The group structure of dynamical transformations between quantum reference frames

Angel Ballesteros1, Flaminia Giacomini2, and Giulia Gubitosi3

1Departamento de Física, Universidad de Burgos, 09001 Burgos, Spain
2Perimeter Institute for Theoretical Physics, 31 Caroline St. N, Waterloo, Ontario, N2L 2Y5, Canada
3Dipartimento di Fisica Ettore Pancini, Università di Napoli Federico II, and INFN, Sezione di Napoli, Complesso Univ. Monte S. Angelo, I-80126 Napoli, Italy

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Recently, it was shown that when reference frames are associated to quantum systems, the transformation laws between such quantum reference frames need to be modified to take into account the quantum and dynamical features of the reference frames. This led to a relational description of the phase space variables of the quantum system of which the quantum reference frames are part of. While such transformations were shown to be symmetries of the system's Hamiltonian, the question remained unanswered as to whether they enjoy a group structure, similar to that of the Galilei group relating classical reference frames in quantum mechanics. In this work, we identify the canonical transformations on the phase space of the quantum systems comprising the quantum reference frames, and show that these transformations close a group structure defined by a Lie algebra, which is different from the usual Galilei algebra of quantum mechanics. We further find that the elements of this new algebra are in fact the building blocks of the quantum reference frames transformations previously identified, which we recover. Finally, we show how the transformations between classical reference frames described by the standard Galilei group symmetries can be obtained from the group of transformations between quantum reference frames by taking the zero limit of the parameter that governs the additional noncommutativity introduced by the quantum nature of inertial transformations.

► BibTeX data

► References

[1] Jean-Marc Lévy-Leblond. Galilei group and Galilean invariance. In Group theory and its applications, pages 221–299. Elsevier, 1971.

[2] Jean-Marc Lévy-Leblond. The pedagogical role and epistemological significance of group theory in quantum mechanics. Riv. Nuovo Cim., 4: 99–143, 1974.
https:/​/​doi.org/​10.1007/​BF02747079

[3] Yakir Aharonov and Leonard Susskind. Charge superselection rule. Phys. Rev., 155: 1428–1431, 1967a.
https:/​/​doi.org/​10.1103/​PhysRev.155.1428

[4] Yakir Aharonov and Leonard Susskind. Observability of the sign change of spinors under $2{\pi}$ rotations. Phys. Rev., 158: 1237–1238, 1967b.
https:/​/​doi.org/​10.1103/​PhysRev.158.1237

[5] Y. Aharonov and T. Kaufherr. Quantum frames of reference. Phys. Rev. D, 30: 368–385, 1984.
https:/​/​doi.org/​10.1103/​PhysRevD.30.368

[6] Stephen D. Bartlett, Terry Rudolph, and Robert W. Spekkens. Reference frames, superselection rules, and quantum information. Rev. Mod. Phys., 79: 555–609, 2007.
https:/​/​doi.org/​10.1103/​RevModPhys.79.555

[7] Stephen D Bartlett, Terry Rudolph, Robert W Spekkens, and Peter S Turner. Quantum communication using a bounded-size quantum reference frame. New J. Phys., 11 (6): 063013, 2009.
https:/​/​doi.org/​10.1088/​1367-2630/​11/​6/​063013

[8] Gilad Gour and Robert W Spekkens. The resource theory of quantum reference frames: manipulations and monotones. New J. Phys., 10 (3): 033023, 2008.
https:/​/​doi.org/​10.1088/​1367-2630/​10/​3/​033023

[9] Matthew C. Palmer, Florian Girelli, and Stephen D. Bartlett. Changing quantum reference frames. Phys. Rev. A, 89: 052121, 2014.
https:/​/​doi.org/​10.1103/​PhysRevA.89.052121

[10] Stephen D Bartlett, Terry Rudolph, Robert W Spekkens, and Peter S Turner. Degradation of a quantum reference frame. New J. Phys., 8 (4): 58, 2006.
https:/​/​doi.org/​10.1088/​1367-2630/​8/​4/​058

[11] Alexander R. H. Smith, Marco Piani, and Robert B. Mann. Quantum reference frames associated with noncompact groups: The case of translations and boosts and the role of mass. Phys. Rev. A, 94: 012333, 2016.
https:/​/​doi.org/​10.1103/​PhysRevA.94.012333

[12] David Poulin and Jon Yard. Dynamics of a quantum reference frame. New J. Phys., 9 (5): 156, 2007.
https:/​/​doi.org/​10.1088/​1367-2630/​9/​5/​156

[13] Michael Skotiniotis, Borzu Toloui, Ian T. Durham, and Barry C. Sanders. Quantum Frameness for $CPT$ Symmetry. Phys. Rev. Lett., 111: 020504, 2013.
https:/​/​doi.org/​10.1103/​PhysRevLett.111.020504

