Operational applications of the diamond norm and related measures in quantifying the non-physicality of quantum maps

Bartosz Regula1, Ryuji Takagi1, and Mile Gu1,2,3

1Nanyang Quantum Hub, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
2Complexity Institute, Nanyang Technological University, 637371, Singapore
3Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543, Singapore

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Although quantum channels underlie the dynamics of quantum states, maps which are not physical channels — that is, not completely positive — can often be encountered in settings such as entanglement detection, non-Markovian quantum dynamics, or error mitigation. We introduce an operational approach to the quantitative study of the non-physicality of linear maps based on different ways to approximate a given linear map with quantum channels. Our first measure directly quantifies the cost of simulating a given map using physically implementable quantum channels, shifting the difficulty in simulating unphysical dynamics onto the task of simulating linear combinations of quantum states. Our second measure benchmarks the quantitative advantages that a non-completely-positive map can provide in discrimination-based quantum games. Notably, we show that for any trace-preserving map, the quantities both reduce to a fundamental distance measure: the diamond norm, thus endowing this norm with new operational meanings in the characterisation of linear maps. We discuss applications of our results to structural physical approximations of positive maps, quantification of non-Markovianity, and bounding the cost of error mitigation.

► BibTeX data

► References

[1] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, New York, 2010. ISBN 978-1-107-00217-3.

[2] Michał Horodecki, Paweł Horodecki, and Ryszard Horodecki. Separability of mixed states: Necessary and sufficient conditions. Physics Letters A, 223: 1–8, 1996. ISSN 0375-9601. 10.1016/​S0375-9601(96)00706-2.

[3] Otfried Gühne and Géza Tóth. Entanglement detection. Phys. Rep., 474: 1–75, 2009. ISSN 0370-1573. 10.1016/​j.physrep.2009.02.004.

[4] Ryszard Horodecki, Paweł Horodecki, Michał Horodecki, and Karol Horodecki. Quantum entanglement. Rev. Mod. Phys., 81: 865–942, 2009. 10.1103/​RevModPhys.81.865.

[5] Paweł Horodecki. From limits of quantum operations to multicopy entanglement witnesses and state-spectrum estimation. Phys. Rev. A, 68: 052101, 2003. 10.1103/​PhysRevA.68.052101.

[6] Paweł Horodecki and Artur Ekert. Method for Direct Detection of Quantum Entanglement. Phys. Rev. Lett., 89: 127902, 2002. 10.1103/​PhysRevLett.89.127902.

[7] J. K. Korbicz, M. L. Almeida, J. Bae, M. Lewenstein, and A. Acín. Structural approximations to positive maps and entanglement-breaking channels. Phys. Rev. A, 78: 062105, 2008. 10.1103/​PhysRevA.78.062105.

[8] Joonwoo Bae. Designing quantum information processing via structural physical approximation. Rep. Prog. Phys., 80: 104001, 2017. ISSN 0034-4885. 10.1088/​1361-6633/​aa7d45.

[9] Philip Pechukas. Reduced Dynamics Need Not Be Completely Positive. Phys. Rev. Lett., 73: 1060–1062, 1994. 10.1103/​PhysRevLett.73.1060.

[10] Anil Shaji and E. C. G. Sudarshan. Who's afraid of not completely positive maps? Physics Letters A, 341: 48–54, 2005. ISSN 0375-9601. 10.1016/​j.physleta.2005.04.029.

[11] César A. Rodríguez-Rosario, Kavan Modi, Aik-meng Kuah, Anil Shaji, and E. C. G. Sudarshan. Completely positive maps and classical correlations. J. Phys. A: Math. Theor., 41: 205301, 2008. ISSN 1751-8121. 10.1088/​1751-8113/​41/​20/​205301.

[12] Hilary A. Carteret, Daniel R. Terno, and Karol Życzkowski. Dynamics beyond completely positive maps: Some properties and applications. Phys. Rev. A, 77: 042113, 2008. 10.1103/​PhysRevA.77.042113.

[13] Robert Alicki. Comment on ``Reduced Dynamics Need Not Be Completely Positive''. Phys. Rev. Lett., 75: 3020–3020, 1995. 10.1103/​PhysRevLett.75.3020.

[14] Kavan Modi. Operational approach to open dynamics and quantifying initial correlations. Sci. Rep., 2: 581, 2012. ISSN 2045-2322. 10.1038/​srep00581.

[15] David Schmid, Katja Ried, and Robert W. Spekkens. Why initial system-environment correlations do not imply the failure of complete positivity: A causal perspective. Phys. Rev. A, 100: 022112, 2019. 10.1103/​PhysRevA.100.022112.

[16] P.W. Shor. Fault-tolerant quantum computation. In Proceedings of 37th Conference on Foundations of Computer Science, pages 56–65, 1996. 10.1109/​SFCS.1996.548464.

