Robust self-testing of steerable quantum assemblages and its applications on device-independent quantum certification

Shin-Liang Chen1,2,3, Huan-Yu Ku1, Wenbin Zhou4, Jordi Tura3,5, and Yueh-Nan Chen1

1Department of Physics and Center for Quantum Frontiers of Research & Technology (QFort), National Cheng Kung University, Tainan 701, Taiwan
2Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany
3Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
4Graduate School of Informatics, Nagoya University, Chikusa-ku, 464-8601 Nagoya, Japan
5Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Given a Bell inequality, if its maximal quantum violation can be achieved only by a single set of measurements for each party or a single quantum state, up to local unitaries, one refers to such a phenomenon as self-testing. For instance, the maximal quantum violation of the Clauser-Horne-Shimony-Holt inequality certifies that the underlying state contains the two-qubit maximally entangled state and the measurements of one party contains a pair of anti-commuting qubit observables. As a consequence, the other party automatically verifies the set of states remotely steered, namely the "assemblage", is in the eigenstates of a pair of anti-commuting observables. It is natural to ask if the quantum violation of the Bell inequality is not maximally achieved, or if one does not care about self-testing the state or measurements, are we capable of estimating how close the underlying assemblage is to the reference one? In this work, we provide a systematic device-independent estimation by proposing a framework called "robust self-testing of steerable quantum assemblages". In particular, we consider assemblages violating several paradigmatic Bell inequalities and obtain the robust self-testing statement for each scenario. Our result is device-independent (DI), i.e., no assumption is made on the shared state and the measurement devices involved. Our work thus not only paves a way for exploring the connection between the boundary of quantum set of correlations and steerable assemblages, but also provides a useful tool in the areas of DI quantum certification. As two explicit applications, we show 1) that it can be used for an alternative proof of the protocol of DI certification of all entangled two-qubit states proposed by Bowles et al., and 2) that it can be used to verify all non-entanglement-breaking qubit channels with fewer assumptions compared with the work of Rosset et al.

► BibTeX data

► References

[1] J. S. Bell, Physics Physique Fizika 1, 195 (1964).
https:/​/​doi.org/​10.1103/​PhysicsPhysiqueFizika.1.195

[2] S. J. Freedman and J. F. Clauser, Phys. Rev. Lett. 28, 938 (1972).
https:/​/​doi.org/​10.1103/​PhysRevLett.28.938

[3] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, Rev. Mod. Phys. 86, 419 (2014).
https:/​/​doi.org/​10.1103/​RevModPhys.86.419

[4] A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, Phys. Rev. Lett. 98, 230501 (2007).
https:/​/​doi.org/​10.1103/​PhysRevLett.98.230501

[5] V. Scarani, Acta Physica Slovaca 62, 347 (2012).

[6] H. M. Wiseman, S. J. Jones, and A. C. Doherty, Phys. Rev. Lett. 98, 140402 (2007).
https:/​/​doi.org/​10.1103/​PhysRevLett.98.140402

[7] M. T. Quintino, T. Vértesi, D. Cavalcanti, R. Augusiak, M. Demianowicz, A. Acín, and N. Brunner, Phys. Rev. A 92, 032107 (2015).
https:/​/​doi.org/​10.1103/​PhysRevA.92.032107

[8] M. M. Wolf, D. Perez-Garcia, and C. Fernandez, Phys. Rev. Lett. 103, 230402 (2009).
https:/​/​doi.org/​10.1103/​PhysRevLett.103.230402

[9] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett. 23, 880 (1969).
https:/​/​doi.org/​10.1103/​PhysRevLett.23.880

[10] D. Mayers and A. Yao, in Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280) (IEEE Comput. Soc).
https:/​/​doi.org/​10.1109/​sfcs.1998.743501

[11] D. Mayers and A. Yao, Quantum Info. Comput. 4, 273 (2004).
http:/​/​dl.acm.org/​citation.cfm?id=2011827.2011830

[12] I. Šupić and J. Bowles, Quantum 4, 337 (2020).
https:/​/​doi.org/​10.22331/​q-2020-09-30-337

[13] E. Schrödinger, Proc. Cambridge Phil. Soc. 31, 555 (1935).
http:/​/​journals.cambridge.org/​article_S0305004100013554

[14] D. Cavalcanti and P. Skrzypczyk, Reports on Progress in Physics 80, 024001 (2017).
https:/​/​doi.org/​10.1088/​1361-6633/​80/​2/​024001

[15] R. Uola, A. C. S. Costa, H. C. Nguyen, and O. Gühne, Rev. Mod. Phys. 92, 015001 (2020).
https:/​/​doi.org/​10.1103/​RevModPhys.92.015001

