The shape of higher-dimensional state space: Bloch-ball analog for a qutrit

Christopher Eltschka1, Marcus Huber2,3, Simon Morelli2,3, and Jens Siewert4,5

1Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany
2Atominstitut, Technische Universität Wien, 1020 Vienna, Austria
3Institute for Quantum Optics and Quantum Information - IQOQI Vienna, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria
4Departamento de Química Física, Universidad del País Vasco UPV/EHU, E-48080 Bilbao, Spain
5IKERBASQUE Basque Foundation for Science, E-48009 Bilbao, Spain

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Geometric intuition is a crucial tool to obtain deeper insight into many concepts of physics. A paradigmatic example of its power is the Bloch ball, the geometrical representation for the state space of the simplest possible quantum system, a two-level system (or qubit). However, already for a three-level system (qutrit) the state space has eight dimensions, so that its complexity exceeds the grasp of our three-dimensional space of experience. This is unfortunate, given that the geometric object describing the state space of a qutrit has a much richer structure and is in many ways more representative for a general quantum system than a qubit. In this work we demonstrate that, based on the Bloch representation of quantum states, it is possible to construct a three dimensional model for the qutrit state space that captures most of the essential geometric features of the latter. Besides being of indisputable theoretical value, this opens the door to a new type of representation, thus extending our geometric intuition beyond the simplest quantum systems.

The quantum state space exhibits a much richer structure than its classical counterpart. This is already true for the qubit, the simplest quantum system, represented by the Bloch ball. Contrary to what the regular structure of the classical probability space and of the Bloch ball might suggest, the quantum state space for higher dimensional systems is an irregular object whose description can be a challenging task already for low dimensions.
In this work we present (two versions of) a three dimensional model of the eight dimensional state space of a qutrit, capturing its essential geometric and algebraic characteristics. Besides providing an intuition for three-level systems, our model also gives insight to higher dimensional state spaces that feature properties not present in the Bloch ball. Finally we show the usefulness of the model in various applications, such as the representation of the mixture of two states, the unitary transformation of a state and the behavior of the state space under the action of quantum channels.

► BibTeX data

► References

[1] M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).

[2] J. Martin, O. Giraud, P.A. Braun, D. Braun, and T. Bastin, Multiqubit symmetric states with high geometric entanglement, Physical Review A 81, 062347 (2010).
https:/​/​doi.org/​10.1103/​PhysRevA.81.062347

[3] U. Fano, A Stokes-Parameter Technique for the Treatment of Polarization in Quantum Mechanics, Phys. Rev. 93, 121 (1954).
https:/​/​doi.org/​10.1103/​PhysRev.93.121

[4] U. Fano, Description of States in Quantum Mechanics by Density Matrix and Operator Techniques, Rev. Mod. Phys. 29, 74 (1957).
https:/​/​doi.org/​10.1103/​RevModPhys.29.74

[5] R.P. Feynman, F.L. Vernon, and R.W. Hellwarth, Geometrical Representation of the Schrödinger Equation for Solving Maser Problems, J. Appl. Phys. 28, 49 (1957).
https:/​/​doi.org/​10.1063/​1.1722572

[6] I. Bengtsson and K. Życzkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement, 2nd edition (Cambridge University Press, 2017).
https:/​/​doi.org/​10.1017/​9781139207010

[7] F.J. Bloore, Geometrical description of the convex sets of states for systems with spin-1/​2 and spin-1, J. Phys. A 9, 2059 (1976).
https:/​/​doi.org/​10.1088/​0305-4470/​9/​12/​011

[8] G. Ramachandran and M.V.N. Murthy, A new representation for the density matrix, Nucl. Phys. A 323, 403 (1979).
https:/​/​doi.org/​10.1016/​0375-9474(79)90117-9

[9] M.S. Byrd and N. Khaneja, Characterization of the positivity of the density matrix in terms of the coherence vector representation, Phys. Rev.A 68, 062322 (2003).
https:/​/​doi.org/​10.1103/​PhysRevA.68.062322

[10] G. Kimura, The Bloch vector for N-level systems, Phys. Lett. A 314, 339 (2003).
https:/​/​doi.org/​10.1016/​S0375-9601(03)00941-1

[11] G. Kimura and A. Kossakowski, The Bloch-vector space for $N$-level systems: the spherical-coordinate point of view, Open Syst. Inf. Dyn. 12, 207 (2005).
https:/​/​doi.org/​10.1007/​s11080-005-0919-y

