Causal influence in operational probabilistic theories

Paolo Perinotti

QUIT Group, Dipartimento di Fisica, Università degli studi di Pavia, and INFN sezione di Pavia, via Bassi 6, 27100 Pavia, Italy

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

We study the relation of causal influence between input systems of a reversible evolution and its output systems, in the context of operational probabilistic theories. We analyse two different definitions that are borrowed from the literature on quantum theory—where they are equivalent. One is the notion based on signalling, and the other one is the notion used to define the neighbourhood of a cell in a quantum cellular automaton. The latter definition, that we adopt in the general scenario, turns out to be strictly weaker than the former: it is possible for a system to have causal influence on another one without signalling to it. Remarkably, the counterexample comes from classical theory, where the proposed notion of causal influence determines a redefinition of the neighbourhood of a cell in cellular automata. We stress that, according to our definition, it is impossible anyway to have causal influence in the absence of an interaction, e.g. in a Bell-like scenario. We study various conditions for causal influence, and introduce the feature that we call $\textit{no interaction without disturbance}$, under which we prove that signalling and causal influence coincide. The proposed definition has interesting consequences on the analysis of causal networks, and leads to a revision of the notion of neighbourhood for classical cellular automata, clarifying a puzzle regarding their quantisation that apparently makes the neighbourhood larger than the original one.

The paper addresses the question as to whether a given reversible evolution of the state of a network of systems produces an influence from a node to another one. The starting tool to face this problem is to define in precise terms what we mean by causal influence. Usually, the literature on the subject identifies such an influence with the ability to use the evolution to send information from the first node to the second one. There is however a second notion, developed within the theory of quantum cellular automata, that identifies such an influence with the propagation of the effects of a local intervention at the first node to the second one. The paper adopts the second point of view, and shows that this definition is actually wider: one can have this second kind of causal influence from the first node without the possibility of sending information to the second node. What sort of influence is there when we are not allowed to exploit it for communication purposes? The answer is remarkably simple:
if we can create correlations between the second node and the first one, there is a causal influence on the second node, even without affecting its local state.
This is the case in classical information theory, where we can copy a bit without the need of affecting it.

This result has an impact on the analysis of causal relations within causal networks, like, for example, in the definition of the neighbourhood of a cell in a cellular automaton, and its cone of causal influence—generalising the notion of a light cone in the spacetime of relativity.

The analysis is carried out in a wide scenario of information theories, that comprises those of classical and quantum systems as a special case, but also embraces more exotic post-quantum theories.

► BibTeX data

► References

[1] David Beckman, Daniel Gottesman, M. A. Nielsen, and John Preskill. Causal and localizable quantum operations. Phys. Rev. A, 64:052309, Oct 2001. doi:10.1103/​PhysRevA.64.052309.
https:/​/​doi.org/​10.1103/​PhysRevA.64.052309

[2] T Eggeling, D Schlingemann, and R. F Werner. Semicausal operations are semilocalizable. Europhysics Letters (EPL), 57(6):782–788, mar 2002. doi:10.1209/​epl/​i2002-00579-4.
https:/​/​doi.org/​10.1209/​epl/​i2002-00579-4

[3] Benjamin Schumacher and Michael D. Westmoreland. Locality and information transfer in quantum operations. Quantum Information Processing, 4(1):13–34, 2005. doi:10.1007/​s11128-004-3193-y.
https:/​/​doi.org/​10.1007/​s11128-004-3193-y

[4] Marcin Pawłowski, Tomasz Paterek, Dagomir Kaszlikowski, Valerio Scarani, Andreas Winter, and Marek Żukowski. Information causality as a physical principle. Nature, 461(7267):1101–1104, 2009. doi:10.1038/​nature08400.
https:/​/​doi.org/​10.1038/​nature08400

[5] G. Chiribella, G. M. D'Ariano, and P. Perinotti. Transforming quantum operations: Quantum supermaps. EPL (Europhysics Letters), 83(3):30004, jul 2008. doi:10.1209/​0295-5075/​83/​30004.
https:/​/​doi.org/​10.1209/​0295-5075/​83/​30004

[6] M. S. Leifer and Robert W. Spekkens. Towards a formulation of quantum theory as a causally neutral theory of bayesian inference. Phys. Rev. A, 88:052130, Nov 2013. doi:10.1103/​PhysRevA.88.052130.
https:/​/​doi.org/​10.1103/​PhysRevA.88.052130

