Quantum 7, 1112 (2023).

[15] Matthew P.A. Fisher, Vedika Khemani, Adam Nahum, and Sagar Vijay, "Random Quantum Circuits", Annual Review of Condensed Matter Physics 14 1, 335 (2023).

[16] Héctor Bombín, Chris Dawson, Ryan V. Mishmash, Naomi Nickerson, Fernando Pastawski, and Sam Roberts, "Logical Blocks for Fault-Tolerant Topological Quantum Computation", PRX Quantum 4 2, 020303 (2023).

[17] Craig Gidney, Michael Newman, and Matt McEwen, "Benchmarking the Planar Honeycomb Code", Quantum 6, 813 (2022).

[18] Zhehao Zhang, David Aasen, and Sagar Vijay, "X -cube Floquet code: A dynamical quantum error correcting code with a subextensive number of logical qubits", Physical Review B 108 20, 205116 (2023).

[19] Po-Shen Hsin and Zhenghan Wang, "On topology of the moduli space of gapped Hamiltonians for topological phases", Journal of Mathematical Physics 64 4, 041901 (2023).

[20] Stefano Paesani and Benjamin J. Brown, "High-Threshold Quantum Computing by Fusing One-Dimensional Cluster States", Physical Review Letters 131 12, 120603 (2023).

[21] Ali Lavasani, Zhu-Xi Luo, and Sagar Vijay, "Monitored quantum dynamics and the Kitaev spin liquid", Physical Review B 108 11, 115135 (2023).

[22] Craig Gidney, Michael Newman, Austin Fowler, and Michael Broughton, "A Fault-Tolerant Honeycomb Memory", Quantum 5, 605 (2021).

[23] Oscar Higgott, "PyMatching: A Python Package for Decoding Quantum Codes with Minimum-Weight Perfect Matching", ACM Transactions on Quantum Computing 3 3, 1 (2022).

[24] Joseph Sullivan, Rui Wen, and Andrew C. Potter, "Floquet codes and phases in twist-defect networks", Physical Review B 108 19, 195134 (2023).

[25] Jason Gavriel, Daniel Herr, Alexis Shaw, Michael J. Bremner, Alexandru Paler, and Simon J. Devitt, 2023 IEEE International Conference on Quantum Computing and Engineering (QCE) 910 (2023) ISBN:979-8-3503-4323-6.

[26] Alex Townsend-Teague, Julio Magdalena de la Fuente, and Markus Kesselring, "Floquetifying the Colour Code", Electronic Proceedings in Theoretical Computer Science 384, 265 (2023).

[27] Marcin Kalinowski, Nishad Maskara, and Mikhail D. Lukin, "Non-Abelian Floquet Spin Liquids in a Digital Rydberg Simulator", Physical Review X 13 3, 031008 (2023).

[28] Oscar Higgott, Thomas C. Bohdanowicz, Aleksander Kubica, Steven T. Flammia, and Earl T. Campbell, "Improved Decoding of Circuit Noise and Fragile Boundaries of Tailored Surface Codes", Physical Review X 13 3, 031007 (2023).

[29] Ammar Jahin, Andy C. Y. Li, Thomas Iadecola, Peter P. Orth, Gabriel N. Perdue, Alexandru Macridin, M. Sohaib Alam, and Norm M. Tubman, "Fermionic approach to variational quantum simulation of Kitaev spin models", Physical Review A 106 2, 022434 (2022).

[30] Zhiyuan Wang and Kaden R. A. Hazzard, "Topological correlations in three-dimensional classical Ising models: An exact solution with a continuous phase transition", Physical Review Research 5 1, 013086 (2023).

[31] Grace M. Sommers, David A. Huse, and Michael J. Gullans, "Crystalline Quantum Circuits", PRX Quantum 4 3, 030313 (2023).

[32] David Aasen, Zhenghan Wang, and Matthew B. Hastings, "Adiabatic paths of Hamiltonians, symmetries of topological order, and automorphism codes", Physical Review B 106 8, 085122 (2022).

[33] Nathanan Tantivasadakarn, Ashvin Vishwanath, and Ruben Verresen, "Hierarchy of Topological Order From Finite-Depth Unitaries, Measurement, and Feedforward", PRX Quantum 4 2, 020339 (2023).

[34] Sergey Bravyi, Oliver Dial, Jay M. Gambetta, Darío Gil, and Zaira Nazario, "The future of quantum computing with superconducting qubits", Journal of Applied Physics 132 16, 160902 (2022).

[35] Matthew Brooks and Charles Tahan, "Quantum computation by spin-parity measurements with encoded spin qubits", Physical Review B 108 3, 035206 (2023).

[36] Craig Gidney, "Stability Experiments: The Overlooked Dual of Memory Experiments", Quantum 6, 786 (2022).

[37] Oliver Lunt, Jonas Richter, and Arijeet Pal, Quantum Science and Technology 251 (2022) ISBN:978-3-031-03997-3.

[38] Yaodong Li and Matthew P. A. Fisher, "Decodable hybrid dynamics of open quantum systems with Z2 symmetry", Physical Review B 108 21, 214302 (2023).

[39] Edward H. Chen, Theodore J. Yoder, Youngseok Kim, Neereja Sundaresan, Srikanth Srinivasan, Muyuan Li, Antonio D. Córcoles, Andrew W. Cross, and Maika Takita, "Calibrated Decoders for Experimental Quantum Error Correction", Physical Review Letters 128 11, 110504 (2022).

