Parallel entangling gate operations and two-way quantum communication in spin chains

Rozhin Yousefjani and Abolfazl Bayat

Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610051, China

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

The power of a quantum circuit is determined through the number of two-qubit entangling gates that can be performed within the coherence time of the system. In the absence of parallel quantum gate operations, this would make the quantum simulators limited to shallow circuits. Here, we propose a protocol to parallelize the implementation of two-qubit entangling gates between multiple users which are spatially separated, and use a commonly shared spin chain data-bus. Our protocol works through inducing effective interaction between each pair of qubits without disturbing the others, therefore, it increases the rate of gate operations without creating crosstalk. This is achieved by tuning the Hamiltonian parameters appropriately, described in the form of two different strategies. The tuning of the parameters makes different bilocalized eigenstates responsible for the realization of the entangling gates between different pairs of distant qubits. Remarkably, the performance of our protocol is robust against increasing the length of the data-bus and the number of users. Moreover, we show that this protocol can tolerate various types of disorders and is applicable in the context of superconductor-based systems. The proposed protocol can serve for realizing two-way quantum communication.

► BibTeX data

► References

[1] Dorit Aharonov and Michael Ben-Or. Fault-tolerant quantum computation with constant error rate. SIAM J. Comput., 38 (4): 1207–1282, July 2008. 10.1137/​S0097539799359385.
https:/​/​doi.org/​10.1137/​S0097539799359385

[2] T J G Apollaro, S Lorenzo, A Sindona, S Paganelli, G L Giorgi, and F Plastina. Many-qubit quantum state transfer via spin chains. Physica Scripta, T165: 014036, oct 2015. 10.1088/​0031-8949/​2015/​t165/​014036.
https:/​/​doi.org/​10.1088/​0031-8949/​2015/​t165/​014036

[3] Tony J.G. Apollaro, Claudio Sanavio, Wayne Jordan Chetcuti, and Salvatore Lorenzo. Multipartite entanglement transfer in spin chains. Physics Letters A, 384 (15): 126306, 2020. https:/​/​doi.org/​10.1016/​j.physleta.2020.126306.
https:/​/​doi.org/​10.1016/​j.physleta.2020.126306

[4] C. J. Ballance, T. P. Harty, N. M. Linke, M. A. Sepiol, and D. M. Lucas. High-fidelity quantum logic gates using trapped-ion hyperfine qubits. Phys. Rev. Lett., 117: 060504, Aug 2016a. 10.1103/​PhysRevLett.117.060504.
https:/​/​doi.org/​10.1103/​PhysRevLett.117.060504

[5] C. J. Ballance, T. P. Harty, N. M. Linke, M. A. Sepiol, and D. M. Lucas. High-fidelity quantum logic gates using trapped-ion hyperfine qubits. Phys. Rev. Lett., 117: 060504, Aug 2016b. 10.1103/​PhysRevLett.117.060504.
https:/​/​doi.org/​10.1103/​PhysRevLett.117.060504

[6] Leonardo Banchi, Abolfazl Bayat, Paola Verrucchi, and Sougato Bose. Nonperturbative entangling gates between distant qubits using uniform cold atom chains. Phys. Rev. Lett., 106: 140501, Apr 2011. 10.1103/​PhysRevLett.106.140501.
https:/​/​doi.org/​10.1103/​PhysRevLett.106.140501

[7] Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo, Norman Margolus, Peter Shor, Tycho Sleator, John A. Smolin, and Harald Weinfurter. Elementary gates for quantum computation. Phys. Rev. A, 52: 3457–3467, Nov 1995. 10.1103/​PhysRevA.52.3457.
https:/​/​doi.org/​10.1103/​PhysRevA.52.3457

[8] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mutus, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O'Malley, P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and John M. Martinis. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature, 508 (7497): 500–503, apr 2014. 10.1038/​nature13171.
https:/​/​doi.org/​10.1038/​nature13171

[9] Abolfazl Bayat and Sougato Bose. Information-transferring ability of the different phases of a finite xxz spin chain. Phys. Rev. A, 81: 012304, Jan 2010. 10.1103/​PhysRevA.81.012304.
https:/​/​doi.org/​10.1103/​PhysRevA.81.012304

[10] Abolfazl Bayat and Yasser Omar. Measurement-assisted quantum communication in spin channels with dephasing. New Journal of Physics, 17 (10): 103041, oct 2015. 10.1088/​1367-2630/​17/​10/​103041.
https:/​/​doi.org/​10.1088/​1367-2630/​17/​10/​103041