[17] Kristan Temme, Sergey Bravyi, and Jay M. Gambetta. Error Mitigation for Short-Depth Quantum Circuits. Phys. Rev. Lett., 119: 180509, 2017. 10.1103/​PhysRevLett.119.180509.

[18] Ying Li and Simon C. Benjamin. Efficient Variational Quantum Simulator Incorporating Active Error Minimization. Phys. Rev. X, 7: 021050, 2017. 10.1103/​PhysRevX.7.021050.

[19] A. Y. Kitaev. Quantum computations: Algorithms and error correction. Russ. Math. Surv., 52: 1191–1249, 1997. 10.1070/​RM1997v052n06ABEH002155.

[20] John Watrous. Notes on super-operator norms induced by Schatten norms. arXiv:quant-ph/​0411077, 2004. URL http:/​/​arxiv.org/​abs/​quant-ph/​0411077.

[21] John Watrous. The Theory of Quantum Information. Cambridge University Press, Cambridge, 2018. ISBN 978-1-107-18056-7.

[22] Guifré Vidal and Rolf Tarrach. Robustness of entanglement. Phys. Rev. A, 59: 141–155, 1999. 10.1103/​PhysRevA.59.141.

[23] María García Díaz, Kun Fang, Xin Wang, Matteo Rosati, Michalis Skotiniotis, John Calsamiglia, and Andreas Winter. Using and reusing coherence to realize quantum processes. Quantum, 2: 100, 2018. 10.22331/​q-2018-10-19-100.

[24] Ryuji Takagi and Bartosz Regula. General Resource Theories in Quantum Mechanics and Beyond: Operational Characterization via Discrimination Tasks. Phys. Rev. X, 9: 031053, 2019. 10.1103/​PhysRevX.9.031053.

[25] Zi-Wen Liu and Andreas Winter. Resource theories of quantum channels and the universal role of resource erasure. arXiv:1904.04201, 2019. URL http:/​/​arxiv.org/​abs/​1904.04201.

[26] Gilad Gour and Andreas Winter. How to Quantify a Dynamical Quantum Resource. Phys. Rev. Lett., 123: 150401, 2019. 10.1103/​PhysRevLett.123.150401.

[27] Roope Uola, Tristan Kraft, and Alastair A. Abbott. Quantification of quantum dynamics with input-output games. Phys. Rev. A, 101: 052306, 2020. 10.1103/​PhysRevA.101.052306.

[28] Xiao Yuan, Yunchao Liu, Qi Zhao, Bartosz Regula, Jayne Thompson, and Mile Gu. Universal and operational benchmarking of quantum memories. npj Quantum Inf., 7: 108, 2021. ISSN 2056-6387. 10.1038/​s41534-021-00444-9.

[29] Ryuji Takagi, Kun Wang, and Masahito Hayashi. Application of the Resource Theory of Channels to Communication Scenarios. Phys. Rev. Lett., 124: 120502, 2020. 10.1103/​PhysRevLett.124.120502.

[30] Ryuji Takagi. Optimal resource cost for error mitigation. arXiv:2006.12509, 2020. URL http:/​/​arxiv.org/​abs/​2006.12509.

[31] Bartosz Regula and Ryuji Takagi. Fundamental limitations on distillation of quantum channel resources. Nat. Commun., 12: 4411, 2021a. ISSN 2041-1723. 10.1038/​s41467-021-24699-0.

[32] Bartosz Regula and Ryuji Takagi. One-Shot Manipulation of Dynamical Quantum Resources. Phys. Rev. Lett., 127: 060402, 2021b. 10.1103/​PhysRevLett.127.060402.

[33] Jiaqing Jiang, Kun Wang, and Xin Wang. Physical Implementability of Quantum Maps and Its Application in Error Mitigation. arXiv:2012.10959, 2020. URL http:/​/​arxiv.org/​abs/​2012.10959.

[34] M. F. Sacchi. Optimal discrimination of quantum operations. Phys. Rev. A, 71: 062340, 2005. 10.1103/​PhysRevA.71.062340.

[35] Alexei Gilchrist, Nathan K. Langford, and Michael A. Nielsen. Distance measures to compare real and ideal quantum processes. Phys. Rev. A, 71: 062310, 2005. 10.1103/​PhysRevA.71.062310.

[36] A. Jenčová. Base norms and discrimination of generalized quantum channels. J. Math. Phys., 55: 022201, 2014. ISSN 0022-2488. 10.1063/​1.4863715.

[37] John Watrous. Semidefinite programs for completely bounded norms. Theory Comput., 5: 217–238, 2009. ISSN 1557-2862. 10.4086/​toc.2009.v005a011.