[7] Simon Milz, Fattah Sakuldee, Felix A. Pollock, and Kavan Modi. Kolmogorov extension theorem for (quantum) causal modelling and general probabilistic theories. Quantum, 4:255, April 2020. doi:10.22331/​q-2020-04-20-255.
https:/​/​doi.org/​10.22331/​q-2020-04-20-255

[8] Christina Giarmatzi and Fabio Costa. A quantum causal discovery algorithm. npj Quantum Information, 4(1):17, 2018. doi:10.1038/​s41534-018-0062-6.
https:/​/​doi.org/​10.1038/​s41534-018-0062-6

[9] Jordan Cotler, Xizhi Han, Xiao-Liang Qi, and Zhao Yang. Quantum causal influence. Journal of High Energy Physics, 2019(7):42, 2019. doi:10.1007/​JHEP07(2019)042.
https:/​/​doi.org/​10.1007/​JHEP07(2019)042

[10] Judea Pearl. Causality. Cambridge University Press, 2009. doi:10.1017/​CBO9780511803161.
https:/​/​doi.org/​10.1017/​CBO9780511803161

[11] Gus Gutoski and John Watrous. Toward a general theory of quantum games. In Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing, STOC '07, pages 565–574, New York, NY, USA, 2007. Association for Computing Machinery. doi:10.1145/​1250790.1250873.
https:/​/​doi.org/​10.1145/​1250790.1250873

[12] Giulio Chiribella, Giacomo Mauro D'Ariano, and Paolo Perinotti. Theoretical framework for quantum networks. Phys. Rev. A, 80:022339, Aug 2009. doi:10.1103/​PhysRevA.80.022339.
https:/​/​doi.org/​10.1103/​PhysRevA.80.022339

[13] Giulio Chiribella, Giacomo Mauro D'Ariano, Paolo Perinotti, and Benoit Valiron. Quantum computations without definite causal structure. Phys. Rev. A, 88:022318, Aug 2013. doi:10.1103/​PhysRevA.88.022318.
https:/​/​doi.org/​10.1103/​PhysRevA.88.022318

[14] Katja Ried, Megan Agnew, Lydia Vermeyden, Dominik Janzing, Robert W. Spekkens, and Kevin J. Resch. A quantum advantage for inferring causal structure. Nature Physics, 11(5):414–420, 2015. doi:10.1038/​nphys3266.
https:/​/​doi.org/​10.1038/​nphys3266

[15] Jonathan Barrett, Robin Lorenz, and Ognyan Oreshkov. Quantum causal models, 2019. arXiv:1906.10726.
arXiv:1906.10726

[16] Ognyan Oreshkov, Fabio Costa, and Časlav Brukner. Quantum correlations with no causal order. Nature Communications, 3:1092, 10 2012. URL: https:/​/​doi.org/​10.1038/​ncomms2076.
https:/​/​doi.org/​10.1038/​ncomms2076

[17] Lucien Hardy. Towards quantum gravity: a framework for probabilistic theories with non-fixed causal structure. Journal of Physics A: Mathematical and Theoretical, 40(12):3081–3099, mar 2007. doi:10.1088/​1751-8113/​40/​12/​s12.
https:/​/​doi.org/​10.1088/​1751-8113/​40/​12/​s12

[18] Giulio Chiribella, Giacomo Mauro D'Ariano, and Paolo Perinotti. Probabilistic theories with purification. Phys. Rev. A, 81:062348, Jun 2010. doi:10.1103/​PhysRevA.81.062348.
https:/​/​doi.org/​10.1103/​PhysRevA.81.062348

[19] Giulio Chiribella, Giacomo Mauro D'Ariano, and Paolo Perinotti. Informational derivation of quantum theory. Phys. Rev. A, 84:012311, Jul 2011. doi:10.1103/​PhysRevA.84.012311.
https:/​/​doi.org/​10.1103/​PhysRevA.84.012311

[20] Giacomo Mauro D'Ariano, Giulio Chiribella, and Paolo Perinotti. Quantum theory from first principles: an informational approach. Cambridge University Press, 2017.

