Resource-Optimized Fermionic Local-Hamiltonian Simulation on a Quantum Computer for Quantum Chemistry

Qingfeng Wang1, Ming Li2, Christopher Monroe2,3, and Yunseong Nam2,4

1Chemical Physics Program and Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
2IonQ, College Park, MD 20740, USA
3Joint Quantum Institute, Department of Physics, and Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, MD 20742, USA
4Department of Physics, University of Maryland, College Park, MD 20742, USA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


The ability to simulate a fermionic system on a quantum computer is expected to revolutionize chemical engineering, materials design, nuclear physics, to name a few. Thus, optimizing the simulation circuits is of significance in harnessing the power of quantum computers. Here, we address this problem in two aspects. In the fault-tolerant regime, we optimize the $R_z$ and $\textit{T gate}$ counts along with the ancilla qubit counts required, assuming the use of a product-formula algorithm for implementation. We obtain a savings ratio of two in the gate counts and a savings ratio of eleven in the number of ancilla qubits required over the state of the art. In the pre-fault tolerant regime, we optimize the two-qubit gate counts, assuming the use of the variational quantum eigensolver (VQE) approach. Specific to the latter, we present a framework that enables bootstrapping the VQE progression towards the convergence of the ground-state energy of the fermionic system. This framework, based on perturbation theory, is capable of improving the energy estimate at each cycle of the VQE progression, by about a factor of three closer to the known ground-state energy compared to the standard VQE approach in the test-bed, classically-accessible system of the water molecule. The improved energy estimate in turn results in a commensurate level of savings of quantum resources, such as the number of qubits and quantum gates, required to be within a pre-specified tolerance from the known ground-state energy. We also explore a suite of generalized transformations of fermion to qubit operators and show that resource-requirement savings of up to more than $20\%$, in small instances, is possible.

► BibTeX data

► References

[1] Ryan Babbush, Jarrod McClean, Dave Wecker, Alán Aspuru-Guzik, and Nathan Wiebe. Chemical basis of trotter-suzuki errors in quantum chemistry simulation. Physical Review A, 91 (2), Feb 2015. ISSN 1094-1622. 10.1103/​physreva.91.022311.

[2] Rodney J. Bartlett, Stanislaw A. Kucharski, and Jozef Noga. Alternative coupled-cluster ansätze ii. the unitary coupled-cluster method. Chemical Physics Letters, 155 (1): 133 – 140, 1989. ISSN 0009-2614. 10.1016/​S0009-2614(89)87372-5.

[3] Dominic W. Berry, Graeme Ahokas, Richard Cleve, and Barry C. Sanders. Efficient quantum algorithms for simulating sparse hamiltonians. Communications in Mathematical Physics, 270 (2): 359–371, 2007. ISSN 1432-0916. 10.1007/​s00220-006-0150-x.

[4] Alex Bocharov, Martin Roetteler, and Krysta M. Svore. Efficient synthesis of universal repeat-until-success quantum circuits. Physical Review Letters, 114: 080502, Feb 2015. 10.1103/​PhysRevLett.114.080502.

[5] Sergey B. Bravyi and Alexei Yu. Kitaev. Fermionic quantum computation. Annals of Physics, 298 (1): 210 – 226, 2002. ISSN 0003-4916. 10.1006/​aphy.2002.6254.

[6] Andrew M. Childs, Dmitri Maslov, Yunseong Nam, Neil J. Ross, and Yuan Su. Toward the first quantum simulation with quantum speedup. Proceedings of the National Academy of Sciences, 115 (38): 9456–9461, 2018. ISSN 0027-8424. 10.1073/​pnas.1801723115.

[7] J. I. Cirac and P. Zoller. Quantum computations with cold trapped ions. Physical Review Letters, 74: 4091–4094, May 1995. 10.1103/​PhysRevLett.74.4091.

[8] E. F. Dumitrescu, A. J. McCaskey, G. Hagen, G. R. Jansen, T. D. Morris, T. Papenbrock, R. C. Pooser, D. J. Dean, and P. Lougovski. Cloud quantum computing of an atomic nucleus. Physical Review Letters, 120: 210501, May 2018. 10.1103/​PhysRevLett.120.210501.

[9] Richard P. Feynman. Simulating physics with computers. International Journal of Theoretical Physics, 21 (6): 467–488, 1982. ISSN 1572-9575. 10.1007/​BF02650179.

[10] Craig Gidney. Halving the cost of quantum addition. Quantum, 2: 74, Jun 2018. ISSN 2521-327X. 10.22331/​q-2018-06-18-74.