[11] B. Bertrand, S. Hermelin, S. Takada, M. Yamamoto, S. Tarucha, A. Ludwig, A. D. Wieck, C. Bäuerle, and T. Meunier. Fast spin information transfer between distant quantum dots using individual electrons. Nature Nanotechnology, 11 (8): 672–676, aug 2016. 10.1038/​nnano.2016.82.
https:/​/​doi.org/​10.1038/​nnano.2016.82

[12] A. Bienfait, K. J. Satzinger, Y. P. Zhong, H.-S. Chang, M.-H. Chou, C. R. Conner, É. Dumur, J. Grebel, G. A. Peairs, R. G. Povey, and A. N. Cleland. Phonon-mediated quantum state transfer and remote qubit entanglement. Science, 364 (6438): 368–371, 2019. 10.1126/​science.aaw8415.
https:/​/​doi.org/​10.1126/​science.aaw8415

[13] R. Blatt and C. F. Roos. Quantum simulations with trapped ions. Nature Physics, 8 (4): 277–284, apr 2012. 10.1038/​nphys2252.
https:/​/​doi.org/​10.1038/​nphys2252

[14] Immanuel Bloch. Quantum coherence and entanglement with ultracold atoms in optical lattices. Nature, 453 (7198): 1016–1022, 2008. 10.1038/​nature07126.
https:/​/​doi.org/​10.1038/​nature07126

[15] S J Blundell and F L Pratt. Organic and molecular magnets. Journal of Physics: Condensed Matter, 16 (24): R771–R828, jun 2004. 10.1088/​0953-8984/​16/​24/​r03.
https:/​/​doi.org/​10.1088/​0953-8984/​16/​24/​r03

[16] Sougato Bose. Quantum communication through an unmodulated spin chain. Phys. Rev. Lett., 91: 207901, Nov 2003. 10.1103/​PhysRevLett.91.207901.
https:/​/​doi.org/​10.1103/​PhysRevLett.91.207901

[17] Michael J. Bremner, Christopher M. Dawson, Jennifer L. Dodd, Alexei Gilchrist, Aram W. Harrow, Duncan Mortimer, Michael A. Nielsen, and Tobias J. Osborne. Practical scheme for quantum computation with any two-qubit entangling gate. Phys. Rev. Lett., 89: 247902, Nov 2002. 10.1103/​PhysRevLett.89.247902.
https:/​/​doi.org/​10.1103/​PhysRevLett.89.247902

[18] P. Campagne-Ibarcq, E. Zalys-Geller, A. Narla, S. Shankar, P. Reinhold, L. Burkhart, C. Axline, W. Pfaff, L. Frunzio, R. J. Schoelkopf, and M. H. Devoret. Deterministic remote entanglement of superconducting circuits through microwave two-photon transitions. Phys. Rev. Lett., 120: 200501, May 2018. 10.1103/​PhysRevLett.120.200501.
https:/​/​doi.org/​10.1103/​PhysRevLett.120.200501

[19] L. Campos Venuti, C. Degli Esposti Boschi, and M. Roncaglia. Long-distance entanglement in spin systems. Phys. Rev. Lett., 96: 247206, Jun 2006. 10.1103/​PhysRevLett.96.247206.
https:/​/​doi.org/​10.1103/​PhysRevLett.96.247206

[20] L. Campos Venuti, S. M. Giampaolo, F. Illuminati, and P. Zanardi. Long-distance entanglement and quantum teleportation in $xx$ spin chains. Phys. Rev. A, 76: 052328, Nov 2007. 10.1103/​PhysRevA.76.052328.
https:/​/​doi.org/​10.1103/​PhysRevA.76.052328

[21] Wayne Jordan Chetcuti, Claudio Sanavio, Salvatore Lorenzo, and Tony J G Apollaro. Perturbative many-body transfer. New Journal of Physics, 22 (3): 033030, mar 2020. 10.1088/​1367-2630/​ab7a33.
https:/​/​doi.org/​10.1088/​1367-2630/​ab7a33

[22] Matthias Christandl, Nilanjana Datta, Artur Ekert, and Andrew J. Landahl. Perfect state transfer in quantum spin networks. Phys. Rev. Lett., 92: 187902, May 2004. 10.1103/​PhysRevLett.92.187902.
https:/​/​doi.org/​10.1103/​PhysRevLett.92.187902

