Algorithmic Error Mitigation Scheme for Current Quantum Processors

Philippe Suchsland1,2,3, Francesco Tacchino2, Mark H. Fischer3, Titus Neupert3, Panagiotis Kl. Barkoutsos2, and Ivano Tavernelli2

1Institute for Theoretical Physics, ETH Zurich, 8093 Zurich, Switzerland
2IBM Quantum, IBM Research – Zurich, 8803 Rueschlikon, Switzerland
3Department of Physics, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

We present a hardware agnostic error mitigation algorithm for near term quantum processors inspired by the classical Lanczos method. This technique can reduce the impact of different sources of noise at the sole cost of an increase in the number of measurements to be performed on the target quantum circuit, without additional experimental overhead. We demonstrate through numerical simulations and experiments on IBM Quantum hardware that the proposed scheme significantly increases the accuracy of cost functions evaluations within the framework of variational quantum algorithms, thus leading to improved ground-state calculations for quantum chemistry and physics problems beyond state-of-the-art results.

► BibTeX data

► References

[1] Peter W. Shor. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A, 52: R2493–R2496, Oct 1995. 10.1103/​PhysRevA.52.R2493.
https:/​/​doi.org/​10.1103/​PhysRevA.52.R2493

[2] A. M. Steane. Error correcting codes in quantum theory. Phys. Rev. Lett., 77: 793–797, Jul 1996. 10.1103/​PhysRevLett.77.793.
https:/​/​doi.org/​10.1103/​PhysRevLett.77.793

[3] A. R. Calderbank and Peter W. Shor. Good quantum error-correcting codes exist. Phys. Rev. A, 54: 1098–1105, Aug 1996. 10.1103/​PhysRevA.54.1098.
https:/​/​doi.org/​10.1103/​PhysRevA.54.1098

[4] John Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2: 79, August 2018. ISSN 2521-327X. 10.22331/​q-2018-08-06-79.
https:/​/​doi.org/​10.22331/​q-2018-08-06-79

[5] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J. Love, Alán Aspuru-Guzik, and Jeremy L. O'Brien. A variational eigenvalue solver on a photonic quantum processor. Nature Communications, 5 (1): 4213, 7 2014. 10.1038/​ncomms5213.
https:/​/​doi.org/​10.1038/​ncomms5213

[6] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028, 2014.
arXiv:1411.4028

[7] Dave Wecker, Matthew B. Hastings, and Matthias Troyer. Progress towards practical quantum variational algorithms. Phys. Rev. A, 92: 042303, Oct 2015. 10.1103/​PhysRevA.92.042303.
https:/​/​doi.org/​10.1103/​PhysRevA.92.042303

[8] Jarrod R McClean, Jonathan Romero, Ryan Babbush, and Alán Aspuru-Guzik. The theory of variational hybrid quantum-classical algorithms. New Journal of Physics, 18 (2): 023023, feb 2016. 10.1088/​1367-2630/​18/​2/​023023.
https:/​/​doi.org/​10.1088/​1367-2630/​18/​2/​023023

[9] Panagiotis Kl Barkoutsos, Jerome F. Gonthier, Igor Sokolov, Nikolaj Moll, Gian Salis, Andreas Fuhrer, Marc Ganzhorn, Daniel J. Egger, Matthias Troyer, Antonio Mezzacapo, Stefan Filipp, and Ivano Tavernelli. Quantum algorithms for electronic structure calculations: Particle-hole Hamiltonian and optimized wave-function expansions. Phys. Rev. A, 98 (2): 022322, 2018. ISSN 24699934. 10.1103/​PhysRevA.98.022322.
https:/​/​doi.org/​10.1103/​PhysRevA.98.022322

[10] Guglielmo Mazzola, Pauline J. Ollitrault, Panagiotis Kl. Barkoutsos, and Ivano Tavernelli. Nonunitary operations for ground-state calculations in near-term quantum computers. Phys. Rev. Lett., 123: 130501, Sep 2019. 10.1103/​PhysRevLett.123.130501.
https:/​/​doi.org/​10.1103/​PhysRevLett.123.130501