[11] Pranav Gokhale, Olivia Angiuli, Yongshan Ding, Kaiwen Gui, Teague Tomesh, Martin Suchara, Margaret Martonosi, and Frederic T Chong. Minimizing state preparations in variational quantum eigensolver by partitioning into commuting families. arXiv preprint arXiv:1907.13623, 2019.

[12] Harper R. Grimsley, Sophia E. Economou, Edwin Barnes, and Nicholas J. Mayhall. An adaptive variational algorithm for exact molecular simulations on a quantum computer. Nature Communications, 10 (1): 3007, Jul 2019. ISSN 2041-1723. 10.1038/​s41467-019-10988-2.

[13] Emily Grumbling and Mark Horowitz, editors. Quantum Computing: Progress and Prospects. The National Academies Press, Washington, DC, 2019. ISBN 978-0-309-47969-1. 10.17226/​25196.

[14] Matthew B. Hastings, Dave Wecker, Bela Bauer, and Matthias Troyer. Improving quantum algorithms for quantum chemistry. Quantum Info. Comput., 15 (1–2): 1–21, January 2015. ISSN 1533-7146. 10.5555/​2685188.2685189.

[15] Cornelius Hempel, Christine Maier, Jonathan Romero, Jarrod McClean, Thomas Monz, Heng Shen, Petar Jurcevic, Ben P. Lanyon, Peter Love, Ryan Babbush, Alán Aspuru-Guzik, Rainer Blatt, and Christian F. Roos. Quantum chemistry calculations on a trapped-ion quantum simulator. Physical Review X, 8: 031022, Jul 2018. 10.1103/​PhysRevX.8.031022.

[16] Mark R. Hoffmann and Jack Simons. A unitary multiconfigurational coupled‐cluster method: Theory and applications. The Journal of Chemical Physics, 88 (2): 993–1002, 1988. 10.1063/​1.454125.

[17] Zhang Jiang, Kevin J. Sung, Kostyantyn Kechedzhi, Vadim N. Smelyanskiy, and Sergio Boixo. Quantum algorithms to simulate many-body physics of correlated fermions. Physical Review Applied, 9 (4), Apr 2018. ISSN 2331-7019. 10.1103/​physrevapplied.9.044036.

[18] P. Jordan and E. Wigner. Über das paulische äquivalenzverbot. Zeitschrift für Physik, 47 (9): 631–651, 1928. ISSN 0044-3328. 10.1007/​BF01331938.

[19] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M. Chow, and Jay M. Gambetta. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 549 (7671): 242–246, 2017. ISSN 1476-4687. 10.1038/​nature23879.

[20] James Kennedy and Russell C Eberhart. A discrete binary version of the particle swarm algorithm. In 1997 IEEE International conference on systems, man, and cybernetics. Computational cybernetics and simulation, volume 5, pages 4104–4108. IEEE, 1997. 10.1109/​ICSMC.1997.637339.

[21] Ian D. Kivlichan, Craig Gidney, Dominic W. Berry, Nathan Wiebe, Jarrod McClean, Wei Sun, Zhang Jiang, Nicholas Rubin, Austin Fowler, Alán Aspuru-Guzik, and et al. Improved fault-tolerant quantum simulation of condensed-phase correlated electrons via trotterization. Quantum, 4: 296, Jul 2020. ISSN 2521-327X. 10.22331/​q-2020-07-16-296.

[22] Joonho Lee, William J. Huggins, Martin Head-Gordon, and K. Birgitta Whaley. Generalized unitary coupled cluster wave functions for quantum computation. Journal of Chemical Theory and Computation, 15 (1): 311–324, Jan 2019. ISSN 1549-9618. 10.1021/​acs.jctc.8b01004.

[23] Seth Lloyd. Universal quantum simulators. Science, 273 (5278): 1073–1078, 1996. ISSN 0036-8075. 10.1126/​science.273.5278.1073.

[24] Guang Hao Low and Isaac L. Chuang. Optimal hamiltonian simulation by quantum signal processing. Physical Review Letters, 118: 010501, Jan 2017. 10.1103/​PhysRevLett.118.010501.

[25] Guang Hao Low and Isaac L. Chuang. Hamiltonian Simulation by Qubitization. Quantum, 3: 163, July 2019. ISSN 2521-327X. 10.22331/​q-2019-07-12-163.

[26] D. Maslov, Y. Nam, and J. Kim. An outlook for quantum computing [point of view]. Proceedings of the IEEE, 107 (1): 5–10, Jan 2019. ISSN 1558-2256. 10.1109/​JPROC.2018.2884353.

[27] Dmitri Maslov. Advantages of using relative-phase toffoli gates with an application to multiple control toffoli optimization. Physical Review A, 93: 022311, Feb 2016. 10.1103/​PhysRevA.93.022311.

