Real-time ghost imaging of Bell-nonlocal entanglement between a photon and a quantum memory

Mateusz Mazelanik1,2, Adam Leszczyński1,2, Michał Lipka1,2, Wojciech Wasilewski1, and Michał Parniak1,3

1Centre for Quantum Optical Technologies, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
2Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
3Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Certification of nonlocality of quantum mechanics is an important fundamental test that typically requires prolonged data collection and is only revealed in an in-depth analysis. These features are often particularly exposed in hybrid systems, such as interfaces between light and atomic ensembles. Certification of entanglement from images acquired with single-photon camera can mitigate this issue by exploiting multiplexed photon generation. Here we demonstrate this feature in a quantum memory (QM) operating in a real-time feedback mode. Through spatially-multimode spin-wave storage the QM enables operation of the real-time ghost imaging (GI) protocol. By properly preparing the spatial phase of light emitted by the atoms we enable observation of Bell-type nonlocality from a single image acquired in the far field as witnessed by the Bell parameter of $S=2.227\pm0.007>2$. Our results are an important step towards fast and efficient utilization of multimode quantum memories both in protocols and in fundamental tests.

Quantum ghost imaging is a peculiar phenomenon in which entangled photons are used to create an image of an object with photos that never even interact with this object. Spatial entanglement is the key, but additionally, post-measurement analysis of registered correlations is required to reconstruct the image. In our new, refined method, we employ a quantum memory that stores light to remove the post-selection stage and obtain images in real-time. We demonstrate the true quantum behaviour witnessed with Bell inequalities, certifying entanglement of the memory and photons. Our work provides a fast and efficient framework for utilizing quantum correlations in imaging, as well as for proving quantum behaviour of a hybrid light-matter systems.

► BibTeX data

► References

[1] S. J. Freedman and J. F. Clauser, Physical Review Letters 28, 938 (1972).

[2] A. Aspect, P. Grangier, and G. Roger, Physical Review Letters 49, 91 (1982).

[3] L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellán, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, Physical Review Letters 115, 250402 (2015).

[4] M. Giustina, M. A. Versteegh, S. Wengerowsky, J. Handsteiner, A. Hochrainer, K. Phelan, F. Steinlechner, J. Kofler, J. Å. Larsson, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, J. Beyer, T. Gerrits, A. E. Lita, L. K. Shalm, S. W. Nam, T. Scheidl, R. Ursin, B. Wittmann, and A. Zeilinger, Physical Review Letters 115, 250401 (2015).

[5] C. Abellán, A. Acín, A. Alarcón, O. Alibart, C. K. Andersen, F. Andreoli, A. Beckert, F. A. Beduini, A. Bendersky, M. Bentivegna, P. Bierhorst, D. Burchardt, A. Cabello, J. Cariñe, S. Carrasco, G. Carvacho, D. Cavalcanti, R. Chaves, J. Cortés-Vega, A. Cuevas, A. Delgado, H. De Riedmatten, C. Eichler, P. Farrera, J. Fuenzalida, M. García-Matos, R. Garthoff, S. Gasparinetti, T. Gerrits, F. Ghafari Jouneghani, S. Glancy, E. S. Gómez, P. González, J. Y. Guan, J. Handsteiner, J. Heinsoo, G. Heinze, A. Hirschmann, O. Jiménez, F. Kaiser, E. Knill, L. T. Knoll, S. Krinner, P. Kurpiers, M. A. Larotonda, J. A. Larsson, A. Lenhard, H. Li, M. H. Li, G. Lima, B. Liu, Y. Liu, I. H. Grande, T. Lunghi, X. Ma, O. S. Magaña-Loaiza, P. Magnard, A. Magnoni, M. Martí-Prieto, D. Martínez, P. Mataloni, A. Mattar, M. Mazzera, R. P. Mirin, M. W. Mitchell, S. Nam, M. Oppliger, J. W. Pan, R. B. Patel, G. J. Pryde, D. Rauch, K. Redeker, D. Rieländer, M. Ringbauer, T. Roberson, W. Rosenfeld, Y. Salathé, L. Santodonato, G. Sauder, T. Scheidl, C. T. Schmiegelow, F. Sciarrino, A. Seri, L. K. Shalm, S. C. Shi, S. Slussarenko, M. J. Stevens, S. Tanzilli, F. Toledo, J. Tura, R. Ursin, P. Vergyris, V. B. Verma, T. Walter, A. Wallraff, Z. Wang, H. Weinfurter, M. M. Weston, A. G. White, C. Wu, G. B. Xavier, L. You, X. Yuan, A. Zeilinger, Q. Zhang, W. Zhang, and J. Zhong, Nature 557, 212 (2018).