[14] Renato M Angelo, Nicolas Brunner, Sandu Popescu, Anthony J Short, and Paul Skrzypczyk. Physics within a quantum reference frame. J. Phys. A, 44 (14): 145304, 2011.
https:/​/​doi.org/​10.1088/​1751-8113/​44/​14/​145304

[15] R M Angelo and A D Ribeiro. Kinematics and dynamics in noninertial quantum frames of reference. J. Phys. A, 45 (46): 465306, 2012.
https:/​/​doi.org/​10.1088/​1751-8113/​45/​46/​465306

[16] S. T. Pereira and R. M. Angelo. Galilei covariance and Einstein's equivalence principle in quantum reference frames. Phys. Rev. A, 91: 022107, 2015.
https:/​/​doi.org/​10.1103/​PhysRevA.91.022107

[17] Bryce S DeWitt. Quantum theory of gravity. I. The canonical theory. Physical Review, 160 (5): 1113, 1967.
https:/​/​doi.org/​10.1103/​PhysRev.160.1113

[18] Carlo Rovelli. Quantum reference systems. Class. Quant. Grav., 8 (2): 317, 1991.
https:/​/​doi.org/​10.1088/​0264-9381/​8/​2/​012

[19] Florian Girelli and David Poulin. Quantum reference frames and deformed symmetries. Phys. Rev. D, 77: 104012, 2008.
https:/​/​doi.org/​10.1103/​PhysRevD.77.104012

[20] Lucien Hardy. The construction interpretation: a conceptual road to quantum gravity. arXiv preprint arXiv:1807.10980, 2018.
arXiv:1807.10980

[21] Lucien Hardy. Implementation of the Quantum Equivalence Principle. In Progress and Visions in Quantum Theory in view of Gravity, pages 189–220. Springer, 2020.
https:/​/​doi.org/​10.1007/​978-3-030-38941-3

[22] Flaminia Giacomini and Časlav Brukner. Einstein's Equivalence principle for superpositions of gravitational fields. arXiv preprint arXiv:2012.13754, 2020.
arXiv:2012.13754

[23] Carlo Rovelli. Relational quantum mechanics. Int. J. Theor. Phys., 35 (8): 1637–1678, 1996.
https:/​/​doi.org/​10.1007/​BF02302261

[24] Takayuki Miyadera, Leon Loveridge, and Paul Busch. Approximating relational observables by absolute quantities: a quantum accuracy-size trade-off. J. Phys. A, 49 (18): 185301, 2016.
https:/​/​doi.org/​10.1088/​1751-8113/​49/​18/​185301

[25] Leon Loveridge, Paul Busch, and Takayuki Miyadera. Relativity of quantum states and observables. EPL (Europhysics Letters), 117 (4): 40004, 2017.
https:/​/​doi.org/​10.1209/​0295-5075/​117/​40004

[26] Leon Loveridge, Takayuki Miyadera, and Paul Busch. Symmetry, reference frames, and relational quantities in quantum mechanics. Found. Phys., 48 (2): 135–198, 2018.
https:/​/​doi.org/​10.1007/​s10701-018-0138-3

[27] Jacques Pienaar. A relational approach to quantum reference frames for spins. arXiv preprint arXiv:1601.07320, 2016.
arXiv:1601.07320

[28] Flaminia Giacomini, Esteban Castro-Ruiz, and Časlav Brukner. Quantum mechanics and the covariance of physical laws in quantum reference frames. Nat. Commun., 10 (1): 494, 2019a.
https:/​/​doi.org/​10.1038/​s41467-018-08155-0

[29] Augustin Vanrietvelde, Philipp A Höhn, Flaminia Giacomini, and Esteban Castro-Ruiz. A change of perspective: switching quantum reference frames via a perspective-neutral framework. Quantum, 4: 225, 2020.
https:/​/​doi.org/​10.22331/​q-2020-01-27-225

[30] Augustin Vanrietvelde, Philipp A Höhn, and Flaminia Giacomini. Switching quantum reference frames in the N-body problem and the absence of global relational perspectives. arXiv preprint arXiv:1809.05093, 2018.
arXiv:1809.05093

[31] Jianhao M Yang. Switching Quantum Reference Frames for Quantum Measurement. Quantum, 4: 283, 2020.
https:/​/​doi.org/​10.22331/​qv-2020-06-29-40

[32] Flaminia Giacomini, Esteban Castro-Ruiz, and Časlav Brukner. Relativistic quantum reference frames: the operational meaning of spin. Phys. Rev. Lett., 123 (9): 090404, 2019b.
https:/​/​doi.org/​10.1103/​PhysRevLett.123.090404