[28] Dmitri Maslov and Yunseong Nam. Use of global interactions in efficient quantum circuit constructions. New Journal of Physics, 20 (3): 033018, mar 2018. 10.1088/​1367-2630/​aaa398.

[29] Yunseong Nam and Dmitri Maslov. Low-cost quantum circuits for classically intractable instances of the hamiltonian dynamics simulation problem. npj Quantum Information, 5 (1): 44, 2019. ISSN 2056-6387. 10.1038/​s41534-019-0152-0.

[30] Yunseong Nam, Neil J. Ross, Yuan Su, Andrew M. Childs, and Dmitri Maslov. Automated optimization of large quantum circuits with continuous parameters. npj Quantum Information, 4 (1): 23, 2018. ISSN 2056-6387. 10.1038/​s41534-018-0072-4.

[31] Yunseong Nam, Jwo-Sy Chen, Neal C Pisenti, Kenneth Wright, Conor Delaney, Dmitri Maslov, Kenneth R Brown, Stewart Allen, Jason M Amini, Joel Apisdorf, Aleksey Beck, Kristin M. Blinov, Vandiver Chaplin, Mika Chmielewski, Coleman Collins, Shantanu Debnath, Andrew M. Ducore, Kai M. Hudek, Matthew Keesan, Sarah M. Kreikemeier, Jonathan Mizrahi, Phil Solomon, Mike Williams, Jaime David Wong-Campos, Christopher Monroe, and Jungsang Kim. Ground-state energy estimation of the water molecule on a trapped-ion quantum computer. npj Quantum Information, 6 (1): 1–6, 2020a. 10.1038/​s41534-020-0259-3.

[32] Yunseong Nam, Yuan Su, and Dmitri Maslov. Approximate quantum fourier transform with o(n log(n)) t gates. npj Quantum Information, 6 (1), Mar 2020b. ISSN 2056-6387. 10.1038/​s41534-020-0257-5.

[33] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2000. 10.1017/​CBO9780511976667.

[34] P. J. J. O'Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R. McClean, R. Barends, J. Kelly, P. Roushan, A. Tranter, N. Ding, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. G. Fowler, E. Jeffrey, E. Lucero, A. Megrant, J. Y. Mutus, M. Neeley, C. Neill, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C. White, P. V. Coveney, P. J. Love, H. Neven, A. Aspuru-Guzik, and J. M. Martinis. Scalable quantum simulation of molecular energies. Physical Review X, 6: 031007, Jul 2016. 10.1103/​PhysRevX.6.031007.

[35] Robert M. Parrish, Lori A. Burns, Daniel G. A. Smith, Andrew C. Simmonett, A. Eugene DePrince, Edward G. Hohenstein, Uğur Bozkaya, Alexander Yu. Sokolov, Roberto Di Remigio, Ryan M. Richard, Jérôme F. Gonthier, Andrew M. James, Harley R. McAlexander, Ashutosh Kumar, Masaaki Saitow, Xiao Wang, Benjamin P. Pritchard, Prakash Verma, Henry F. Schaefer, Konrad Patkowski, Rollin A. King, Edward F. Valeev, Francesco A. Evangelista, Justin M. Turney, T. Daniel Crawford, and C. David Sherrill. Psi4 1.1: An open-source electronic structure program emphasizing automation, advanced libraries, and interoperability. Journal of Chemical Theory and Computation, 13 (7): 3185–3197, 2017. 10.1021/​acs.jctc.7b00174.

[36] Ketan N. Patel, Igor L. Markov, and John P. Hayes. Optimal synthesis of linear reversible circuits. Quantum Info. Comput., 8 (3): 282–294, March 2008. ISSN 1533-7146. 10.5555/​2011763.2011767.

[37] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J. Love, Alán Aspuru-Guzik, and Jeremy L. O'Brien. A variational eigenvalue solver on a photonic quantum processor. Nature Communications, 5 (1): 4213, 2014. ISSN 2041-1723. 10.1038/​ncomms5213.

[38] David Poulin, Matthew B. Hastings, Dave Wecker, Nathan Wiebe, Andrew C. Doberty, and Matthias Troyer. The trotter step size required for accurate quantum simulation of quantum chemistry. Quantum Info. Comput., 15 (5–6): 361–384, April 2015. ISSN 1533-7146. 10.5555/​2871401.2871402.

[39] Markus Reiher, Nathan Wiebe, Krysta M. Svore, Dave Wecker, and Matthias Troyer. Elucidating reaction mechanisms on quantum computers. Proceedings of the National Academy of Sciences, 2017. ISSN 0027-8424. 10.1073/​pnas.1619152114.