[11] P. J. J. O'Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R. McClean, R. Barends, J. Kelly, P. Roushan, A. Tranter, N. Ding, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. G. Fowler, E. Jeffrey, E. Lucero, A. Megrant, J. Y. Mutus, M. Neeley, C. Neill, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C. White, P. V. Coveney, P. J. Love, H. Neven, A. Aspuru-Guzik, and J. M. Martinis. Scalable quantum simulation of molecular energies. Phys. Rev. X, 6: 031007, Jul 2016. 10.1103/​PhysRevX.6.031007.
https:/​/​doi.org/​10.1103/​PhysRevX.6.031007

[12] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M. Chow, and Jay M. Gambetta. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 549 (7671): 242–246, Sep 2017. ISSN 1476-4687. 10.1038/​nature23879.
https:/​/​doi.org/​10.1038/​nature23879

[13] M. Ganzhorn, D.J. Egger, P. Barkoutsos, P. Ollitrault, G. Salis, N. Moll, M. Roth, A. Fuhrer, P. Mueller, S. Woerner, I. Tavernelli, and S. Filipp. Gate-efficient simulation of molecular eigenstates on a quantum computer. Phys. Rev. Applied, 11: 044092, Apr 2019. 10.1103/​PhysRevApplied.11.044092.
https:/​/​doi.org/​10.1103/​PhysRevApplied.11.044092

[14] Abhinav Kandala, Kristan Temme, Antonio D. Córcoles, Antonio Mezzacapo, Jerry M. Chow, and Jay M. Gambetta. Error mitigation extends the computational reach of a noisy quantum processor. Nature, 567 (7749): 491–495, 2019. 10.1038/​s41586-019-1040-7.
https:/​/​doi.org/​10.1038/​s41586-019-1040-7

[15] Pauline J. Ollitrault, Abhinav Kandala, Chun-Fu Chen, Panagiotis Kl. Barkoutsos, Antonio Mezzacapo, Marco Pistoia, Sarah Sheldon, Stefan Woerner, Jay M. Gambetta, and Ivano Tavernelli. Quantum equation of motion for computing molecular excitation energies on a noisy quantum processor. Phys. Rev. Research, 2: 043140, Oct 2020. 10.1103/​PhysRevResearch.2.043140.
https:/​/​doi.org/​10.1103/​PhysRevResearch.2.043140

[16] A Chiesa, F Tacchino, M Grossi, P Santini, I Tavernelli, D Gerace, and S Carretta. Quantum hardware simulating four-dimensional inelastic neutron scattering. Nature Physics, 15 (5): 455–459, 2019. 10.1038/​s41567-019-0437-4.
https:/​/​doi.org/​10.1038/​s41567-019-0437-4

[17] Suguru Endo, Zhenyu Cai, Simon C. Benjamin, and Xiao Yuan. Hybrid quantum-classical algorithms and quantum error mitigation. Journal of the Physical Society of Japan, 90 (3): 032001, 2021. 10.7566/​JPSJ.90.032001.
https:/​/​doi.org/​10.7566/​JPSJ.90.032001

[18] E. F. Dumitrescu, A. J. McCaskey, G. Hagen, G. R. Jansen, T. D. Morris, T. Papenbrock, R. C. Pooser, D. J. Dean, and P. Lougovski. Cloud quantum computing of an atomic nucleus. Phys. Rev. Lett., 120: 210501, May 2018. 10.1103/​PhysRevLett.120.210501. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.120.210501.
https:/​/​doi.org/​10.1103/​PhysRevLett.120.210501

[19] Ying Li and Simon C. Benjamin. Efficient variational quantum simulator incorporating active error minimization. Physical Review X, 7 (2), Jun 2017. ISSN 2160-3308. 10.1103/​physrevx.7.021050.
https:/​/​doi.org/​10.1103/​physrevx.7.021050

[20] Kristan Temme, Sergey Bravyi, and Jay M. Gambetta. Error mitigation for short-depth quantum circuits. Physical Review Letters, 119 (18), Nov 2017. ISSN 1079-7114. 10.1103/​physrevlett.119.180509.
https:/​/​doi.org/​10.1103/​physrevlett.119.180509

[21] Suguru Endo, Simon C. Benjamin, and Ying Li. Practical quantum error mitigation for near-future applications. Phys. Rev. X, 8: 031027, Jul 2018. 10.1103/​PhysRevX.8.031027.
https:/​/​doi.org/​10.1103/​PhysRevX.8.031027

