Real-time ghost imaging of Bell-nonlocal entanglement between a photon and a quantum memory
1Centre for Quantum Optical Technologies, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
2Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
3Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
Published: | 2021-07-01, volume 5, page 493 |
Eprint: | arXiv:2102.11805v2 |
Doi: | https://doi.org/10.22331/q-2021-07-01-493 |
Citation: | Quantum 5, 493 (2021). |
Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.
Abstract
Certification of nonlocality of quantum mechanics is an important fundamental test that typically requires prolonged data collection and is only revealed in an in-depth analysis. These features are often particularly exposed in hybrid systems, such as interfaces between light and atomic ensembles. Certification of entanglement from images acquired with single-photon camera can mitigate this issue by exploiting multiplexed photon generation. Here we demonstrate this feature in a quantum memory (QM) operating in a real-time feedback mode. Through spatially-multimode spin-wave storage the QM enables operation of the real-time ghost imaging (GI) protocol. By properly preparing the spatial phase of light emitted by the atoms we enable observation of Bell-type nonlocality from a single image acquired in the far field as witnessed by the Bell parameter of $S=2.227\pm0.007>2$. Our results are an important step towards fast and efficient utilization of multimode quantum memories both in protocols and in fundamental tests.

Featured image: Experimental setup for quantum-memory-assisted phase-sensitive ghost imaging.
Popular summary
► BibTeX data
► References
[1] S. J. Freedman and J. F. Clauser, Physical Review Letters 28, 938 (1972).
https://doi.org/10.1103/PhysRevLett.28.938
[2] A. Aspect, P. Grangier, and G. Roger, Physical Review Letters 49, 91 (1982).
https://doi.org/10.1103/PhysRevLett.49.91
[3] L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellán, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, Physical Review Letters 115, 250402 (2015).
https://doi.org/10.1103/PhysRevLett.115.250402
[4] M. Giustina, M. A. Versteegh, S. Wengerowsky, J. Handsteiner, A. Hochrainer, K. Phelan, F. Steinlechner, J. Kofler, J. Å. Larsson, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, J. Beyer, T. Gerrits, A. E. Lita, L. K. Shalm, S. W. Nam, T. Scheidl, R. Ursin, B. Wittmann, and A. Zeilinger, Physical Review Letters 115, 250401 (2015).
https://doi.org/10.1103/PhysRevLett.115.250401
[5] C. Abellán, A. Acín, A. Alarcón, O. Alibart, C. K. Andersen, F. Andreoli, A. Beckert, F. A. Beduini, A. Bendersky, M. Bentivegna, P. Bierhorst, D. Burchardt, A. Cabello, J. Cariñe, S. Carrasco, G. Carvacho, D. Cavalcanti, R. Chaves, J. Cortés-Vega, A. Cuevas, A. Delgado, H. De Riedmatten, C. Eichler, P. Farrera, J. Fuenzalida, M. García-Matos, R. Garthoff, S. Gasparinetti, T. Gerrits, F. Ghafari Jouneghani, S. Glancy, E. S. Gómez, P. González, J. Y. Guan, J. Handsteiner, J. Heinsoo, G. Heinze, A. Hirschmann, O. Jiménez, F. Kaiser, E. Knill, L. T. Knoll, S. Krinner, P. Kurpiers, M. A. Larotonda, J. A. Larsson, A. Lenhard, H. Li, M. H. Li, G. Lima, B. Liu, Y. Liu, I. H. Grande, T. Lunghi, X. Ma, O. S. Magaña-Loaiza, P. Magnard, A. Magnoni, M. Martí-Prieto, D. Martínez, P. Mataloni, A. Mattar, M. Mazzera, R. P. Mirin, M. W. Mitchell, S. Nam, M. Oppliger, J. W. Pan, R. B. Patel, G. J. Pryde, D. Rauch, K. Redeker, D. Rieländer, M. Ringbauer, T. Roberson, W. Rosenfeld, Y. Salathé, L. Santodonato, G. Sauder, T. Scheidl, C. T. Schmiegelow, F. Sciarrino, A. Seri, L. K. Shalm, S. C. Shi, S. Slussarenko, M. J. Stevens, S. Tanzilli, F. Toledo, J. Tura, R. Ursin, P. Vergyris, V. B. Verma, T. Walter, A. Wallraff, Z. Wang, H. Weinfurter, M. M. Weston, A. G. White, C. Wu, G. B. Xavier, L. You, X. Yuan, A. Zeilinger, Q. Zhang, W. Zhang, and J. Zhong, Nature 557, 212 (2018).
https://doi.org/10.1038/s41586-018-0085-3
[6] F. Vedovato, C. Agnesi, M. Tomasin, M. Avesani, J. Å. Larsson, G. Vallone, and P. Villoresi, Physical Review Letters 121, 190401 (2018).
https://doi.org/10.1103/PhysRevLett.121.190401
[7] J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, Physical Review Letters 82, 2594 (1999).
https://doi.org/10.1103/PhysRevLett.82.2594
[8] T. Yarnall, A. F. Abouraddy, B. E. Saleh, and M. C. Teich, Physical Review Letters 99, 170408 (2007).