[40] Jonathan Romero, Ryan Babbush, Jarrod R McClean, Cornelius Hempel, Peter J Love, and Alán Aspuru-Guzik. Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz. Quantum Science and Technology, 4 (1): 014008, oct 2018. 10.1088/​2058-9565/​aad3e4.

[41] Jacob T. Seeley, Martin J. Richard, and Peter J. Love. The bravyi-kitaev transformation for quantum computation of electronic structure. The Journal of Chemical Physics, 137 (22): 224109, 2012. 10.1063/​1.4768229.

[42] O. Shehab, K. Landsman, Y. Nam, D. Zhu, N. M. Linke, M. Keesan, R. C. Pooser, and C. Monroe. Toward convergence of effective-field-theory simulations on digital quantum computers. Physical Review A, 100: 062319, Dec 2019. 10.1103/​PhysRevA.100.062319.

[43] Mark Steudtner and Stephanie Wehner. Fermion-to-qubit mappings with varying resource requirements for quantum simulation. New Journal of Physics, 20 (6): 063010, jun 2018. 10.1088/​1367-2630/​aac54f.

[44] Masuo Suzuki. General theory of fractal path integrals with applications to many‐body theories and statistical physics. Journal of Mathematical Physics, 32 (2): 400–407, 1991. 10.1063/​1.529425.

[45] Andrew Tranter, Peter J. Love, Florian Mintert, Nathan Wiebe, and Peter V. Coveney. Ordering of trotterization: Impact on errors in quantum simulation of electronic structure. Entropy, 21 (12): 1218, Dec 2019. ISSN 1099-4300. 10.3390/​e21121218.

[46] Dave Wecker, Bela Bauer, Bryan K. Clark, Matthew B. Hastings, and Matthias Troyer. Gate-count estimates for performing quantum chemistry on small quantum computers. Physical Review A, 90 (2), Aug 2014. ISSN 1094-1622. 10.1103/​physreva.90.022305.

[47] James D. Whitfield, Jacob Biamonte, and Alán Aspuru-Guzik. Simulation of electronic structure hamiltonians using quantum computers. Molecular Physics, 109 (5): 735–750, 2011. 10.1080/​00268976.2011.552441.

[48] Ciyou Zhu, Richard H Byrd, Peihuang Lu, and Jorge Nocedal. Algorithm 778: L-bfgs-b: Fortran subroutines for large-scale bound-constrained optimization. ACM Transactions on mathematical software (TOMS), 23 (4): 550–560, 1997. 10.1145/​279232.279236.

Cited by

[1] Daniel Leykam, "Making fermionic quantum simulators more affordable", Quantum Views 5, 57 (2021).

[2] Andrew Zhao, Nicholas C. Rubin, and Akimasa Miyake, "Fermionic Partial Tomography via Classical Shadows", Physical Review Letters 127 11, 110504 (2021).

[3] Yordan S. Yordanov, David R. M. Arvidsson-Shukur, and Crispin H. W. Barnes, "Efficient quantum circuits for quantum computational chemistry", Physical Review A 102 6, 062612 (2020).

[4] Christopher David White, ChunJun Cao, and Brian Swingle, "Conformal field theories are magical", Physical Review B 103 7, 075145 (2021).

[5] Saad Yalouz, Bruno Senjean, Jakob Günther, Francesco Buda, Thomas E. O'Brien, and Lucas Visscher, "A state-averaged orbital-optimized hybrid quantum-classical algorithm for a democratic description of ground and excited states", Quantum Science and Technology 6 2, 024004 (2021).

[6] Brian C. Sawyer and Kenton R. Brown, "Wavelength-insensitive, multispecies entangling gate for group-2 atomic ions", Physical Review A 103 2, 022427 (2021).

[7] Ning Bao, ChunJun Cao, and Vincent Paul Su, "Magic State Distillation from Entangled States", arXiv:2106.12591.

[8] Angus Kan and Yunseong Nam, "Lattice Quantum Chromodynamics and Electrodynamics on a Universal Quantum Computer", arXiv:2107.12769.

[9] Nikodem Grzesiak, Andrii Maksymov, Pradeep Niroula, and Yunseong Nam, "Efficient quantum programming using EASE gates on a trapped-ion quantum computer", arXiv:2107.07591.

The above citations are from Crossref's cited-by service (last updated successfully 2021-09-23 08:34:05) and SAO/NASA ADS (last updated successfully 2021-09-23 08:34:07). The list may be incomplete as not all publishers provide suitable and complete citation data.

1 thought on “Resource-Optimized Fermionic Local-Hamiltonian Simulation on a Quantum Computer for Quantum Chemistry

  1. Pingback: Perspective in Quantum Views by Daniel Leykam "Making fermionic quantum simulators more afforable"