[22] George S Barron, Bryan T Gard, Orien J Altman, Nicholas J Mayhall, Edwin Barnes, and Sophia E Economou. Preserving symmetries for variational quantum eigensolvers in the presence of noise. arXiv preprint arXiv:2003.00171, 2020.
arXiv:2003.00171

[23] Jarrod R. McClean, Mollie E. Kimchi-Schwartz, Jonathan Carter, and Wibe A. de Jong. Hybrid quantum-classical hierarchy for mitigation of decoherence and determination of excited states. Physical Review A, 95 (4), Apr 2017. ISSN 2469-9934. 10.1103/​physreva.95.042308.
https:/​/​doi.org/​10.1103/​physreva.95.042308

[24] Jarrod R. McClean, Zhang Jiang, Nicholas C. Rubin, Ryan Babbush, and Hartmut Neven. Decoding quantum errors with subspace expansions. Nature Communications, 11 (1), Jan 2020. ISSN 2041-1723. 10.1038/​s41467-020-14341-w.
https:/​/​doi.org/​10.1038/​s41467-020-14341-w

[25] R. Sagastizabal, X. Bonet-Monroig, M. Singh, M. A. Rol, C. C. Bultink, X. Fu, C. H. Price, V. P. Ostroukh, N. Muthusubramanian, A. Bruno, M. Beekman, N. Haider, T. E. O'Brien, and L. DiCarlo. Experimental error mitigation via symmetry verification in a variational quantum eigensolver. Phys. Rev. A, 100: 010302, Jul 2019. 10.1103/​PhysRevA.100.010302.
https:/​/​doi.org/​10.1103/​PhysRevA.100.010302

[26] Sam McArdle, Xiao Yuan, and Simon Benjamin. Error-mitigated digital quantum simulation. Phys. Rev. Lett., 122: 180501, May 2019. 10.1103/​PhysRevLett.122.180501.
https:/​/​doi.org/​10.1103/​PhysRevLett.122.180501

[27] J. I. Colless, V. V. Ramasesh, D. Dahlen, M. S. Blok, M. E. Kimchi-Schwartz, J. R. McClean, J. Carter, W. A. de Jong, and I. Siddiqi. Computation of molecular spectra on a quantum processor with an error-resilient algorithm. Phys. Rev. X, 8: 011021, Feb 2018. 10.1103/​PhysRevX.8.011021.
https:/​/​doi.org/​10.1103/​PhysRevX.8.011021

[28] Chao Song, Jing Cui, H. Wang, J. Hao, H. Feng, and Ying Li. Quantum computation with universal error mitigation on a superconducting quantum processor. Science Advances, 5 (9), 2019. 10.1126/​sciadv.aaw5686.
https:/​/​doi.org/​10.1126/​sciadv.aaw5686

[29] Yanzhu Chen, Maziar Farahzad, Shinjae Yoo, and Tzu-Chieh Wei. Detector tomography on ibm quantum computers and mitigation of an imperfect measurement. Phys. Rev. A, 100: 052315, Nov 2019. 10.1103/​PhysRevA.100.052315.
https:/​/​doi.org/​10.1103/​PhysRevA.100.052315

[30] J. M. Chow, L. DiCarlo, J. M. Gambetta, A. Nunnenkamp, Lev S. Bishop, L. Frunzio, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf. Detecting highly entangled states with a joint qubit readout. Phys. Rev. A, 81: 062325, Jun 2010. 10.1103/​PhysRevA.81.062325.
https:/​/​doi.org/​10.1103/​PhysRevA.81.062325

[31] Colm A. Ryan, Blake R. Johnson, Jay M. Gambetta, Jerry M. Chow, Marcus P. da Silva, Oliver E. Dial, and Thomas A. Ohki. Tomography via correlation of noisy measurement records. Phys. Rev. A, 91: 022118, Feb 2015. 10.1103/​PhysRevA.91.022118.
https:/​/​doi.org/​10.1103/​PhysRevA.91.022118

[32] Benjamin Nachman, Miroslav Urbanek, Wibe A de Jong, and Christian W Bauer. Unfolding quantum computer readout noise. npj Quantum Information, 6 (1): 1–7, 2020. 10.1038/​s41534-020-00309-7.
https:/​/​doi.org/​10.1038/​s41534-020-00309-7

