Analyzing the barren plateau phenomenon in training quantum neural networks with the ZX-calculus

Chen Zhao and Xiao-Shan Gao

Academy of Mathematics and Systems Science, Chinese Academy of Sciences
University of Chinese Academy of Sciences

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


In this paper, we propose a general scheme to analyze the gradient vanishing phenomenon, also known as the barren plateau phenomenon, in training quantum neural networks with the ZX-calculus. More precisely, we extend the barren plateaus theorem from unitary 2-design circuits to any parameterized quantum circuits under certain reasonable assumptions. The main technical contribution of this paper is representing certain integrations as ZX-diagrams and computing them with the ZX-calculus. The method is used to analyze four concrete quantum neural networks with different structures. It is shown that, for the hardware efficient ansatz and the MPS-inspired ansatz, there exist barren plateaus, while for the QCNN ansatz and the tree tensor network ansatz, there exists no barren plateau.

► BibTeX data

► References

[1] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J. Love, Alán Aspuru-Guzik, and Jeremy L. O'Brien. A variational eigenvalue solver on a photonic quantum processor. Nature Communications, 5 (1): 4213, Jul 2014. ISSN 2041-1723. 10.1038/​ncomms5213.

[2] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M. Chow, and Jay M. Gambetta. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 549 (7671): 242–246, Sep 2017. ISSN 1476-4687. 10.1038/​nature23879.

[3] Yudong Cao, Jonathan Romero, Jonathan P. Olson, Matthias Degroote, Peter D. Johnson, Mária Kieferová, Ian D. Kivlichan, Tim Menke, Borja Peropadre, Nicolas P. D. Sawaya, Sukin Sim, Libor Veis, and Alán Aspuru-Guzik. Quantum chemistry in the age of quantum computing. Chemical Reviews, 119 (19): 10856–10915, Oct 2019. ISSN 0009-2665. 10.1021/​acs.chemrev.8b00803.

[4] Bela Bauer, Sergey Bravyi, Mario Motta, and Garnet Kin-Lic Chan. Quantum algorithms for quantum chemistry and quantum materials science. Chemical Reviews, 120 (22): 12685–12717, Nov 2020. ISSN 0009-2665. 10.1021/​acs.chemrev.9b00829.

[5] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028, 2014.

[6] Leo Zhou, Sheng-Tao Wang, Soonwon Choi, Hannes Pichler, and Mikhail D. Lukin. Quantum approximate optimization algorithm: Performance, mechanism, and implementation on near-term devices. Phys. Rev. X, 10: 021067, Jun 2020. 10.1103/​PhysRevX.10.021067.

[7] Jin-Guo Liu and Lei Wang. Differentiable learning of quantum circuit born machines. Phys. Rev. A, 98: 062324, Dec 2018. 10.1103/​PhysRevA.98.062324.

[8] Seth Lloyd and Christian Weedbrook. Quantum generative adversarial learning. Phys. Rev. Lett., 121: 040502, Jul 2018. 10.1103/​PhysRevLett.121.040502.

[9] Vojtěch Havlíček, Antonio D. Córcoles, Kristan Temme, Aram W. Harrow, Abhinav Kandala, Jerry M. Chow, and Jay M. Gambetta. Supervised learning with quantum-enhanced feature spaces. Nature, 567 (7747): 209–212, Mar 2019. ISSN 1476-4687. 10.1038/​s41586-019-0980-2.

[10] Maria Schuld, Alex Bocharov, Krysta M. Svore, and Nathan Wiebe. Circuit-centric quantum classifiers. Phys. Rev. A, 101: 032308, Mar 2020. 10.1103/​PhysRevA.101.032308.

[11] Marcello Benedetti, Erika Lloyd, Stefan Sack, and Mattia Fiorentini. Parameterized quantum circuits as machine learning models. Quantum Science and Technology, 4 (4): 043001, nov 2019. 10.1088/​2058-9565/​ab4eb5.

[12] Chen Zhao and Xiao-Shan Gao. QDNN: DNN with quantum neural network layers. arXiv preprint arXiv:1912.12660, 2019.