[38] John Watrous. Simpler semidefinite programs for completely bounded norms. Chicago J. Theor. Comp. Sci., 19: 1–19, 2013. 10.4086/​cjtcs.2013.008.

[39] Christophe Piveteau, David Sutter, and Stefan Woerner. Quasiprobability decompositions with reduced sampling overhead. arXiv:2101.09290, 2021. URL http:/​/​arxiv.org/​abs/​2101.09290.

[40] U. Michel, M. Kliesch, R. Kueng, and D. Gross. Comments on ``Improving Compressed Sensing With the Diamond Norm''–Saturation of the Norm Inequalities Between Diamond and Nuclear Norm. IEEE Trans. Inf. Theory, 64: 7443–7445, 2018. ISSN 1557-9654. 10.1109/​TIT.2018.2861887.

[41] Ion Nechita, Zbigniew Puchała, Łukasz Pawela, and Karol Życzkowski. Almost all quantum channels are equidistant. J. Math. Phys., 59: 052201, 2018. ISSN 0022-2488. 10.1063/​1.5019322.

[42] Hakop Pashayan, Joel J. Wallman, and Stephen D. Bartlett. Estimating Outcome Probabilities of Quantum Circuits Using Quasiprobabilities. Phys. Rev. Lett., 115: 070501, 2015. 10.1103/​PhysRevLett.115.070501.

[43] Charles H. Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres, and William K. Wootters. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett., 70: 1895–1899, 1993. 10.1103/​PhysRevLett.70.1895.

[44] Mario Berta, Fernando G. S. L. Brandão, Matthias Christandl, and Stephanie Wehner. Entanglement Cost of Quantum Channels. IEEE Trans. Inf. Theory, 59: 6779–6795, 2013. ISSN 1557-9654. 10.1109/​TIT.2013.2268533.

[45] Stefano Pirandola, Riccardo Laurenza, Carlo Ottaviani, and Leonardo Banchi. Fundamental limits of repeaterless quantum communications. Nat. Commun., 8: 15043, 2017. ISSN 2041-1723. 10.1038/​ncomms15043.

[46] Mark M. Wilde. Entanglement cost and quantum channel simulation. Phys. Rev. A, 98: 042338, 2018. ISSN 2469-9926, 2469-9934. 10.1103/​PhysRevA.98.042338.

[47] Gilad Gour and Carlo Maria Scandolo. Entanglement of a bipartite channel. Phys. Rev. A, 103: 062422, Jun 2021. 10.1103/​PhysRevA.103.062422. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.103.062422.

[48] Stefan Bäuml, Siddhartha Das, Xin Wang, and Mark M. Wilde. Resource theory of entanglement for bipartite quantum channels. arXiv:1907.04181, 2019. URL http:/​/​arxiv.org/​abs/​1907.04181.

[49] Daniel Gottesman and Isaac L. Chuang. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature, 402: 390–393, 1999. ISSN 1476-4687. 10.1038/​46503.

[50] James R. Seddon and Earl T. Campbell. Quantifying magic for multi-qubit operations. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 475: 20190251, 2019. 10.1098/​rspa.2019.0251.

[51] Khaled Ben Dana, María García Díaz, Mohamed Mejatty, and Andreas Winter. Resource theory of coherence: Beyond states. Phys. Rev. A, 95: 062327, 2017. 10.1103/​PhysRevA.95.062327.

[52] Joshua Geller and Marco Piani. Quantifying non-classical and beyond-quantum correlations in the unified operator formalism. J. Phys. A: Math. Theor., 47: 424030, 2014. ISSN 1751-8121. 10.1088/​1751-8113/​47/​42/​424030.

[53] Joseph F. Fitzsimons, Jonathan A. Jones, and Vlatko Vedral. Quantum correlations which imply causation. Sci. Rep., 5: 18281, 2015. ISSN 2045-2322. 10.1038/​srep18281.

[54] Eneet Kaur and Mark M. Wilde. Amortized entanglement of a quantum channel and approximately teleportation-simulable channels. J. Phys. A: Math. Theor., 51: 035303, 2017. ISSN 1751-8121. 10.1088/​1751-8121/​aa9da7.

[55] Denis Rosset, Francesco Buscemi, and Yeong-Cherng Liang. Resource Theory of Quantum Memories and Their Faithful Verification with Minimal Assumptions. Phys. Rev. X, 8: 021033, 2018. 10.1103/​PhysRevX.8.021033.

[56] Karol Życzkowski, Paweł Horodecki, Anna Sanpera, and Maciej Lewenstein. Volume of the set of separable states. Phys. Rev. A, 58: 883–892, 1998. 10.1103/​PhysRevA.58.883.