[33] Sergey Bravyi, Sarah Sheldon, Abhinav Kandala, David C. Mckay, and Jay M. Gambetta. Mitigating measurement errors in multiqubit experiments. Phys. Rev. A, 103: 042605, Apr 2021. 10.1103/​PhysRevA.103.042605.
https:/​/​doi.org/​10.1103/​PhysRevA.103.042605

[34] Cornelius Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Natl. Bur. Stand. B, 45: 255–282, 1950. 10.6028/​jres.045.026.
https:/​/​doi.org/​10.6028/​jres.045.026

[35] Mario Motta, Chong Sun, Adrian T. K. Tan, Matthew J. O’Rourke, Erika Ye, Austin J. Minnich, Fernando G. S. L. Brandão, and Garnet Kin-Lic Chan. Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution. Nature Physics, 16 (2): 205–210, Nov 2019. ISSN 1745-2481. 10.1038/​s41567-019-0704-4.
https:/​/​doi.org/​10.1038/​s41567-019-0704-4

[36] Harish J Vallury, Michael A Jones, Charles D Hill, and Lloyd CL Hollenberg. Quantum computed moments correction to variational estimates. Quantum, 4: 373, 2020. 10.22331/​q-2020-12-15-373.
https:/​/​doi.org/​10.22331/​q-2020-12-15-373

[37] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, 2010. 10.1017/​CBO9780511976667.
https:/​/​doi.org/​10.1017/​CBO9780511976667

[38] G. C. Wick. Properties of bethe-salpeter wave functions. Phys. Rev., 96: 1124–1134, Nov 1954. 10.1103/​PhysRev.96.1124.
https:/​/​doi.org/​10.1103/​PhysRev.96.1124

[39] Wilhelm Magnus. On the exponential solution of differential equations for a linear operator. Communications on Pure and Applied Mathematics, 7 (4): 649–673, 1954. 10.1002/​cpa.3160070404.
https:/​/​doi.org/​10.1002/​cpa.3160070404

[40] Richard P. Feynman. An operator calculus having applications in quantum electrodynamics. Phys. Rev., 84: 108–128, Oct 1951. 10.1103/​PhysRev.84.108.
https:/​/​doi.org/​10.1103/​PhysRev.84.108

[41] Hsin-Yuan Huang, Richard Kueng, and John Preskill. Predicting many properties of a quantum system from very few measurements. Nature Physics, Jun 2020. ISSN 1745-2481. 10.1038/​s41567-020-0932-7.
https:/​/​doi.org/​10.1038/​s41567-020-0932-7

[42] Giacomo Torlai, Guglielmo Mazzola, Juan Carrasquilla, Matthias Troyer, Roger Melko, and Giuseppe Carleo. Neural-network quantum state tomography. Nature Physics, 14 (5): 447–450, 2018. 10.1038/​s41567-018-0048-5.
https:/​/​doi.org/​10.1038/​s41567-018-0048-5

[43] Giacomo Torlai, Guglielmo Mazzola, Giuseppe Carleo, and Antonio Mezzacapo. Precise measurement of quantum observables with neural-network estimators. Phys. Rev. Research, 2: 022060, Jun 2020. 10.1103/​PhysRevResearch.2.022060.
https:/​/​doi.org/​10.1103/​PhysRevResearch.2.022060

[44] Nikolaj Moll, Panagiotis Barkoutsos, Lev S Bishop, Jerry M Chow, Andrew Cross, Daniel J Egger, Stefan Filipp, Andreas Fuhrer, Jay M Gambetta, Marc Ganzhorn, and et al. Quantum optimization using variational algorithms on near-term quantum devices. Quantum Science and Technology, 3 (3): 030503, Jun 2018. ISSN 2058-9565. 10.1088/​2058-9565/​aab822.
https:/​/​doi.org/​10.1088/​2058-9565/​aab822

[45] J. C. Spall. Adaptive stochastic approximation by the simultaneous perturbation method. IEEE Transactions on Automatic Control, 45 (10): 1839–1853, 2000. https:/​/​doi.org/​10.1109/​TAC.2000.880982.
https:/​/​doi.org/​10.1109/​TAC.2000.880982