[13] John Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2: 79, August 2018. ISSN 2521-327X. 10.22331/​q-2018-08-06-79.

[14] Maria Schuld, Ville Bergholm, Christian Gogolin, Josh Izaac, and Nathan Killoran. Evaluating analytic gradients on quantum hardware. Phys. Rev. A, 99: 032331, Mar 2019. 10.1103/​PhysRevA.99.032331.

[15] Andrea Mari, Thomas R. Bromley, and Nathan Killoran. Estimating the gradient and higher-order derivatives on quantum hardware. Phys. Rev. A, 103: 012405, Jan 2021. 10.1103/​PhysRevA.103.012405.

[16] James Stokes, Josh Izaac, Nathan Killoran, and Giuseppe Carleo. Quantum Natural Gradient. Quantum, 4: 269, May 2020. ISSN 2521-327X. 10.22331/​q-2020-05-25-269.

[17] Jonas M. Kübler, Andrew Arrasmith, Lukasz Cincio, and Patrick J. Coles. An Adaptive Optimizer for Measurement-Frugal Variational Algorithms. Quantum, 4: 263, May 2020. ISSN 2521-327X. 10.22331/​q-2020-05-11-263.

[18] Ken M. Nakanishi, Keisuke Fujii, and Synge Todo. Sequential minimal optimization for quantum-classical hybrid algorithms. Phys. Rev. Research, 2: 043158, Oct 2020. 10.1103/​PhysRevResearch.2.043158.

[19] Jarrod R. McClean, Sergio Boixo, Vadim N. Smelyanskiy, Ryan Babbush, and Hartmut Neven. Barren plateaus in quantum neural network training landscapes. Nature Communications, 9 (1): 4812, Nov 2018. ISSN 2041-1723. 10.1038/​s41467-018-07090-4.

[20] Zoë Holmes, Kunal Sharma, M. Cerezo, and Patrick J. Coles. Connecting ansatz expressibility to gradient magnitudes and barren plateaus, 2021. https:/​/​​abs/​2101.02138.

[21] Marco Cerezo, Akira Sone, Tyler Volkoff, Lukasz Cincio, and Patrick J. Coles. Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature Communications, 12 (1): 1791, Mar 2021. ISSN 2041-1723. 10.1038/​s41467-021-21728-w.

[22] Carlos Ortiz Marrero, Mária Kieferová, and Nathan Wiebe. Entanglement induced barren plateaus. arXiv preprint arXiv:2010.15968, 2020.

[23] Taylor L. Patti, Khadijeh Najafi, Xun Gao, and Susanne F. Yelin. Entanglement devised barren plateau mitigation, 2020. https:/​/​​abs/​2012.12658.

[24] Kunal Sharma, M. Cerezo, Lukasz Cincio, and Patrick J. Coles. Trainability of dissipative perceptron-based quantum neural networks, 2020. https:/​/​​abs/​2005.12458.

[25] Samson Wang, Enrico Fontana, Marco Cerezo, Kunal Sharma, Akira Sone, Lukasz Cincio, and Patrick J Coles. Noise-induced barren plateaus in variational quantum algorithms. arXiv preprint arXiv:2007.14384, 2020.

[26] Edward Grant, Leonard Wossnig, Mateusz Ostaszewski, and Marcello Benedetti. An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum, 3: 214, December 2019. ISSN 2521-327X. 10.22331/​q-2019-12-09-214.

[27] Tyler Volkoff and Patrick J Coles. Large gradients via correlation in random parameterized quantum circuits. Quantum Science and Technology, 6 (2): 025008, jan 2021. 10.1088/​2058-9565/​abd891.

[28] Bob Coecke and Ross Duncan. Interacting quantum observables. In Proceedings of the 37th International Colloquium on Automata, Languages and Programming (ICALP), Lecture Notes in Computer Science, 2008. 10.1007/​978-3-540-70583-3_25.