[16] M. F. Pusey, Phys. Rev. A 88, 032313 (2013).
https:/​/​doi.org/​10.1103/​PhysRevA.88.032313

[17] P. Skrzypczyk, M. Navascués, and D. Cavalcanti, Phys. Rev. Lett. 112, 180404 (2014).
https:/​/​doi.org/​10.1103/​PhysRevLett.112.180404

[18] M. Piani and J. Watrous, Phys. Rev. Lett. 114, 060404 (2015).
https:/​/​doi.org/​10.1103/​PhysRevLett.114.060404

[19] R. Gallego and L. Aolita, Phys. Rev. X 5, 041008 (2015).
https:/​/​doi.org/​10.1103/​PhysRevX.5.041008

[20] C.-Y. Hsieh, Y.-C. Liang, and R.-K. Lee, Phys. Rev. A 94, 062120 (2016).
https:/​/​doi.org/​10.1103/​PhysRevA.94.062120

[21] H.-Y. Ku, S.-L. Chen, C. Budroni, A. Miranowicz, Y.-N. Chen, and F. Nori, Phys. Rev. A 97, 022338 (2018).
https:/​/​doi.org/​10.1103/​PhysRevA.97.022338

[22] D. Cavalcanti, P. Skrzypczyk, G. H. Aguilar, R. V. Nery, P. S. Ribeiro, and S. P. Walborn, Nature Communications 6 (2015), 10.1038/​ncomms8941.
https:/​/​doi.org/​10.1038/​ncomms8941

[23] C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, Phys. Rev. A 85, 010301(R) (2012).
https:/​/​doi.org/​10.1103/​PhysRevA.85.010301

[24] E. Passaro, D. Cavalcanti, P. Skrzypczyk, and A. Acín, New Journal of Physics 17, 113010 (2015).
https:/​/​doi.org/​10.1088/​1367-2630/​17/​11/​113010

[25] P. Skrzypczyk and D. Cavalcanti, Phys. Rev. Lett. 120, 260401 (2018).
https:/​/​doi.org/​10.1103/​PhysRevLett.120.260401

[26] M. T. Quintino, T. Vértesi, and N. Brunner, Phys. Rev. Lett. 113, 160402 (2014).
https:/​/​doi.org/​10.1103/​PhysRevLett.113.160402

[27] R. Uola, T. Moroder, and O. Gühne, Phys. Rev. Lett. 113, 160403 (2014).
https:/​/​doi.org/​10.1103/​PhysRevLett.113.160403

[28] R. Uola, C. Budroni, O. Gühne, and J.-P. Pellonpää, Phys. Rev. Lett. 115, 230402 (2015).
https:/​/​doi.org/​10.1103/​PhysRevLett.115.230402

[29] D. Cavalcanti and P. Skrzypczyk, Phys. Rev. A 93, 052112 (2016).
https:/​/​doi.org/​10.1103/​PhysRevA.93.052112

[30] S.-L. Chen, C. Budroni, Y.-C. Liang, and Y.-N. Chen, Phys. Rev. Lett. 116, 240401 (2016).
https:/​/​doi.org/​10.1103/​PhysRevLett.116.240401

[31] J. Kaniewski, Phys. Rev. Lett. 117, 070402 (2016).
https:/​/​doi.org/​10.1103/​PhysRevLett.117.070402

[32] T. H. Yang, T. Vértesi, J.-D. Bancal, V. Scarani, and M. Navascués, Phys. Rev. Lett. 113, 040401 (2014).
https:/​/​doi.org/​10.1103/​PhysRevLett.113.040401

[33] J.-D. Bancal, M. Navascués, V. Scarani, T. Vértesi, and T. H. Yang, Phys. Rev. A 91, 022115 (2015).
https:/​/​doi.org/​10.1103/​PhysRevA.91.022115

[34] A. C. Doherty, Y.-C. Liang, B. Toner, and S. Wehner, in 23rd Annu. IEEE Conf. on Comput. Comp, 2008, CCC'08 (Los Alamitos, CA, 2008) pp. 199–210.
https:/​/​doi.org/​10.1109/​CCC.2008.26

[35] M. Navascués, S. Pironio, and A. Acín, Phys. Rev. Lett. 98, 010401 (2007).
https:/​/​doi.org/​10.1103/​PhysRevLett.98.010401

[36] M. Navascués, S. Pironio, and A. Acín, New Journal of Physics 10, 073013 (2008).
https:/​/​doi.org/​10.1088/​1367-2630/​10/​7/​073013
http:/​/​stacks.iop.org/​1367-2630/​10/​i=7/​a=073013