[46] Qiming Sun, Timothy C. Berkelbach, Nick S. Blunt, George H. Booth, Sheng Guo, Zhendong Li, Junzi Liu, James D. McClain, Elvira R. Sayfutyarova, Sandeep Sharma, Sebastian Wouters, and Garnet Kin-Lic Chan. Pyscf: the python-based simulations of chemistry framework. WIREs Computational Molecular Science, 8 (1): e1340, 2018. https:/​/​doi.org/​10.1002/​wcms.1340. URL https:/​/​onlinelibrary.wiley.com/​doi/​abs/​10.1002/​wcms.1340.
https:/​/​doi.org/​10.1002/​wcms.1340

[47] W. J. Hehre, R. F. Stewart, and J. A. Pople. Self‐consistent molecular‐orbital methods. i. use of gaussian expansions of slater‐type atomic orbitals. The Journal of Chemical Physics, 51 (6): 2657–2664, 1969. 10.1063/​1.1672392.
https:/​/​doi.org/​10.1063/​1.1672392

[48] Hideo Fukutome. Unrestricted hartree–fock theory and its applications to molecules and chemical reactions. International Journal of Quantum Chemistry, 20 (5): 955–1065, 1981. 10.1002/​qua.560200502.
https:/​/​doi.org/​10.1002/​qua.560200502

[49] Sergey Bravyi, Jay M Gambetta, Antonio Mezzacapo, and Kristan Temme. Tapering off qubits to simulate fermionic hamiltonians. arXiv preprint arXiv:1701.08213, 2017.
arXiv:1701.08213

[50] G. Herzberg and H. C. Longuet-Higgins. Intersection of potential energy surfaces in polyatomic molecules. Discuss. Faraday Soc., 35: 77–82, 1963. 10.1039/​DF9633500077.
https:/​/​doi.org/​10.1039/​DF9633500077

[51] H. von Busch, Vas Dev, H.-A. Eckel, S. Kasahara, J. Wang, W. Demtröder, P. Sebald, and W. Meyer. Unambiguous proof for berry's phase in the sodium trimer: Analysis of the transition ${\mathit{a}}^{2}{\mathit{e}}^{''}{\leftarrow}{\mathit{x}}^{2}{\mathit{e}}^{{'}}$. Phys. Rev. Lett., 81: 4584–4587, Nov 1998. 10.1103/​PhysRevLett.81.4584.
https:/​/​doi.org/​10.1103/​PhysRevLett.81.4584

[52] Raffaele Resta. Manifestations of berry's phase in molecules and condensed matter. Journal of Physics: Condensed Matter, 12 (9): R107–R143, feb 2000. 10.1088/​0953-8984/​12/​9/​201.
https:/​/​doi.org/​10.1088/​0953-8984/​12/​9/​201

[53] Gadi Aleksandrowicz, Thomas Alexander, Panagiotis Barkoutsos, Luciano Bello, Yael Ben-Haim, David Bucher, Francisco Jose Cabrera-Hernandez, Jorge Carballo-Franquis, Adrian Chen, Chun-Fu Chen, Jerry M. Chow, Antonio D. Corcoles-Gonzales, Abigail J. Cross, Andrew Cross, Juan Cruz-Benito, Chris Culver, Salvador De La Puente Gonzalez, Enrique De La Torre, Delton Ding, Eugene Dumitrescu, Ivan Duran, Pieter Eendebak, Mark Everitt, Ismael Faro Sertage, Albert Frisch, Andreas Fuhrer, Jay Gambetta, Borja Godoy Gago, Juan Gomez-Mosquera, Donny Greenberg, Ikko Hamamura, Vojtech Havlicek, Joe Hellmers, Lukasz Herok, Hiroshi Horii, Shaohan Hu, Takashi Imamichi, Toshinari Itoko, Ali Javadi-Abhari, Naoki Kanazawa, Anton Karazeev, Kevin Krsulich, Peng Liu, Yang Luh, Yunho Maeng, Manoel Marques, Francisco Jose Martin-Fernandez, Douglas T. McClure, David McKay, Srujan Meesala, Antonio Mezzacapo, Nikolaj Moll, Diego Moreda Rodriguez, Giacomo Nannicini, Paul Nation, Pauline J. Ollitrault, Lee James O'Riordan, Hanhee Paik, Jesus Perez, Anna Phan, Marco Pistoia, Viktor Prutyanov, Max Reuter, Julia Rice, Abden Rodriguez Davila, Raymond Harry Putra Rudy, Mingi Ryu, Ninad Sathaye, Chris Schnabel, Eddie Schoute, Kanav Setia, Yunong Shi, Adenilton Silva, Yukio Siraichi, Seyon Sivarajah, John A. Smolin, Mathias Soeken, Igor Sokolov, Hitomi Takahashi, Ivano Tavernelli, Charles Taylor, Pete Taylour, Kenso Trabing, Matthew Treinish, Wes Turner, Desiree Vogt-Lee, Christophe Vuillot, Jonathan A. Wildstrom, Jessica Wilson, Erick Winston, Christopher Wood, Stephen Wood, Stefan Wörner, Ismail Yunus Akhalwaya, and Christa Zoufal. Qiskit: An Open-source Framework for Quantum Computing, January 2019.