[40] Jianxin Chen, Dawei Ding, Cupjin Huang, and Linghang Kong, "Linear cross-entropy benchmarking with Clifford circuits", Physical Review A 108 5, 052613 (2023).

[41] Adam Paetznick, Christina Knapp, Nicolas Delfosse, Bela Bauer, Jeongwan Haah, Matthew B. Hastings, and Marcus P. da Silva, "Performance of Planar Floquet Codes with Majorana-Based Qubits", PRX Quantum 4 1, 010310 (2023).

[42] Matt McEwen, Dave Bacon, and Craig Gidney, "Relaxing Hardware Requirements for Surface Code Circuits using Time-dynamics", Quantum 7, 1172 (2023).

[43] James R Wootton, "Hexagonal matching codes with two-body measurements", Journal of Physics A: Mathematical and Theoretical 55 29, 295302 (2022).

[44] David Aasen, Jeongwan Haah, Zhi Li, and Roger S. K. Mong, "Measurement Quantum Cellular Automata and Anomalies in Floquet Codes", arXiv:2304.01277, (2023).

[45] Yaodong Li and Matthew P. A. Fisher, "Robust decoding in monitored dynamics of open quantum systems with Z_2 symmetry", arXiv:2108.04274, (2021).

[46] M. B. Hastings, "Quantum Codes on Graphs", arXiv:2308.10264, (2023).

[47] Christopher A. Pattison, Michael E. Beverland, Marcus P. da Silva, and Nicolas Delfosse, "Improved quantum error correction using soft information", arXiv:2107.13589, (2021).

[48] Julia Wildeboer, Thomas Iadecola, and Dominic J. Williamson, "Symmetry-Protected Infinite-Temperature Quantum Memory from Subsystem Codes", PRX Quantum 3 2, 020330 (2022).

[49] Benjamin A. Cordier, Nicolas P. D. Sawaya, Gian G. Guerreschi, and Shannon K. McWeeney, "Biology and medicine in the landscape of quantum advantages", arXiv:2112.00760, (2021).

[50] Jacob C. Bridgeman, Aleksander Kubica, and Michael Vasmer, "Lifting topological codes: Three-dimensional subsystem codes from two-dimensional anyon models", arXiv:2305.06365, (2023).

[51] Christophe Vuillot, "Planar Floquet Codes", arXiv:2110.05348, (2021).

[52] Daniel Gottesman, "Opportunities and Challenges in Fault-Tolerant Quantum Computation", arXiv:2210.15844, (2022).

[53] Linnea Grans-Samuelsson, Ryan V. Mishmash, David Aasen, Christina Knapp, Bela Bauer, Brad Lackey, Marcus P. da Silva, and Parsa Bonderson, "Improved Pairwise Measurement-Based Surface Code", arXiv:2310.12981, (2023).

[54] Margarita Davydova, Nathanan Tantivasadakarn, Shankar Balasubramanian, and David Aasen, "Quantum computation from dynamic automorphism codes", arXiv:2307.10353, (2023).

[55] Andreas Bärtschi and Stephan Eidenbenz, "Short-Depth Circuits for Dicke State Preparation", arXiv:2207.09998, (2022).

[56] Yuanjie Ren and Peter Shor, "Topological quantum computation assisted by phase transitions", arXiv:2311.00103, (2023).

[57] Alex Townsend-Teague, Julio Magdalena de la Fuente, and Markus Kesselring, "Floquetifying the Colour Code", arXiv:2307.11136, (2023).

[58] Andrew J. Landahl and Benjamin C. A. Morrison, "Logical fermions for fault-tolerant quantum simulation", arXiv:2110.10280, (2021).

[59] Andreas Bauer, "Topological error correcting processes from fixed-point path integrals", arXiv:2303.16405, (2023).

[60] Michael Liaofan Liu, Nathanan Tantivasadakarn, and Victor V. Albert, "Subsystem CSS codes, a tighter stabilizer-to-CSS mapping, and Goursat's Lemma", arXiv:2311.18003, (2023).

[61] Ryohei Kobayashi and Guanyu Zhu, "Fault-tolerant logical gates via constant depth circuits and emergent symmetries on non-orientable topological stabilizer and Floquet codes", arXiv:2310.06917, (2023).

[62] Bowen Yan and Shawn X. Cui, "Generalized Kitaev Spin Liquid model and Emergent Twist Defect", arXiv:2308.06835, (2023).

[63] Guillaume Dauphinais, David W. Kribs, and Michael Vasmer, "Stabilizer Formalism for Operator Algebra Quantum Error Correction", arXiv:2304.11442, (2023).

[64] David Aasen, Jeongwan Haah, Parsa Bonderson, Zhenghan Wang, and Matthew Hastings, "Fault-Tolerant Hastings-Haah Codes in the Presence of Dead Qubits", arXiv:2307.03715, (2023).

[65] Craig Gidney and Dave Bacon, "Less Bacon More Threshold", arXiv:2305.12046, (2023).

[66] Christophe Vuillot, Alessandro Ciani, and Barbara M. Terhal, "Homological Quantum Rotor Codes: Logical Qubits from Torsion", arXiv:2303.13723, (2023).

[67] Matthew Buican and Rajath Radhakrishnan, "Qudit Stabilizer Codes, CFTs, and Topological Surfaces", arXiv:2311.13680, (2023).

The above citations are from Crossref's cited-by service (last updated successfully 2023-12-07 09:34:00) and SAO/NASA ADS (last updated successfully 2023-12-07 09:34:01). The list may be incomplete as not all publishers provide suitable and complete citation data.