[21] Lucien Hardy and William K. Wootters. Limited holism and real-vector-space quantum theory. Foundations of Physics, 42(3):454–473, 2012. doi:10.1007/​s10701-011-9616-6.
https:/​/​doi.org/​10.1007/​s10701-011-9616-6

[22] Giulio Chiribella and Carlo Maria Scandolo. Entanglement and thermodynamics in general probabilistic theories. New Journal of Physics, 17(10):103027, oct 2015. doi:10.1088/​1367-2630/​17/​10/​103027.
https:/​/​doi.org/​10.1088/​1367-2630/​17/​10/​103027

[23] Giacomo Mauro D'Ariano, Marco Erba, and Paolo Perinotti. Classical theories with entanglement. Phys. Rev. A, 101:042118, Apr 2020. doi:10.1103/​PhysRevA.101.042118.
https:/​/​doi.org/​10.1103/​PhysRevA.101.042118

[24] Giacomo Mauro D'Ariano, Marco Erba, and Paolo Perinotti. Classicality without local discriminability: Decoupling entanglement and complementarity. Phys. Rev. A, 102:052216, Nov 2020. doi:10.1103/​PhysRevA.102.052216.
https:/​/​doi.org/​10.1103/​PhysRevA.102.052216

[25] Giacomo Mauro D'Ariano, Paolo Perinotti, and Alessandro Tosini. Information and disturbance in operational probabilistic theories. Quantum, 4:363, November 2020. doi:10.22331/​q-2020-11-16-363.
https:/​/​doi.org/​10.22331/​q-2020-11-16-363

[26] Paolo Perinotti. Cellular automata in operational probabilistic theories. Quantum, 4:294, July 2020. doi:10.22331/​q-2020-07-09-294.
https:/​/​doi.org/​10.22331/​q-2020-07-09-294

[27] Giulio Chiribella, Giacomo Mauro D'Ariano, and Paolo Perinotti. Quantum from Principles, pages 171–221. Springer Netherlands, Dordrecht, 2016. doi:10.1007/​978-94-017-7303-4_6.
https:/​/​doi.org/​10.1007/​978-94-017-7303-4_6

[28] M. Piani, M. Horodecki, P. Horodecki, and R. Horodecki. Properties of quantum nonsignaling boxes. Phys. Rev. A, 74:012305, Jul 2006. doi:10.1103/​PhysRevA.74.012305.
https:/​/​doi.org/​10.1103/​PhysRevA.74.012305

[29] Giacomo Mauro D'Ariano, Stefano Facchini, and Paolo Perinotti. No signaling, entanglement breaking, and localizability in bipartite channels. Phys. Rev. Lett., 106:010501, Jan 2011. doi:10.1103/​PhysRevLett.106.010501.
https:/​/​doi.org/​10.1103/​PhysRevLett.106.010501

[30] B. Schumacher and R.F. Werner. Reversible quantum cellular automata. Arxiv preprint quant-ph/​0405174, 2004. arXiv:quant-ph/​0405174.
arXiv:quant-ph/0405174

[31] Robin Lorenz and Jonathan Barrett. Causal and compositional structure of unitary transformations. Quantum, 5:511, July 2021. doi:10.22331/​q-2021-07-28-511.
https:/​/​doi.org/​10.22331/​q-2021-07-28-511

[32] Pablo Arrighi, Vincent Nesme, and Reinhard Werner. Unitarity plus causality implies localizability. Journal of Computer and System Sciences, 77(2):372–378, 2011. Adaptivity in Heterogeneous Environments. doi:https:/​/​doi.org/​10.1016/​j.jcss.2010.05.004.
https:/​/​doi.org/​10.1016/​j.jcss.2010.05.004

[33] Pablo Arrighi, Vincent Nesme, and Reinhard F. Werner. Bounds on the speedup in quantum signaling. Phys. Rev. A, 95:012331, Jan 2017. doi:10.1103/​PhysRevA.95.012331.
https:/​/​doi.org/​10.1103/​PhysRevA.95.012331

Cited by

[1] Matt Wilson, Giulio Chiribella, and Aleks Kissinger, "Quantum Supermaps are Characterized by Locality", arXiv:2205.09844, (2022).

[2] Matt Wilson and Augustin Vanrietvelde, "Composable constraints", arXiv:2112.06818, (2021).

[3] Kaumudibikash Goswami and Giulio Chiribella, "Maximum and minimum causal effects of physical processes", arXiv:2404.07683, (2024).

The above citations are from SAO/NASA ADS (last updated successfully 2024-05-20 14:47:44). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2024-05-20 14:47:43).