[54] Francesco Tacchino, Panagiotis Barkoutsos, Chiara Macchiavello, Ivano Tavernelli, Dario Gerace, and Daniele Bajoni. Quantum implementation of an artificial feed-forward neural network. arXiv preprint arXiv:1912.12486, 2019. https:/​/​doi.org/​10.1088/​2058-9565/​abb8e4.
https:/​/​doi.org/​10.1088/​2058-9565/​abb8e4
arXiv:1912.12486

[55] Nikitas Stamatopoulos, Daniel J. Egger, Yue Sun, Christa Zoufal, Raban Iten, Ning Shen, and Stefan Woerner. Option Pricing using Quantum Computers. Quantum, 4: 291, July 2020. ISSN 2521-327X. 10.22331/​q-2020-07-06-291.
https:/​/​doi.org/​10.22331/​q-2020-07-06-291

[56] T. O. Lewis and P. L. Odell. A generalization of the gauss-markov theorem. Journal of the American Statistical Association, 61 (316): 1063–1066, 1966. ISSN 01621459. 10.2307/​2283200.
https:/​/​doi.org/​10.2307/​2283200

[57] Gene H Golub and Charles F Van Loan. Matrix computations, volume 3. JHU press, 2013.

Cited by

[1] Luca Crippa, Francesco Tacchino, Mario Chizzini, Antonello Aita, Michele Grossi, Alessandro Chiesa, Paolo Santini, Ivano Tavernelli, and Stefano Carretta, "Simulating Static and Dynamic Properties of Magnetic Molecules with Prototype Quantum Computers", Magnetochemistry 7 8, 117 (2021).

[2] Joseph C. Aulicino, Trevor Keen, and Bo Peng, "State preparation and evolution in quantum computing: A perspective from Hamiltonian moments", International Journal of Quantum Chemistry (2021).

[3] Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav Anand, Matthias Degroote, Hermanni Heimonen, Jakob S. Kottmann, Tim Menke, Wai-Keong Mok, Sukin Sim, Leong-Chuan Kwek, and Alán Aspuru-Guzik, "Noisy intermediate-scale quantum (NISQ) algorithms", arXiv:2101.08448.

[4] Kübra Yeter-Aydeniz, Shikha Bangar, George Siopsis, and Raphael C. Pooser, "Collective Neutrino Oscillations on a Quantum Computer", arXiv:2104.03273.

[5] Igor O. Sokolov, Panagiotis Kl. Barkoutsos, Lukas Moeller, Philippe Suchsland, Guglielmo Mazzola, and Ivano Tavernelli, "Microcanonical and finite-temperature ab initio molecular dynamics simulations on quantum computers", Physical Review Research 3 1, 013125 (2021).

[6] Andrea Pizzamiglio, Su Yeon Chang, Maria Bondani, Simone Montangero, Dario Gerace, and Giuliano Benenti, "Dynamical Localization Simulated on Actual Quantum Hardware", Entropy 23 6, 654 (2021).

[7] Jakob M. Günther, Francesco Tacchino, James R. Wootton, Ivano Tavernelli, and Panagiotis Kl. Barkoutsos, "Improving readout in quantum simulations with repetition codes", arXiv:2105.13377.

[8] Harish J. Vallury, Michael A. Jones, Charles D. Hill, and Lloyd C. L. Hollenberg, "Quantum computed moments correction to variational estimates", arXiv:2009.13140.

The above citations are from Crossref's cited-by service (last updated successfully 2021-12-08 18:03:52) and SAO/NASA ADS (last updated successfully 2021-12-08 18:03:53). The list may be incomplete as not all publishers provide suitable and complete citation data.