[37] T. Moroder, J.-D. Bancal, Y.-C. Liang, M. Hofmann, and O. Gühne, Phys. Rev. Lett. 111, 030501 (2013).
https:/​/​doi.org/​10.1103/​PhysRevLett.111.030501

[38] S.-L. Chen, C. Budroni, Y.-C. Liang, and Y.-N. Chen, Phys. Rev. A 98, 042127 (2018).
https:/​/​doi.org/​10.1103/​PhysRevA.98.042127

[39] A. Acín, S. Massar, and S. Pironio, Phys. Rev. Lett. 108, 100402 (2012).
https:/​/​doi.org/​10.1103/​PhysRevLett.108.100402

[40] N. Gisin, Essays in Honour of A. Shimony, edited by W. C. Myrvold and J. Christian, The Western Ontario Series in Philosophy of Science (Springer, New York, 2009) pp. 125–140.
arXiv:quant-ph/0702021

[41] A. Acín, S. Pironio, T. Vértesi, and P. Wittek, Phys. Rev. A 93, 040102 (2016).
https:/​/​doi.org/​10.1103/​PhysRevA.93.040102

[42] J. Bowles, I. Šupić, D. Cavalcanti, and A. Acín, Phys. Rev. Lett. 121, 180503 (2018a).
https:/​/​doi.org/​10.1103/​PhysRevLett.121.180503

[43] J. Bowles, I. Šupić, D. Cavalcanti, and A. Acín, Phys. Rev. A 98, 042336 (2018b).
https:/​/​doi.org/​10.1103/​PhysRevA.98.042336

[44] D. Rosset, F. Buscemi, and Y.-C. Liang, Phys. Rev. X 8, 021033 (2018).
https:/​/​doi.org/​10.1103/​PhysRevX.8.021033

[45] Available at https:/​/​github.com/​shinliangchen/​assemblage_moment_matrices.
https:/​/​github.com/​shinliangchen/​assemblage_moment_matrices

[46] B. S. Cirel'son, Lett. in Math. Phys. 4, 93 (1980).
https:/​/​doi.org/​10.1007/​BF00417500

[47] A. Uhlmann, Reports on Mathematical Physics 9, 273 (1976).
https:/​/​doi.org/​10.1016/​0034-4877(76)90060-4

[48] R. Jozsa, Journal of Modern Optics 41, 2315 (1994).
https:/​/​doi.org/​10.1080/​09500349414552171

[49] Y.-C. Liang, Y.-H. Yeh, P. E. M. F. Mendonça, R. Y. Teh, M. D. Reid, and P. D. Drummond, Reports on Progress in Physics 82, 076001 (2019).
https:/​/​doi.org/​10.1088/​1361-6633/​ab1ca4

[50] R. V. Nery, M. M. Taddei, P. Sahium, S. P. Walborn, L. Aolita, and G. H. Aguilar, Phys. Rev. Lett. 124, 120402 (2020).
https:/​/​doi.org/​10.1103/​PhysRevLett.124.120402

[51] A. Tavakoli, J. m. k. Kaniewski, T. Vértesi, D. Rosset, and N. Brunner, Phys. Rev. A 98, 062307 (2018).
https:/​/​doi.org/​10.1103/​PhysRevA.98.062307

[52] A. Tavakoli, M. Smania, T. Vértesi, N. Brunner, and M. Bourennane, Science Advances 6, eaaw6664 (2020).
https:/​/​doi.org/​10.1126/​sciadv.aaw6664

[53] M. O. Renou, J. Kaniewski, and N. Brunner, Phys. Rev. Lett. 121, 250507 (2018).
https:/​/​doi.org/​10.1103/​PhysRevLett.121.250507

[54] J.-D. Bancal, N. Sangouard, and P. Sekatski, Phys. Rev. Lett. 121, 250506 (2018).
https:/​/​doi.org/​10.1103/​PhysRevLett.121.250506

[55] A. Jamiołkowski, Reports on Mathematical Physics 5, 415 (1974).
https:/​/​doi.org/​10.1016/​0034-4877(74)90044-5

[56] M.-D. Choi, Linear Algebra Appl. 10, 285 (1975).
https:/​/​doi.org/​10.1016/​0024-3795(75)90075-0

[57] S.-L. Chen, N. Miklin, C. Budroni, and Y.-N. Chen, Phys. Rev. Research 3, 023143 (2021).
https:/​/​doi.org/​10.1103/​PhysRevResearch.3.023143

[58] S. Boyd and L. Vandenberghe, Convex Optimization, 1st ed. (Cambridge University Press, Cambridge, 2004).