[29] Bob Coecke and Ross Duncan. Interacting quantum observables: categorical algebra and diagrammatics. New Journal of Physics, 13: 043016, 2011. 10.1088/​1367-2630/​13/​4/​043016.

[30] Ross Duncan, Aleks Kissinger, Simon Pedrix, and John van de Wetering. Graph-theoretic Simplification of Quantum Circuits with the ZX-calculus. Quantum, 4: 279, 6 2020. ISSN 2521-327X. 10.22331/​q-2020-06-04-279.

[31] Aleks Kissinger and John van de Wetering. Reducing T-count with the ZX-calculus. Physical Review A, 102: 022406, 8 2020. 10.1103/​PhysRevA.102.022406.

[32] Alexander Cowtan, Silas Dilkes, Ross Duncan, Will Simmons, and Seyon Sivarajah. Phase Gadget Synthesis for Shallow Circuits. In Bob Coecke and Matthew Leifer, editors, Proceedings 16th International Conference on Quantum Physics and Logic, Chapman University, Orange, CA, USA., 10-14 June 2019, volume 318 of Electronic Proceedings in Theoretical Computer Science, pages 213–228. Open Publishing Association, 2020. 10.4204/​EPTCS.318.13.

[33] Michael Hanks, Marta P. Estarellas, William J. Munro, and Kae Nemoto. Effective Compression of Quantum Braided Circuits Aided by ZX-Calculus. Physical Review X, 10: 041030, 2020. 10.1103/​PhysRevX.10.041030.

[34] Ross Duncan. A graphical approach to measurement-based quantum computing. In Mehrnoosh Sadrzadeh Chris Heunen and Edward Grefenstette, editors, Quantum Physics and Linguistics: A Compositional, Diagrammatic Discourse. 2013. ISBN 9780199646296. 10.1093/​acprof:oso/​9780199646296.001.0001.

[35] Miriam Backens, Hector Miller-Bakewell, Giovanni de Felice, Leo Lobski, and John van de Wetering. There and back again: A circuit extraction tale. arXiv preprint arXiv:2003.01664, 2020. 10.22331/​q-2021-03-25-421.

[36] Nicholas Chancellor, Aleks Kissinger, Joschka Roffe, Stefan Zohren, and Dominic Horsman. Graphical Structures for Design and Verification of Quantum Error Correction. arXiv preprint arXiv:1611.08012, 2016.

[37] Niel de Beaudrap and Dominic Horsman. The ZX calculus is a language for surface code lattice surgery. Quantum, 4: 218, January 2020. ISSN 2521-327X. 10.22331/​q-2020-01-09-218.

[38] Richard D. P. East, John van de Wetering, Nicholas Chancellor, and Adolfo G. Grushin. AKLT-states as ZX-diagrams: diagrammatic reasoning for quantum states. arXiv preprint arXiv:2012.01219, 2020.

[39] Richie Yeung. Diagrammatic design and study of ansätze for quantum machine learning, 2020. https:/​/​​abs/​2011.11073.

[40] Bob Coecke, Giovanni de Felice, Konstantinos Meichanetzidis, and Alexis Toumi. Foundations for Near-Term Quantum Natural Language Processing. arXiv preprint arXiv:2012.03755, 2020.

[41] Iris Cong, Soonwon Choi, and Mikhail D. Lukin. Quantum convolutional neural networks. Nature Physics, 15 (12): 1273–1278, Dec 2019. ISSN 1745-2481. 10.1038/​s41567-019-0648-8.

[42] Edward Grant, Marcello Benedetti, Shuxiang Cao, Andrew Hallam, Joshua Lockhart, Vid Stojevic, Andrew G. Green, and Simone Severini. Hierarchical quantum classifiers. npj Quantum Information, 4 (1): 65, Dec 2018. ISSN 2056-6387. 10.1038/​s41534-018-0116-9.

[43] Jin-Guo Liu, Yi-Hong Zhang, Yuan Wan, and Lei Wang. Variational quantum eigensolver with fewer qubits. Phys. Rev. Research, 1: 023025, Sep 2019. 10.1103/​PhysRevResearch.1.023025.