[12] I.P. Mendaš, The classification of three-parameter density matrices for a qutrit, J. Phys. A: Math. .Gen. 39, 11313 (2006).
https:/​/​doi.org/​10.1088/​0305-4470/​39/​36/​012

[13] L.J. Boya and K. Dixit, Geometry of density matrix states, Phys. Rev. A 78, 042108 (2008).
https:/​/​doi.org/​10.1103/​PhysRevA.78.042108

[14] S. Vinjanampathy and A.R.P. Rau, Bloch sphere like construction of SU(3) Hamiltonians using Unitary Integration, J. Phys. A: Math. Theor. 42, 425303 (2009).
https:/​/​doi.org/​10.1088/​1751-8113/​42/​42/​425303

[15] C.F. Dunkl, P. Gawron, J.A. Holbrook, J.A. Miszczak, Z. Puchała, and K. Życzkowski, Numerical shadow and geometry of quantum states, J. Phys. A: Math. Theor. 44, 335301 (2011).
https:/​/​doi.org/​10.1088/​1751-8113/​44/​33/​335301

[16] P. Kurzyński, Multi-Bloch vector representation of the qutrit, Quantum Inf. Comp. 11, 361 (2011).
https:/​/​doi.org/​10.26421/​QIC11.5-6-1

[17] G. Sarbicki and I. Bengtsson, Dissecting the qutrit, J. Phys. A: Math. Theor. 46, 035306 (2012).
https:/​/​doi.org/​10.1088/​1751-8113/​46/​3/​035306

[18] I. Bengtsson, S. Weis, and K. Życzkowski, Geometry of the Set of Mixed Quantum States: An Apophatic Approach (Springer Basel, 2012) p. 175.
https:/​/​doi.org/​10.1007/​978-3-0348-0448-6_15

[19] G.N.M. Tabia and D.M. Appleby, Exploring the geometry of qutrit state space using symmetric informationally complete probabilities, Phys. Rev. A 88, 012131 (2013).
https:/​/​doi.org/​10.1103/​PhysRevA.88.012131

[20] S. Goyal, B.N. Simon, R. Singh, and S. Simon, Geometry of the generalized Bloch sphere for qutrits, J. Phys. A: Math. Theor. 49, 165203 (2016).
https:/​/​doi.org/​10.1088/​1751-8113/​49/​16/​165203

[21] P. Kurzyński, A. Kołodziejski, W. Laskowski, and M. Markiewicz, Three-dimensional visualization of a qutrit, Phys. Rev. A 93, 062126 (2016).
https:/​/​doi.org/​10.1103/​PhysRevA.93.062126

[22] K. Szymański, S. Weis, and K. Życzkowski, Classification of joint numerical ranges of three hermitian matrices of size three, Lin. Alg. Appl. 545, 148 (2018).
https:/​/​doi.org/​10.1016/​j.laa.2017.11.017

[23] J. Xie, A. Zhang, N. Cao, H. Xu, K. Zheng, Y.T. Poon, N.S. Sze, P. Xu, B. Zeng, and L. Zhang, Observing Geometry of Quantum States in a Three-Level System, Phys. Rev. Lett. 125, 150401 (2020).
https:/​/​doi.org/​10.1103/​PhysRevLett.125.150401

[24] S. Dogra, A. Vepsäläinen, and G.S. Paraoanu, Majorana representation of adiabatic and superadiabatic processes in three-level systems, Phys. Rev. Research 2, 043079 (2020).
https:/​/​doi.org/​10.1103/​PhysRevResearch.2.043079

[25] G. Sharma and S. Ghosh, Four-dimensional Bloch sphere representation of qutrits using Heisenberg-Weyl Operators, arXiv:2101.06408 [quant-ph] (2021).
arXiv:2101.06408

[26] E. Serrano-Ensástiga and D. Braun, Majorana representation for mixed states, Phys. Rev. A 101, 022332 (2020).
https:/​/​doi.org/​10.1103/​PhysRevA.101.022332

[27] R.A. Bertlmann and P. Krammer, Bloch vectors for qudits, Journal of Physics A: Mathematical and Theoretical 41, 235303 (2008).
https:/​/​doi.org/​10.1088/​1751-8113/​41/​23/​235303

[28] Note that we use a different normalization compared to that in Ref. Bengtsson_2012 because of a different choice of prefactor for the Hilbert-Schmidt norm.