[23] Matthias Christandl, Nilanjana Datta, Tony C. Dorlas, Artur Ekert, Alastair Kay, and Andrew J. Landahl. Perfect transfer of arbitrary states in quantum spin networks. Phys. Rev. A, 71: 032312, Mar 2005. 10.1103/​PhysRevA.71.032312.
https:/​/​doi.org/​10.1103/​PhysRevA.71.032312

[24] J. I. Cirac and P. Zoller. Quantum computations with cold trapped ions. Phys. Rev. Lett., 74: 4091–4094, May 1995. 10.1103/​PhysRevLett.74.4091.
https:/​/​doi.org/​10.1103/​PhysRevLett.74.4091

[25] C. Di Franco, M. Paternostro, and M. S. Kim. Perfect state transfer on a spin chain without state initialization. Phys. Rev. Lett., 101: 230502, Dec 2008. 10.1103/​PhysRevLett.101.230502.
https:/​/​doi.org/​10.1103/​PhysRevLett.101.230502

[26] J Eisert, M Friesdorf, and C Gogolin. Quantum many-body systems out of equilibrium. Nature Physics, 11 (2): 124–130, 2015. 10.1038/​nphys3215.
https:/​/​doi.org/​10.1038/​nphys3215

[27] Marta P. Estarellas, Irene D'Amico, and Timothy P. Spiller. Robust quantum entanglement generation and generation-plus-storage protocols with spin chains. Phys. Rev. A, 95: 042335, Apr 2017. 10.1103/​PhysRevA.95.042335.
https:/​/​doi.org/​10.1103/​PhysRevA.95.042335

[28] Rosario Fazio and Herre van der Zant. Quantum phase transitions and vortex dynamics in superconducting networks. Physics Reports, 355 (4): 235–334, 2001. https:/​/​doi.org/​10.1016/​S0370-1573(01)00022-9.
https:/​/​doi.org/​10.1016/​S0370-1573(01)00022-9

[29] C. Figgatt, A. Ostrander, N. M. Linke, K. A. Landsman, D. Zhu, D. Maslov, and C. Monroe. Parallel entangling operations on a universal ion-trap quantum computer. Nature, 572 (7769): 368–372, aug 2019. 10.1038/​s41586-019-1427-5.
https:/​/​doi.org/​10.1038/​s41586-019-1427-5

[30] B. Foxen, C. Neill, A. Dunsworth, P. Roushan, B. Chiaro, A. Megrant, J. Kelly, Zijun Chen, K. Satzinger, R. Barends, F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, S. Boixo, D. Buell, B. Burkett, Yu Chen, R. Collins, E. Farhi, A. Fowler, C. Gidney, M. Giustina, R. Graff, M. Harrigan, T. Huang, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, P. Klimov, A. Korotkov, F. Kostritsa, D. Landhuis, E. Lucero, J. McClean, M. McEwen, X. Mi, M. Mohseni, J. Y. Mutus, O. Naaman, M. Neeley, M. Niu, A. Petukhov, C. Quintana, N. Rubin, D. Sank, V. Smelyanskiy, A. Vainsencher, T. C. White, Z. Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis. Demonstrating a continuous set of two-qubit gates for near-term quantum algorithms. Phys. Rev. Lett., 125: 120504, Sep 2020. 10.1103/​PhysRevLett.125.120504.
https:/​/​doi.org/​10.1103/​PhysRevLett.125.120504

[31] Takafumi Fujita, Timothy Alexander Baart, Christian Reichl, Werner Wegscheider, and Lieven Mark Koenraad Vandersypen. Coherent shuttle of electron-spin states. npj Quantum Information, 3 (1): 22, dec 2017. 10.1038/​s41534-017-0024-4.
https:/​/​doi.org/​10.1038/​s41534-017-0024-4

[32] J. P. Gaebler, T. R. Tan, Y. Lin, Y. Wan, R. Bowler, A. C. Keith, S. Glancy, K. Coakley, E. Knill, D. Leibfried, and D. J. Wineland. High-fidelity universal gate set for ${^{9}\mathrm{Be}}^{+}$ ion qubits. Phys. Rev. Lett., 117: 060505, Aug 2016. 10.1103/​PhysRevLett.117.060505.
https:/​/​doi.org/​10.1103/​PhysRevLett.117.060505