[44] Bob Coecke and Aleks Kissinger. Picturing Quantum Processes. Cambridge University Press, 2017. 10.1007/​978-3-319-91376-6_6.

[45] John van de Wetering. ZX-calculus for the working quantum computer scientist. arXiv preprint arXiv:2012.13966, 2020.

[46] Miriam Backens. The ZX-calculus is complete for stabilizer quantum mechanics. New Journal of Physics, 16 (9): 093021, 2014. 10.1088/​1367-2630/​16/​9/​093021.

[47] Miriam Backens. Making the stabilizer ZX-calculus complete for scalars. In Chris Heunen, Peter Selinger, and Jamie Vicary, editors, Proceedings of the 12th International Workshop on Quantum Physics and Logic (QPL 2015), volume 195 of Electronic Proceedings in Theoretical Computer Science, pages 17–32, 2015. 10.4204/​EPTCS.195.2.

[48] Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. A Complete Axiomatisation of the ZX-Calculus for Clifford+T Quantum Mechanics. In Proceedings of the 33rd Annual ACM/​IEEE Symposium on Logic in Computer Science, LICS '18, pages 559–568, New York, NY, USA, 2018a. ACM. ISBN 978-1-4503-5583-4. 10.1145/​3209108.3209131.

[49] Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. Diagrammatic Reasoning Beyond Clifford+T Quantum Mechanics. In Proceedings of the 33rd Annual ACM/​IEEE Symposium on Logic in Computer Science, LICS '18, pages 569–578, New York, NY, USA, 2018b. ACM. ISBN 978-1-4503-5583-4. 10.1145/​3209108.3209139.

[50] Amar Hadzihasanovic, Kang Feng Ng, and Quanlong Wang. Two complete axiomatisations of pure-state qubit quantum computing. In Proceedings of the 33rd Annual ACM/​IEEE Symposium on Logic in Computer Science, LICS '18, page 502–511, New York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450355834. 10.1145/​3209108.3209128.

[51] Quanlong Wang. Completeness of the ZX-calculus. PhD thesis, University of Oxford, 2018.

[52] Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. Completeness of the zx-calculus. Logical Methods in Computer Science, 6 2020. 10.23638/​LMCS-16(2:11)2020.

[53] Kaining Zhang, Min-Hsiu Hsieh, Liu Liu, and Dacheng Tao. Toward trainability of quantum neural networks. arXiv preprint arXiv:2011.06258, 2020.

[54] Arthur Pesah, M Cerezo, Samson Wang, Tyler Volkoff, Andrew T Sornborger, and Patrick J Coles. Absence of barren plateaus in quantum convolutional neural networks. arXiv preprint arXiv:2011.02966, 2020.

[55] F. Verstraete, V. Murg, and J.I. Cirac. Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems. Advances in Physics, 57 (2): 143–224, 2008. 10.1080/​14789940801912366.

[56] Zhao-Yu Han, Jun Wang, Heng Fan, Lei Wang, and Pan Zhang. Unsupervised generative modeling using matrix product states. Phys. Rev. X, 8: 031012, Jul 2018. 10.1103/​PhysRevX.8.031012.

Cited by

[1] Cenk Tüysüz, Carla Rieger, Kristiane Novotny, Bilge Demirköz, Daniel Dobos, Karolos Potamianos, Sofia Vallecorsa, Jean-Roch Vlimant, and Richard Forster, "Hybrid quantum classical graph neural networks for particle track reconstruction", Quantum Machine Intelligence 3 2, 29 (2021).

[2] Valentin Heyraud, Zejian Li, Kaelan Donatella, Alexandre Le Boité, and Cristiano Ciuti, "Efficient Estimation of Trainability for Variational Quantum Circuits", PRX Quantum 4 4, 040335 (2023).

[3] Han Qi, Lei Wang, Hongsheng Zhu, Abdullah Gani, and Changqing Gong, "The barren plateaus of quantum neural networks: review, taxonomy and trends", Quantum Information Processing 22 12, 435 (2023).