https://doi.org/10.1103/PhysRevLett.99.170408
[9] J. G. Rarity and P. R. Tapster, Physical Review Letters 64, 2495 (1990).
https://doi.org/10.1103/PhysRevLett.64.2495
[10] J. Leach, B. Jack, J. Romero, M. Ritsch-Marte, R. W. Boyd, A. K. Jha, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, Optics Express 17, 8287 (2009).
https://doi.org/10.1364/oe.17.008287
[11] J. S. Bell, Physics 1, 195 (1964).
https://doi.org/10.1103/physicsphysiquefizika.1.195
[12] A. Acín, N. Gisin, and L. Masanes, Physical Review Letters 97, 120405 (2006).
https://doi.org/10.1103/PhysRevLett.97.120405
[13] Z. S. Yuan, Y. A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J. W. Pan, Nature 454, 1098 (2008).
https://doi.org/10.1038/nature07241
[14] A. Einstein, B. Podolsky, and N. Rosen, Physical Review 47, 777 (1935).
https://doi.org/10.1103/PhysRev.47.777
[15] K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, Nature Physics 7, 13 (2011).
https://doi.org/10.1038/nphys1819
[16] Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, Physical Review Letters 68, 3663 (1992).
https://doi.org/10.1103/PhysRevLett.68.3663
[17] J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, Physical Review Letters 92, 210403 (2004).
https://doi.org/10.1103/PhysRevLett.92.210403
[18] M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, Nature Communications 3, 984 (2012).
https://doi.org/10.1038/ncomms1988
[19] P. A. Moreau, F. Devaux, and E. Lantz, Physical Review Letters 113, 160401 (2014).
https://doi.org/10.1103/PhysRevLett.113.160401
[20] M. Dąbrowski, M. Parniak, and W. Wasilewski, Optica 4, 272 (2017).
https://doi.org/10.1364/optica.4.000272
[21] D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, Physical Review Letters 74, 3600 (1995).
https://doi.org/10.1103/PhysRevLett.74.3600
[22] T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, Physical Review A 52, R3429 (1995).
https://doi.org/10.1103/PhysRevA.52.R3429
[23] P.-A. Moreau, E. Toninelli, T. Gregory, and M. J. Padgett, Nature Reviews Physics 1, 367 (2019a).
https://doi.org/10.1038/s42254-019-0056-0
[24] M. Parniak, M. Dąbrowski, M. Mazelanik, A. Leszczyński, M. Lipka, and W. Wasilewski, Nature Communications 8, 2140 (2017).
https://doi.org/10.1038/s41467-017-02366-7
[25] M. Dąbrowski, M. Mazelanik, M. Parniak, A. Leszczyński, M. Lipka, and W. Wasilewski, Physical Review A 98, 42126 (2018).
https://doi.org/10.1103/PhysRevA.98.042126
[26] M. Parniak, M. Mazelanik, A. Leszczyński, M. Lipka, M. Dąbrowski, and W. Wasilewski, Physical Review Letters 122, 063604 (2019).
https://doi.org/10.1103/PhysRevLett.122.063604
[27] T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, Nature 488, 57 (2012).
https://doi.org/10.1038/nature11361
[28] R. S. Bennink, S. J. Bentley, and R. W. Boyd, Physical Review Letters 89, 113601 (2002).
https://doi.org/10.1103/PhysRevLett.89.113601
[29] A. Valencia, G. Scarcelli, M. D'Angelo, and Y. Shih, Physical Review Letters 94, 063601 (2005).
https://doi.org/10.1103/PhysRevLett.94.063601
[30] R. S. Aspden, P. A. Morris, R. He, Q. Chen, and M. J. Padgett, Journal of Optics (United Kingdom) 18, 055204 (2016).
https://doi.org/10.1088/2040-8978/18/5/055204
[31] B. Jack, J. Leach, J. Romero, S. Franke-Arnold, M. Ritsch-Marte, S. M. Barnett, and M. J. Padgett, Physical Review Letters 103, 083602 (2009).
https://doi.org/10.1103/PhysRevLett.103.083602
[32] M. Dangelo, A. Valencia, M. H. Rubin, and Y. Shih, Physical Review A 72, 013810 (2005).
https://doi.org/10.1103/PhysRevA.72.013810
[33] P. A. Moreau, E. Toninelli, T. Gregory, R. S. Aspden, P. A. Morris, and M. J. Padgett, Science Advances 5, eaaw2563 (2019b).
https://doi.org/10.1126/sciadv.aaw2563
[34] S. S. Hodgman, W. Bu, S. B. Mann, R. I. Khakimov, and A. G. Truscott, Physical Review Letters 122, 233601 (2019).
https://doi.org/10.1103/PhysRevLett.122.233601
[35] A. Aspect, P. Grangier, and G. Roger, Physical Review Letters 47, 460 (1981).
https://doi.org/10.1103/PhysRevLett.47.460
[36] M. Lipka, M. Parniak, and W. Wasilewski, Applied Physics Letters 112, 211105 (2018).
https://doi.org/10.1063/1.5033559
[37] M. Lipka, A. Leszczyński, M. Mazelanik, M. Parniak, and W. Wasilewski, Physical Review Applied 11, 034049 (2019).