[6] F. Vedovato, C. Agnesi, M. Tomasin, M. Avesani, J. Å. Larsson, G. Vallone, and P. Villoresi, Physical Review Letters 121, 190401 (2018).

[7] J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, Physical Review Letters 82, 2594 (1999).

[8] T. Yarnall, A. F. Abouraddy, B. E. Saleh, and M. C. Teich, Physical Review Letters 99, 170408 (2007).

[9] J. G. Rarity and P. R. Tapster, Physical Review Letters 64, 2495 (1990).

[10] J. Leach, B. Jack, J. Romero, M. Ritsch-Marte, R. W. Boyd, A. K. Jha, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, Optics Express 17, 8287 (2009).

[11] J. S. Bell, Physics 1, 195 (1964).

[12] A. Acín, N. Gisin, and L. Masanes, Physical Review Letters 97, 120405 (2006).

[13] Z. S. Yuan, Y. A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J. W. Pan, Nature 454, 1098 (2008).

[14] A. Einstein, B. Podolsky, and N. Rosen, Physical Review 47, 777 (1935).

[15] K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, Nature Physics 7, 13 (2011).

[16] Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, Physical Review Letters 68, 3663 (1992).

[17] J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, Physical Review Letters 92, 210403 (2004).

[18] M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, Nature Communications 3, 984 (2012).

[19] P. A. Moreau, F. Devaux, and E. Lantz, Physical Review Letters 113, 160401 (2014).

[20] M. Dąbrowski, M. Parniak, and W. Wasilewski, Optica 4, 272 (2017).

[21] D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, Physical Review Letters 74, 3600 (1995).

[22] T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, Physical Review A 52, R3429 (1995).

[23] P.-A. Moreau, E. Toninelli, T. Gregory, and M. J. Padgett, Nature Reviews Physics 1, 367 (2019a).

[24] M. Parniak, M. Dąbrowski, M. Mazelanik, A. Leszczyński, M. Lipka, and W. Wasilewski, Nature Communications 8, 2140 (2017).

[25] M. Dąbrowski, M. Mazelanik, M. Parniak, A. Leszczyński, M. Lipka, and W. Wasilewski, Physical Review A 98, 42126 (2018).

[26] M. Parniak, M. Mazelanik, A. Leszczyński, M. Lipka, M. Dąbrowski, and W. Wasilewski, Physical Review Letters 122, 063604 (2019).

[27] T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, Nature 488, 57 (2012).

[28] R. S. Bennink, S. J. Bentley, and R. W. Boyd, Physical Review Letters 89, 113601 (2002).

[29] A. Valencia, G. Scarcelli, M. D'Angelo, and Y. Shih, Physical Review Letters 94, 063601 (2005).

[30] R. S. Aspden, P. A. Morris, R. He, Q. Chen, and M. J. Padgett, Journal of Optics (United Kingdom) 18, 055204 (2016).

[31] B. Jack, J. Leach, J. Romero, S. Franke-Arnold, M. Ritsch-Marte, S. M. Barnett, and M. J. Padgett, Physical Review Letters 103, 083602 (2009).

[32] M. Dangelo, A. Valencia, M. H. Rubin, and Y. Shih, Physical Review A 72, 013810 (2005).

[33] P. A. Moreau, E. Toninelli, T. Gregory, R. S. Aspden, P. A. Morris, and M. J. Padgett, Science Advances 5, eaaw2563 (2019b).

[34] S. S. Hodgman, W. Bu, S. B. Mann, R. I. Khakimov, and A. G. Truscott, Physical Review Letters 122, 233601 (2019).

[35] A. Aspect, P. Grangier, and G. Roger, Physical Review Letters 47, 460 (1981).

[36] M. Lipka, M. Parniak, and W. Wasilewski, Applied Physics Letters 112, 211105 (2018).

[37] M. Lipka, A. Leszczyński, M. Mazelanik, M. Parniak, and W. Wasilewski, Physical Review Applied 11, 034049 (2019).

[38] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Physical Review Letters 23, 880 (1969).