[4] Marcello Benedetti, Brian Coyle, Mattia Fiorentini, Michael Lubasch, and Matthias Rosenkranz, "Variational Inference with a Quantum Computer", Physical Review Applied 16 4, 044057 (2021).

[5] Mo Kordzanganeh, Pavel Sekatski, Leonid Fedichkin, and Alexey Melnikov, "An exponentially-growing family of universal quantum circuits", Machine Learning: Science and Technology 4 3, 035036 (2023).

[6] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, Yong-Jian Han, and Guo-Ping Guo, "Mitigating barren plateaus with transfer-learning-inspired parameter initializations", New Journal of Physics 25 1, 013039 (2023).

[7] Yabo Wang and Bo Qi, 2023 42nd Chinese Control Conference (CCC) 6771 (2023) ISBN:978-988-75815-4-3.

[8] Mohammad Kordzanganeh, Markus Buchberger, Basil Kyriacou, Maxim Povolotskii, Wilhelm Fischer, Andrii Kurkin, Wilfrid Somogyi, Asel Sagingalieva, Markus Pflitsch, and Alexey Melnikov, "Benchmarking Simulated and Physical Quantum Processing Units Using Quantum and Hybrid Algorithms", Advanced Quantum Technologies 6 8, 2300043 (2023).

[9] Bobak Toussi Kiani, Giacomo De Palma, Milad Marvian, Zi-Wen Liu, and Seth Lloyd, "Learning quantum data with the quantum earth mover’s distance", Quantum Science and Technology 7 4, 045002 (2022).

[10] Junyu Liu, Khadijeh Najafi, Kunal Sharma, Francesco Tacchino, Liang Jiang, and Antonio Mezzacapo, "Analytic Theory for the Dynamics of Wide Quantum Neural Networks", Physical Review Letters 130 15, 150601 (2023).

[11] Alexey Melnikov, Mohammad Kordzanganeh, Alexander Alodjants, and Ray-Kuang Lee, "Quantum machine learning: from physics to software engineering", Advances in Physics: X 8 1, 2165452 (2023).

[12] Ricardo Daniel Monteiro Simoes, Patrick Huber, Nicola Meier, Nikita Smailov, Rudolf M. Fuchslin, and Kurt Stockinger, "Experimental Evaluation of Quantum Machine Learning Algorithms", IEEE Access 11, 6197 (2023).

[13] Kunal Sharma, M. Cerezo, Lukasz Cincio, and Patrick J. Coles, "Trainability of Dissipative Perceptron-Based Quantum Neural Networks", Physical Review Letters 128 18, 180505 (2022).

[14] Hongsheng Zhu, Changqing Gong, Abdullah Gani, and Han Qi, Proceedings of the 2023 15th International Conference on Machine Learning and Computing 485 (2023) ISBN:9781450398411.

[15] Cenk Tüysüz, Giuseppe Clemente, Arianna Crippa, Tobias Hartung, Stefan Kühn, and Karl Jansen, "Classical splitting of parametrized quantum circuits", Quantum Machine Intelligence 5 2, 34 (2023).

[16] Hans-Martin Rieser, Frank Köster, and Arne Peter Raulf, "Tensor networks for quantum machine learning", Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 479 2275, 20230218 (2023).

[17] Razin A. Shaikh, Quanlong Wang, and Richie Yeung, "How to Sum and Exponentiate Hamiltonians in ZXW Calculus", Electronic Proceedings in Theoretical Computer Science 394, 236 (2023).

[18] Tobias Stollenwerk and Stuart Hadfield, "Diagrammatic Analysis for Parameterized Quantum Circuits", Electronic Proceedings in Theoretical Computer Science 394, 262 (2023).

[19] Chen Zhao and Xiao-Shan Gao, "QDNN: deep neural networks with quantum layers", Quantum Machine Intelligence 3 1, 15 (2021).

[20] Enrique Cervero Martín, Kirill Plekhanov, and Michael Lubasch, "Barren plateaus in quantum tensor network optimization", Quantum 7, 974 (2023).