[29] T. Baumgratz, M. Cramer, and M.B. Plenio, Quantifying Coherence, Phys. Rev. Lett. 113, 140401 (2014).
https:/​/​doi.org/​10.1103/​PhysRevLett.113.140401

[30] P. Rungta, V. Bužek, C.M. Caves, M. Hillery, and G.J. Milburn, Universal state inversion and concurrence in arbitrary dimensions, Phys. Rev. A 64, 042315 (2001).
https:/​/​doi.org/​10.1103/​PhysRevA.64.042315

[31] M. Horodecki and P. Horodecki, Reduction criterion of separability and limits for a class of distillation protocols, Phys. Rev. A 59, 4206 (1999).
https:/​/​doi.org/​10.1103/​PhysRevA.59.4206

[32] C. Eltschka and J. Siewert, Distribution of entanglement and correlations in all finite dimensions, Quantum 2, 64 (2018).
https:/​/​doi.org/​10.22331/​q-2018-05-22-64

[33] M. Grassl, L. Kong, Z. Wei, Z. Yin, and B. Zeng, Quantum Error-Correcting Codes for Qudit Amplitude Damping, IEEE Transactions on Information Theory 64, 4674 (2018).
https:/​/​doi.org/​10.1109/​TIT.2018.2790423

Cited by

[1] Giovanni Scala, Seyed Arash Ghoreishi, and Marcin Pawłowski, "Advantages of quantum communication revealed by the reexamination of hyperbit theory limitations", Physical Review A 109 2, 022230 (2024).

[2] Karol Życzkowski, Trends in Mathematics 105 (2023) ISBN:978-3-031-30283-1.

[3] Paul M. Alsing and Carlo Cafaro, "From the classical Frenet–Serret apparatus to the curvature and torsion of quantum-mechanical evolutions. Part I. Stationary Hamiltonians", International Journal of Geometric Methods in Modern Physics 21 08, 2450152 (2024).

[4] José J. Gil, Andreas Norrman, Ari T. Friberg, and Tero Setälä, "Descriptors of dimensionality for n × n density matrices", The European Physical Journal Plus 138 5, 476 (2023).

[5] Paul M. Alsing and Carlo Cafaro, "From the classical Frenet–Serret apparatus to the curvature and torsion of quantum-mechanical evolutions. Part II. Nonstationary Hamiltonians", International Journal of Geometric Methods in Modern Physics 21 08, 2450151 (2024).

[6] Gautam Sharma, Sibasish Ghosh, and Sk Sazim, "Bloch sphere analog of qudits using Heisenberg-Weyl Operators", Physica Scripta 99 4, 045105 (2024).

[7] Rotem Liss, Tal Mor, and Andreas Winter, "Geometry of entanglement and separability in Hilbert subspaces of dimension up to three", Letters in Mathematical Physics 114 3, 86 (2024).

[8] Michael J. Grabowecky, Christopher A. J. Pollack, Andrew R. Cameron, Robert W. Spekkens, and Kevin J. Resch, "Experimentally bounding deviations from quantum theory for a photonic three-level system using theory-agnostic tomography", Physical Review A 105 3, 032204 (2022).

[9] Asmae Benhemou, Toonyawat Angkhanawin, Charles S. Adams, Dan E. Browne, and Jiannis K. Pachos, "Universality of Z3 parafermions via edge-mode interaction and quantum simulation of topological space evolution with Rydberg atoms", Physical Review Research 5 2, 023076 (2023).

[10] Simon Morelli, Christopher Eltschka, Marcus Huber, and Jens Siewert, "Correlation constraints and the Bloch geometry of two qubits", Physical Review A 109 1, 012423 (2024).

[11] A. R. P. Rau, "Symmetries and Geometries of Qubits, and Their Uses", Symmetry 13 9, 1732 (2021).

[12] Shravan Shravan, Simon Morelli, Otfried Gühne, and Satoya Imai, "Geometry of two-body correlations in three-qubit states", arXiv:2309.09549, (2023).

[13] Rotem Liss, Tal Mor, and Andreas Winter, "Geometry of entanglement and separability in Hilbert subspaces of dimension up to three", arXiv:2309.05144, (2023).

[14] Lu Wei, Zhian Jia, Dagomir Kaszlikowski, and Sheng Tan, "Antilinear superoperator, quantum geometric invariance, and antilinear symmetry for higher-dimensional quantum systems", arXiv:2202.10989, (2022).

The above citations are from Crossref's cited-by service (last updated successfully 2024-07-04 04:52:24) and SAO/NASA ADS (last updated successfully 2024-07-04 04:52:25). The list may be incomplete as not all publishers provide suitable and complete citation data.