[39] J. F. Clauser and M. A. Horne, Physical Review D 10, 526 (1974).

[40] M. Lipka, M. Mazelanik, A. Leszczyński, W. Wasilewski, and M. Parniak, Communications Physics 4, 46 (2021).

[41] N. D. Hardy and J. H. Shapiro, Physical Review A 87, 023820 (2013).

[42] J. H. Shapiro, IEEE Aerospace and Electronic Systems Magazine 35, 8 (2020).

[43] S. Pirandola, B. R. Bardhan, T. Gehring, C. Weedbrook, and S. Lloyd, Nature Photonics 12, 724 (2018).

[44] T. Gregory, P.-A. Moreau, E. Toninelli, and M. J. Padgett, Science Advances 6, eaay2652 (2020).

[45] H. Defienne, M. Reichert, and J. W. Fleischer, Physical Review Letters 121, 233601 (2018).

[46] M. Mazelanik, M. Parniak, A. Leszczyński, M. Lipka, and W. Wasilewski, npj Quantum Information 5, 22 (2019).

[47] H. Defienne, M. Reichert, J. W. Fleischer, and D. Faccio, Science Advances 5, eaax0307 (2019).

[48] M. Malik, O. S. Magaña-Loaiza, and R. W. Boyd, Applied Physics Letters 101, 241103 (2012).

[49] X. Yao, X. Liu, L. You, Z. Wang, X. Feng, F. Liu, K. Cui, Y. Huang, and W. Zhang, Physical Review A 98, 063816 (2018).

[50] R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, New Journal of Physics 15, 073032 (2013).

[51] R. S. Aspden, N. R. Gemmell, P. A. Morris, D. S. Tasca, L. Mertens, M. G. Tanner, R. A. Kirkwood, A. Ruggeri, A. Tosi, R. W. Boyd, G. S. Buller, R. H. Hadfield, and M. J. Padgett, Optica 2, 1049 (2015).

Cited by

[1] Michał Parniak, Mateusz Mazelanik, Adam Leszczyński, Michał Lipka, and Wojciech Wasilewski, 2022 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR) 1 (2022) ISBN:979-8-3503-5001-2.

[2] Bo Jing and Xiao‐Hui Bao, Photonic Quantum Technologies 433 (2023) ISBN:9783527414123.

[3] Yisheng Lei, Faezeh Kimiaee Asadi, Tian Zhong, Alex Kuzmich, Christoph Simon, and Mahdi Hosseini, "Quantum optical memory for entanglement distribution", Optica 10 11, 1511 (2023).

[4] Erhan Saglamyurek, "Atomic quantum memories boost quantum imaging and sensing", Quantum Views 5, 58 (2021).

[5] Run Yan Teh, Laura Rosales-Zarate, Peter D. Drummond, and M.D. Reid, "Mesoscopic and macroscopic quantum correlations in photonic, atomic and optomechanical systems", Progress in Quantum Electronics 90, 100396 (2023).

[6] Valerio Flavio Gili, Dupish Dupish, Andres Vega, Massimo Gandola, Enrico Manuzzato, Matteo Perenzoni, Leonardo Gasparini, Thomas Pertsch, and Frank Setzpfandt, "Quantum ghost imaging based on a “looking back” 2D SPAD array", Applied Optics 62 12, 3093 (2023).

[7] Michał Parniak, Mateusz Mazelanik, Adam Leszczyński, Michał Lipka, and Wojciech Wasilewski, Proceedings of the 2022 Conference on Lasers and Electro-Optics Pacific Rim CTuP7C_05 (2022).

[8] V. F. Gili, C. Piccinini, M. Safari Arabi, P. Kumar, V. Besaga, E. Brambila, M. Gräfe, T. Pertsch, and F. Setzpfandt, "Experimental realization of scanning quantum microscopy", Applied Physics Letters 121 10, 104002 (2022).

The above citations are from Crossref's cited-by service (last updated successfully 2024-04-19 09:49:20) and SAO/NASA ADS (last updated successfully 2024-04-19 09:49:21). The list may be incomplete as not all publishers provide suitable and complete citation data.

1 thought on “Real-time ghost imaging of Bell-nonlocal entanglement between a photon and a quantum memory

  1. Pingback: Perspective in Quantum Views by Erhan Saglamyurek "Atomic quantum memories boost quantum imaging and sensing"