[21] Duc Tuan Hoang, Friederike Metz, Andreas Thomasen, Tran Duong Anh-Tai, Thomas Busch, and Thomás Fogarty, "Variational quantum algorithm for ergotropy estimation in quantum many-body batteries", Physical Review Research 6 1, 013038 (2024).

[22] Supanut Thanasilp, Samson Wang, Nhat Anh Nghiem, Patrick Coles, and Marco Cerezo, "Subtleties in the trainability of quantum machine learning models", Quantum Machine Intelligence 5 1, 21 (2023).

[23] Weikang Li and Dong-Ling Deng, "Recent advances for quantum classifiers", Science China Physics, Mechanics & Astronomy 65 2, 220301 (2022).

[24] Reza Haghshenas, Johnnie Gray, Andrew C. Potter, and Garnet Kin-Lic Chan, "Variational Power of Quantum Circuit Tensor Networks", Physical Review X 12 1, 011047 (2022).

[25] Y. S. Teo, "Optimized numerical gradient and Hessian estimation for variational quantum algorithms", Physical Review A 107 4, 042421 (2023).

[26] Jacob L. Cybulski and Thanh Nguyen, "Impact of barren plateaus countermeasures on the quantum neural network capacity to learn", Quantum Information Processing 22 12, 442 (2023).

[27] Martin Larocca, Piotr Czarnik, Kunal Sharma, Gopikrishnan Muraleedharan, Patrick J. Coles, and M. Cerezo, "Diagnosing Barren Plateaus with Tools from Quantum Optimal Control", Quantum 6, 824 (2022).

[28] Zidu Liu, Pei-Xin Shen, Weikang Li, L-M Duan, and Dong-Ling Deng, "Quantum capsule networks", Quantum Science and Technology 8 1, 015016 (2023).

[29] M. Bilkis, M. Cerezo, Guillaume Verdon, Patrick J. Coles, and Lukasz Cincio, "A semi-agnostic ansatz with variable structure for variational quantum algorithms", Quantum Machine Intelligence 5 2, 43 (2023).

[30] Zidu Liu, Li-Wei Yu, L.-M. Duan, and Dong-Ling Deng, "Presence and Absence of Barren Plateaus in Tensor-Network Based Machine Learning", Physical Review Letters 129 27, 270501 (2022).

[31] Hiroshi C. Watanabe, Rudy Raymond, Yu-Ya Ohnishi, Eriko Kaminishi, and Michihiko Sugawara, "Optimizing Parameterized Quantum Circuits With Free-Axis Single-Qubit Gates", IEEE Transactions on Quantum Engineering 4, 1 (2023).

[32] Hiroshi C. Watanabe, Rudy Raymond, Yu-Ya Ohnishi, Eriko Kaminishi, and Michihiko Sugawara, 2021 IEEE International Conference on Quantum Computing and Engineering (QCE) 100 (2021) ISBN:978-1-6654-1691-7.

[33] Filippo Bonchi, Alessandro Di Giorgio, and Alessio Santamaria, "Deconstructing the Calculus of Relations with Tape Diagrams", Proceedings of the ACM on Programming Languages 7 POPL, 1864 (2023).

[34] Roy J. Garcia, Chen Zhao, Kaifeng Bu, and Arthur Jaffe, "Barren plateaus from learning scramblers with local cost functions", Journal of High Energy Physics 2023 1, 90 (2023).

[35] Manpreet Singh Jattana, Fengping Jin, Hans De Raedt, and Kristel Michielsen, "Improved Variational Quantum Eigensolver Via Quasidynamical Evolution", Physical Review Applied 19 2, 024047 (2023).

[36] Boldizsár Poór, Robert I. Booth, Titouan Carette, John van de Wetering, and Lia Yeh, "The Qupit Stabiliser ZX-travaganza: Simplified Axioms, Normal Forms and Graph-Theoretic Simplification", Electronic Proceedings in Theoretical Computer Science 384, 220 (2023).

[37] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, Shan You, and Dacheng Tao, "Learnability of Quantum Neural Networks", PRX Quantum 2 4, 040337 (2021).