[33] Ming Gong, Ming-Cheng Chen, Yarui Zheng, Shiyu Wang, Chen Zha, Hui Deng, Zhiguang Yan, Hao Rong, Yulin Wu, Shaowei Li, Fusheng Chen, Youwei Zhao, Futian Liang, Jin Lin, Yu Xu, Cheng Guo, Lihua Sun, Anthony D. Castellano, Haohua Wang, Chengzhi Peng, Chao-Yang Lu, Xiaobo Zhu, and Jian-Wei Pan. Genuine 12-qubit entanglement on a superconducting quantum processor. Phys. Rev. Lett., 122: 110501, Mar 2019. 10.1103/​PhysRevLett.122.110501.
https:/​/​doi.org/​10.1103/​PhysRevLett.122.110501

[34] Alexey V. Gorshkov, Johannes Otterbach, Eugene Demler, Michael Fleischhauer, and Mikhail D. Lukin. Photonic phase gate via an exchange of fermionic spin waves in a spin chain. Phys. Rev. Lett., 105: 060502, Aug 2010. 10.1103/​PhysRevLett.105.060502.
https:/​/​doi.org/​10.1103/​PhysRevLett.105.060502

[35] Nikodem Grzesiak, Reinhold Blümel, Kenneth Wright, Kristin M Beck, Neal C Pisenti, Ming Li, Vandiver Chaplin, Jason M Amini, Shantanu Debnath, Jwo-Sy Chen, and Yunseong Nam. Efficient arbitrary simultaneously entangling gates on a trapped-ion quantum computer. Nature Communications, 11 (1): 2963, 2020. 10.1038/​s41467-020-16790-9.
https:/​/​doi.org/​10.1038/​s41467-020-16790-9

[36] Qiujiang Guo, Chen Cheng, Zheng-Hang Sun, Zixuan Song, Hekang Li, Zhen Wang, Wenhui Ren, Hang Dong, Dongning Zheng, Yu-Ran Zhang, Rubem Mondaini, Heng Fan, and H Wang. Observation of energy-resolved many-body localization. Nature Physics, 17 (2): 234–239, 2021. 10.1038/​s41567-020-1035-1.
https:/​/​doi.org/​10.1038/​s41567-020-1035-1

[37] T. P. Harty, D. T. C. Allcock, C. J. Ballance, L. Guidoni, H. A. Janacek, N. M. Linke, D. N. Stacey, and D. M. Lucas. High-fidelity preparation, gates, memory, and readout of a trapped-ion quantum bit. Phys. Rev. Lett., 113: 220501, Nov 2014. 10.1103/​PhysRevLett.113.220501.
https:/​/​doi.org/​10.1103/​PhysRevLett.113.220501

[38] Y He, S K Gorman, D Keith, L Kranz, J G Keizer, and M Y Simmons. A two-qubit gate between phosphorus donor electrons in silicon. Nature, 571 (7765): 371–375, 2019. 10.1038/​s41586-019-1381-2.
https:/​/​doi.org/​10.1038/​s41586-019-1381-2

[39] Y.-Y. Huang, Y.-K. Wu, F. Wang, P.-Y. Hou, W.-B. Wang, W.-G. Zhang, W.-Q. Lian, Y.-Q. Liu, H.-Y. Wang, H.-Y. Zhang, L. He, X.-Y. Chang, Y. Xu, and L.-M. Duan. Experimental realization of robust geometric quantum gates with solid-state spins. Phys. Rev. Lett., 122: 010503, Jan 2019. 10.1103/​PhysRevLett.122.010503.
https:/​/​doi.org/​10.1103/​PhysRevLett.122.010503

[40] Alastair Kay. Perfect state transfer: Beyond nearest-neighbor couplings. Phys. Rev. A, 73: 032306, Mar 2006. 10.1103/​PhysRevA.73.032306.
https:/​/​doi.org/​10.1103/​PhysRevA.73.032306

[41] Morten Kjaergaard, Mollie E. Schwartz, Jochen Braumüller, Philip Krantz, Joel I.-J. Wang, Simon Gustavsson, and William D. Oliver. Superconducting qubits: Current state of play. Annual Review of Condensed Matter Physics, 11 (1): 369–395, 2020. 10.1146/​annurev-conmatphys-031119-050605.
https:/​/​doi.org/​10.1146/​annurev-conmatphys-031119-050605

[42] Harry Levine, Alexander Keesling, Giulia Semeghini, Ahmed Omran, Tout T. Wang, Sepehr Ebadi, Hannes Bernien, Markus Greiner, Vladan Vuletić, Hannes Pichler, and Mikhail D. Lukin. Parallel implementation of high-fidelity multiqubit gates with neutral atoms. Phys. Rev. Lett., 123: 170503, Oct 2019. 10.1103/​PhysRevLett.123.170503.
https:/​/​doi.org/​10.1103/​PhysRevLett.123.170503