[33] Lucas F Streiter, Flaminia Giacomini, and Časlav Brukner. A Relativistic Bell Test within Quantum Reference Frames. arXiv preprint arXiv:2008.03317, 2020.
arXiv:2008.03317

[34] Philipp A Höhn and Augustin Vanrietvelde. How to switch between relational quantum clocks. arXiv preprint arXiv:1810.04153, 2018.
https:/​/​doi.org/​10.1088/​1367-2630/​abd1ac
arXiv:1810.04153

[35] Philipp A Höhn, Alexander RH Smith, and Maximilian PE Lock. The trinity of relational quantum dynamics. arXiv preprint arXiv:1912.00033, 2019.
arXiv:1912.00033

[36] Esteban Castro-Ruiz, Flaminia Giacomini, Alessio Belenchia, and Časlav Brukner. Quantum clocks and the temporal localisability of events in the presence of gravitating quantum systems. Nat. Commun., 11 (1): 1–12, 2020.
https:/​/​doi.org/​10.1038/​s41467-020-16013-1

[37] Philipp A Höhn, Alexander RH Smith, and Maximilian PE Lock. Equivalence of approaches to relational quantum dynamics in relativistic settings. arXiv preprint arXiv:2007.00580, 2020.
arXiv:2007.00580

[38] Philipp A Höhn. Switching internal times and a new perspective on the wave function of the universe. Universe, 5 (5): 116, 2019.
https:/​/​doi.org/​10.3390/​universe5050116

[39] Anne-Catherine de la Hamette and Thomas D. Galley. Quantum reference frames for general symmetry groups. Quantum, 4: 367, November 2020.
https:/​/​doi.org/​10.22331/​q-2020-11-30-367

[40] Marius Krumm, Philipp A. Höhn, and Markus P. Müller. Quantum reference frame transformations as symmetries and the paradox of the third particle. arXiv preprint arXiv:2011.01951, 2020.
arXiv:2011.01951

[41] Kurt Bernardo Wolf. Geometric Optics on Phase Space. Springer-Verlag, 2004.

[42] Vyjayanthi Chari and Andrew Pressley. A guide to quantum groups. Cambridge University Press, 1995.

[43] Robert Gilmore. Lie groups, Lie algebras and some of their applications. John Wiley & Sons, 1974.

[44] Marcos Moshinsky and Christiane Quesne. Linear canonical transformations and their unitary representations. J. Math. Phys., 12 (8): 1772–1780, 1971.
https:/​/​doi.org/​10.1063/​1.1665805

[45] Nathan Jacobson. Lie algebras. John Wiley & Sons, 1966.

[46] Robert H Dicke. Coherence in spontaneous radiation processes. Phys. Rev., 93 (1): 99, 1954.
https:/​/​doi.org/​10.1103/​PhysRev.93.99

[47] Andrei B Klimov and Sergei M Chumakov. A group-theoretical approach to quantum optics: models of atom-field interactions. John Wiley & Sons, 2009.
https:/​/​doi.org/​10.1002/​9783527624003

[48] Angel Ballesteros and Sergei M Chumakov. On the spectrum of a Hamiltonian defined on $su_q(2)$ and quantum optical models. J. Phys. A, 32 (35): 6261–6269, 1999.
https:/​/​doi.org/​10.1088/​0305-4470/​32/​35/​305

[49] Angel Ballesteros, Giulia Gubitosi, and Francisco J. Herranz. Lorentzian Snyder spacetimes and their Galilei and Carroll limits from projective geometry. Class. Quant. Grav., 37 (19): 195021, 2020.
https:/​/​doi.org/​10.1088/​1361-6382/​aba668

Cited by

[1] Jianhao M. Yang, "Quantum Mechanics from Relational Properties, Part III: Path Integral Implementation", arXiv:1807.01583.

[2] Philipp A. Hoehn, Maximilian P. E. Lock, Shadi Ali Ahmad, Alexander R. H. Smith, and Thomas D. Galley, "Quantum Relativity of Subsystems", arXiv:2103.01232.

[3] Flaminia Giacomini, "Spacetime Quantum Reference Frames and superpositions of proper times", arXiv:2101.11628.

[4] Marion Mikusch, Luis C. Barbado, and Časlav Brukner, "Transformation of Spin in Quantum Reference Frames", arXiv:2103.05022.

[5] Ismael L. Paiva, Augusto C. Lobo, and Eliahu Cohen, "Flow of time during energy measurements and the resulting time-energy uncertainty relations", arXiv:2106.00523.

The above citations are from SAO/NASA ADS (last updated successfully 2021-06-16 01:31:06). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2021-06-16 01:31:04).