[38] Zhenhou Hong, Jianzong Wang, Xiaoyang Qu, Chendong Zhao, Wei Tao, and Jing Xiao, 2022 International Joint Conference on Neural Networks (IJCNN) 01 (2022) ISBN:978-1-7281-8671-9.

[39] Qiang Miao and Thomas Barthel, "Isometric tensor network optimization for extensive Hamiltonians is free of barren plateaus", Physical Review A 109 5, L050402 (2024).

[40] Supanut Thanasilp, Samson Wang, Nhat A. Nghiem, Patrick J. Coles, and M. Cerezo, "Subtleties in the trainability of quantum machine learning models", arXiv:2110.14753, (2021).

[41] Lucas Slattery and Bryan K. Clark, "Quantum Circuits For Two-Dimensional Isometric Tensor Networks", arXiv:2108.02792, (2021).

[42] Hao-Kai Zhang, Shuo Liu, and Shi-Xin Zhang, "Absence of Barren Plateaus in Finite Local-Depth Circuits with Long-Range Entanglement", Physical Review Letters 132 15, 150603 (2024).

[43] Alexis Toumi, Richie Yeung, and Giovanni de Felice, "Diagrammatic Differentiation for Quantum Machine Learning", arXiv:2103.07960, (2021).

[44] Razin A. Shaikh, Quanlong Wang, and Richie Yeung, "How to Sum and Exponentiate Hamiltonians in ZXW Calculus", arXiv:2212.04462, (2022).

[45] Weiyuan Gong, Dong Yuan, Weikang Li, and Dong-Ling Deng, "Enhancing quantum adversarial robustness by randomized encodings", Physical Review Research 6 2, 023020 (2024).

[46] Tobias Stollenwerk and Stuart Hadfield, "Diagrammatic Analysis for Parameterized Quantum Circuits", arXiv:2204.01307, (2022).

[47] Bob Coecke, Dominic Horsman, Aleks Kissinger, and Quanlong Wang, "Kindergarden quantum mechanics graduates (...or how I learned to stop gluing LEGO together and love the ZX-calculus)", arXiv:2102.10984, (2021).

[48] Richard D. P. East, John van de Wetering, Nicholas Chancellor, and Adolfo G. Grushin, "AKLT-states as ZX-diagrams: diagrammatic reasoning for quantum states", arXiv:2012.01219, (2020).

[49] Emmanuel Jeandel, Simon Perdrix, and Margarita Veshchezerova, "Addition and Differentiation of ZX-diagrams", arXiv:2202.11386, (2022).

[50] Boldizsár Poór, Robert I. Booth, Titouan Carette, John van de Wetering, and Lia Yeh, "The Qupit Stabiliser ZX-travaganza: Simplified Axioms, Normal Forms and Graph-Theoretic Simplification", arXiv:2306.05204, (2023).

[51] Richard D. P. East, John van de Wetering, Nicholas Chancellor, and Adolfo G. Grushin, "AKLT-States as ZX-Diagrams: Diagrammatic Reasoning for Quantum States", PRX Quantum 3 1, 010302 (2022).

[52] Hiroshi C. Watanabe, Rudy Raymond, Yu-ya Ohnishi, Eriko Kaminishi, and Michihiko Sugawara, "Optimizing Parameterized Quantum Circuits with Free-Axis Selection", arXiv:2104.14875, (2021).

[53] Kushagra Garg, Zeeshan Ahmed, and Andreas Thomasen, "Qubit frugal entanglement determination with the deep multi-scale entanglement renormalization ansatz", arXiv:2404.08548, (2024).

The above citations are from Crossref's cited-by service (last updated successfully 2024-03-18 17:31:21) and SAO/NASA ADS (last updated successfully 2024-05-26 08:49:07). The list may be incomplete as not all publishers provide suitable and complete citation data.

Could not fetch Crossref cited-by data during last attempt 2024-05-26 08:49:05: Encountered the unhandled forward link type postedcontent_cite while looking for citations to DOI 10.22331/q-2021-06-04-466.