[59] K. T. Goh, J. Kaniewski, E. Wolfe, T. Vértesi, X. Wu, Y. Cai, Y.-C. Liang, and V. Scarani, Phys. Rev. A 97, 022104 (2018).
https:/​/​doi.org/​10.1103/​PhysRevA.97.022104

[60] S. Pironio, M. Navascués, and A. Acín, SIAM Journal on Optimization 20, 2157 (2010).
https:/​/​doi.org/​10.1137/​090760155

[61] T. H. Yang and M. Navascués, Phys. Rev. A 87, 050102 (2013).
https:/​/​doi.org/​10.1103/​PhysRevA.87.050102

[62] C. Bamps and S. Pironio, Phys. Rev. A 91, 052111 (2015).
https:/​/​doi.org/​10.1103/​PhysRevA.91.052111

[63] B. G. Christensen, Y.-C. Liang, N. Brunner, N. Gisin, and P. G. Kwiat, Phys. Rev. X 5, 041052 (2015).
https:/​/​doi.org/​10.1103/​PhysRevX.5.041052

[64] R. F. Werner, Phys. Rev. A 40, 4277 (1989).
https:/​/​doi.org/​10.1103/​PhysRevA.40.4277

[65] F. Buscemi, Phys. Rev. Lett. 108, 200401 (2012).
https:/​/​doi.org/​10.1103/​PhysRevLett.108.200401

[66] E. G. Cavalcanti, M. J. W. Hall, and H. M. Wiseman, Phys. Rev. A 87, 032306 (2013).
https:/​/​doi.org/​10.1103/​PhysRevA.87.032306

[67] Y.-Y. Zhao, H.-Y. Ku, S.-L. Chen, H.-B. Chen, F. Nori, G.-Y. Xiang, C.-F. Li, G.-C. Guo, and Y.-N. Chen, npj Quantum Information 6 (2020).
https:/​/​doi.org/​10.1038/​s41534-020-00307-9

[68] M. McKague, T. H. Yang, and V. Scarani, J. Phys. A: Math. Theo. 45, 455304 (2012).
https:/​/​doi.org/​10.1088/​1751-8113/​45/​45/​455304

[69] T. Coopmans, J. m. k. Kaniewski, and C. Schaffner, Phys. Rev. A 99, 052123 (2019).
https:/​/​doi.org/​10.1103/​PhysRevA.99.052123

[70] W. F. Stinespring, Proceedings of the American Mathematical Society 6, 211 (1955).
https:/​/​doi.org/​10.2307/​2032342

[71] C. Branciard, D. Rosset, Y.-C. Liang, and N. Gisin, Phys. Rev. Lett. 110, 060405 (2013).
https:/​/​doi.org/​10.1103/​PhysRevLett.110.060405

[72] M. Horodecki, P. W. Shor, and M. B. Ruskai, Reviews in Mathematical Physics 15, 629 (2003).
https:/​/​doi.org/​10.1142/​s0129055x03001709

[73] M. M. Wolf, Lecture Notes (2012).
http:/​/​www-m5.ma.tum.de/​foswiki/​pub/​M5/​Allgemeines/​MichaelWolf/​QChannelLecture.pdf

Cited by

[1] Yuan-Yuan Zhao, Huan-Yu Ku, Shin-Liang Chen, Hong-Bin Chen, Franco Nori, Guo-Yong Xiang, Chuan-Feng Li, Guang-Can Guo, and Yueh-Nan Chen, "Experimental demonstration of measurement-device-independent measure of quantum steering", npj Quantum Information 6, 77 (2020).

[2] Shin-Liang Chen, Nikolai Miklin, Costantino Budroni, and Yueh-Nan Chen, "Device-independent quantification of measurement incompatibility", Physical Review Research 3 2, 023143 (2021).

[3] Yi-Te Huang, Jhen-Dong Lin, Huan-Yu Ku, and Yueh-Nan Chen, "Benchmarking quantum state transfer on quantum devices", Physical Review Research 3 2, 023038 (2021).

[4] Shubhayan Sarkar, Debashis Saha, and Remigiusz Augusiak, "Certification of incompatible measurements using quantum steering", arXiv:2107.02937.

[5] Huan-Yu Ku, Josef Kadlec, Antonín Černoch, Marco Túlio Quintino, Wenbin Zhou, Karel Lemr, Neill Lambert, Adam Miranowicz, Shin-Liang Chen, Franco Nori, and Yueh-Nan Chen, "Detecting quantum non-breaking channels without entanglement", arXiv:2106.15784.

The above citations are from SAO/NASA ADS (last updated successfully 2021-10-27 16:34:28). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2021-10-27 16:34:26).