https://doi.org/10.1103/PhysRevApplied.11.034049
[38] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Physical Review Letters 23, 880 (1969).
https://doi.org/10.1103/PhysRevLett.23.880
[39] J. F. Clauser and M. A. Horne, Physical Review D 10, 526 (1974).
https://doi.org/10.1103/PhysRevD.10.526
[40] M. Lipka, M. Mazelanik, A. Leszczyński, W. Wasilewski, and M. Parniak, Communications Physics 4, 46 (2021).
https://doi.org/10.1038/s42005-021-00551-1
[41] N. D. Hardy and J. H. Shapiro, Physical Review A 87, 023820 (2013).
https://doi.org/10.1103/PhysRevA.87.023820
[42] J. H. Shapiro, IEEE Aerospace and Electronic Systems Magazine 35, 8 (2020).
https://doi.org/10.1109/MAES.2019.2957870
[43] S. Pirandola, B. R. Bardhan, T. Gehring, C. Weedbrook, and S. Lloyd, Nature Photonics 12, 724 (2018).
https://doi.org/10.1038/s41566-018-0301-6
[44] T. Gregory, P.-A. Moreau, E. Toninelli, and M. J. Padgett, Science Advances 6, eaay2652 (2020).
https://doi.org/10.1126/sciadv.aay2652
[45] H. Defienne, M. Reichert, and J. W. Fleischer, Physical Review Letters 121, 233601 (2018).
https://doi.org/10.1103/PhysRevLett.121.233601
[46] M. Mazelanik, M. Parniak, A. Leszczyński, M. Lipka, and W. Wasilewski, npj Quantum Information 5, 22 (2019).
https://doi.org/10.1038/s41534-019-0136-0
[47] H. Defienne, M. Reichert, J. W. Fleischer, and D. Faccio, Science Advances 5, eaax0307 (2019).
https://doi.org/10.1126/sciadv.aax0307
[48] M. Malik, O. S. Magaña-Loaiza, and R. W. Boyd, Applied Physics Letters 101, 241103 (2012).
https://doi.org/10.1063/1.4770298
[49] X. Yao, X. Liu, L. You, Z. Wang, X. Feng, F. Liu, K. Cui, Y. Huang, and W. Zhang, Physical Review A 98, 063816 (2018).
https://doi.org/10.1103/PhysRevA.98.063816
[50] R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, New Journal of Physics 15, 073032 (2013).
https://doi.org/10.1088/1367-2630/15/7/073032
[51] R. S. Aspden, N. R. Gemmell, P. A. Morris, D. S. Tasca, L. Mertens, M. G. Tanner, R. A. Kirkwood, A. Ruggeri, A. Tosi, R. W. Boyd, G. S. Buller, R. H. Hadfield, and M. J. Padgett, Optica 2, 1049 (2015).
https://doi.org/10.1364/OPTICA.2.001049
Cited by
[1] Bo Jing and Xiao‐Hui Bao, Photonic Quantum Technologies 433 (2023) ISBN:9783527414123.
[2] Yisheng Lei, Faezeh Kimiaee Asadi, Tian Zhong, Alex Kuzmich, Christoph Simon, and Mahdi Hosseini, "Quantum optical memory for entanglement distribution", Optica 10 11, 1511 (2023).
[3] Erhan Saglamyurek, "Atomic quantum memories boost quantum imaging and sensing", Quantum Views 5, 58 (2021).
[4] Run Yan Teh, Laura Rosales-Zarate, Peter D. Drummond, and M.D. Reid, "Mesoscopic and macroscopic quantum correlations in photonic, atomic and optomechanical systems", Progress in Quantum Electronics 90, 100396 (2023).
[5] Valerio Flavio Gili, Dupish Dupish, Andres Vega, Massimo Gandola, Enrico Manuzzato, Matteo Perenzoni, Leonardo Gasparini, Thomas Pertsch, and Frank Setzpfandt, "Quantum ghost imaging based on a “looking back” 2D SPAD array", Applied Optics 62 12, 3093 (2023).
[6] Michał Parniak, Mateusz Mazelanik, Adam Leszczyński, Michał Lipka, and Wojciech Wasilewski, Proceedings of the 2022 Conference on Lasers and Electro-Optics Pacific Rim CTuP7C_05 (2022).
[7] V. F. Gili, C. Piccinini, M. Safari Arabi, P. Kumar, V. Besaga, E. Brambila, M. Gräfe, T. Pertsch, and F. Setzpfandt, "Experimental realization of scanning quantum microscopy", Applied Physics Letters 121 10, 104002 (2022).
The above citations are from Crossref's cited-by service (last updated successfully 2023-12-06 23:07:45) and SAO/NASA ADS (last updated successfully 2023-12-06 23:07:46). The list may be incomplete as not all publishers provide suitable and complete citation data.
This Paper is published in Quantum under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Copyright remains with the original copyright holders such as the authors or their institutions.
Pingback: Perspective in Quantum Views by Erhan Saglamyurek "Atomic quantum memories boost quantum imaging and sensing"