[57] M. Kliesch, R. Kueng, J. Eisert, and D. Gross. Improving Compressed Sensing With the Diamond Norm. IEEE Trans. Inf. Theory, 62: 7445–7463, 2016. ISSN 1557-9654. 10.1109/​TIT.2016.2606500.

[58] Fred Shultz. The structural physical approximation conjecture. J. Math. Phys., 57: 015218, 2015. ISSN 0022-2488. 10.1063/​1.4938226.

[59] Hyang-Tag Lim, Yong-Su Kim, Young-Sik Ra, Joonwoo Bae, and Yoon-Ho Kim. Experimental Realization of an Approximate Partial Transpose for Photonic Two-Qubit Systems. Phys. Rev. Lett., 107: 160401, 2011. 10.1103/​PhysRevLett.107.160401.

[60] Man-Duen Choi. Some assorted inequalities for positive linear maps on C*-algebras. J. Oper. Theory, 4: 271–285, 1980. ISSN 0379-4024. URL https:/​/​www.jstor.org/​stable/​24714007.

[61] Qingxiuxiong Dong, Marco Túlio Quintino, Akihito Soeda, and Mio Murao. Implementing positive maps with multiple copies of an input state. Phys. Rev. A, 99: 052352, 2019. 10.1103/​PhysRevA.99.052352.

[62] Ángel Rivas, Susana F. Huelga, and Martin B. Plenio. Entanglement and Non-Markovianity of Quantum Evolutions. Phys. Rev. Lett., 105: 050403, 2010. 10.1103/​PhysRevLett.105.050403.

[63] Dariusz Chruściński and Sabrina Maniscalco. Degree of Non-Markovianity of Quantum Evolution. Phys. Rev. Lett., 112: 120404, 2014. 10.1103/​PhysRevLett.112.120404.

[64] Ángel Rivas, Susana F. Huelga, and Martin B. Plenio. Quantum non-Markovianity: Characterization, quantification and detection. Rep. Prog. Phys., 77: 094001, 2014. ISSN 0034-4885. 10.1088/​0034-4885/​77/​9/​094001.

[65] Suguru Endo, Simon C. Benjamin, and Ying Li. Practical Quantum Error Mitigation for Near-Future Applications. Phys. Rev. X, 8: 031027, 2018. 10.1103/​PhysRevX.8.031027.

[66] Y. Xiong, D. Chandra, S. X. Ng, and L. Hanzo. Sampling overhead analysis of quantum error mitigation: Uncoded vs. coded systems. IEEE Access, 8: 228967–228991, 2020. 10.1109/​ACCESS.2020.3045016.

[67] Alireza Shabani and Daniel A. Lidar. Maps for general open quantum systems and a theory of linear quantum error correction. Phys. Rev. A, 80: 012309, 2009. 10.1103/​PhysRevA.80.012309.

[68] Hideaki Hakoshima, Yuichiro Matsuzaki, and Suguru Endo. Relationship between costs for quantum error mitigation and non-Markovian measures. Phys. Rev. A, 103: 012611, Jan 2021. 10.1103/​PhysRevA.103.012611. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.103.012611.

[69] I. Devetak and P. W. Shor. The Capacity of a Quantum Channel for Simultaneous Transmission of Classical and Quantum Information. Commun. Math. Phys., 256: 287–303, 2005. ISSN 1432-0916. 10.1007/​s00220-005-1317-6.

[70] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, 2012. ISBN 978-0-521-83940-2.

[71] Vern Paulsen. Completely Bounded Maps and Operator Algebras. Cambridge University Press, 2002. ISBN 978-0-521-81669-4.

[72] Francesco Buscemi, Michele Dall'Arno, Masanao Ozawa, and Vlatko Vedral. Direct observation of any two-point quantum correlation function. arXiv:1312.4240, 2013. URL http:/​/​arxiv.org/​abs/​1312.4240.

[73] Thomas Theurer, Dario Egloff, Lijian Zhang, and Martin B. Plenio. Quantifying Operations with an Application to Coherence. Phys. Rev. Lett., 122: 190405, 2019. 10.1103/​PhysRevLett.122.190405.

[74] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, New York, 2004. ISBN 978-0-521-83378-3.

[75] J. P. Ponstein. Approaches to the Theory of Optimization. Cambridge University Press, 2004. ISBN 978-0-521-60491-8.

Cited by

[1] Kun Wang, Yu-Ao Chen, and Xin Wang, "Measurement Error Mitigation via Truncated Neumann Series", arXiv:2103.13856.

[2] Matthew Ho, Ryuji Takagi, and Mile Gu, "Enhancing quantum models of stochastic processes with error mitigation", arXiv:2105.06448.

The above citations are from SAO/NASA ADS (last updated successfully 2021-09-23 14:17:00). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2021-09-23 14:16:59).