[43] R J Lewis-Swan, A Safavi-Naini, A M Kaufman, and A M Rey. Dynamics of quantum information. Nature Reviews Physics, 1 (10): 627–634, 2019. 10.1038/​s42254-019-0090-y.
https:/​/​doi.org/​10.1038/​s42254-019-0090-y

[44] S. Lorenzo, T. J. G. Apollaro, A. Sindona, and F. Plastina. Quantum-state transfer via resonant tunneling through local-field-induced barriers. Phys. Rev. A, 87: 042313, Apr 2013. 10.1103/​PhysRevA.87.042313.
https:/​/​doi.org/​10.1103/​PhysRevA.87.042313

[45] Salvatore Lorenzo, Tony J. G. Apollaro, Andrea Trombettoni, and Simone Paganelli. 2-qubit quantum state transfer in spin chains and cold atoms with weak links. International Journal of Quantum Information, 15 (05): 1750037, 2017. 10.1142/​S021974991750037X.
https:/​/​doi.org/​10.1142/​S021974991750037X

[46] Olaf Mandel, Markus Greiner, Artur Widera, Tim Rom, Theodor W Hänsch, and Immanuel Bloch. Controlled collisions for multi-particle entanglement of optically trapped atoms. Nature, 425 (6961): 937–940, 2003. 10.1038/​nature02008.
https:/​/​doi.org/​10.1038/​nature02008

[47] A. R. Mills, D. M. Zajac, M. J. Gullans, F. J. Schupp, T. M. Hazard, and J. R. Petta. Shuttling a single charge across a one-dimensional array of silicon quantum dots. Nature Communications, 10 (1): 1–6, dec 2019. 10.1038/​s41467-019-08970-z.
https:/​/​doi.org/​10.1038/​s41467-019-08970-z

[48] D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L. M. Duan, and C. Monroe. Entanglement of single-atom quantum bits at a distance. Nature, 449 (7158): 68–71, sep 2007. 10.1038/​nature06118.
https:/​/​doi.org/​10.1038/​nature06118

[49] Michael A Nielsen. A simple formula for the average gate fidelity of a quantum dynamical operation. Physics Letters A, 303 (4): 249–252, 2002. https:/​/​doi.org/​10.1016/​S0375-9601(02)01272-0.
https:/​/​doi.org/​10.1016/​S0375-9601(02)01272-0

[50] Simone Paganelli, Salvatore Lorenzo, Tony J. G. Apollaro, Francesco Plastina, and Gian Luca Giorgi. Routing quantum information in spin chains. Phys. Rev. A, 87: 062309, Jun 2013. 10.1103/​PhysRevA.87.062309.
https:/​/​doi.org/​10.1103/​PhysRevA.87.062309

[51] D. Porras and J. I. Cirac. Effective quantum spin systems with trapped ions. Phys. Rev. Lett., 92: 207901, May 2004. 10.1103/​PhysRevLett.92.207901.
https:/​/​doi.org/​10.1103/​PhysRevLett.92.207901

[52] P. Rabl, S. J. Kolkowitz, F. H.L. Koppens, J. G.E. Harris, P. Zoller, and M. D. Lukin. A quantum spin transducer based on nanoelectromechanical resonator arrays. Nature Physics, 6 (8): 602–608, may 2010. 10.1038/​nphys1679.
https:/​/​doi.org/​10.1038/​nphys1679

[53] R. Ronke, I. D'Amico, and T. P. Spiller. Knitting distributed cluster-state ladders with spin chains. Phys. Rev. A, 84: 032308, Sep 2011. 10.1103/​PhysRevA.84.032308.
https:/​/​doi.org/​10.1103/​PhysRevA.84.032308

[54] P. Roushan, C. Neill, J. Tangpanitanon, V. M. Bastidas, A. Megrant, R. Barends, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. Fowler, B. Foxen, M. Giustina, E. Jeffrey, J. Kelly, E. Lucero, J. Mutus, M. Neeley, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. White, H. Neven, D. G. Angelakis, and J. Martinis. Spectroscopic signatures of localization with interacting photons in superconducting qubits. Science, 358 (6367): 1175–1179, 2017. 10.1126/​science.aao1401.
https:/​/​doi.org/​10.1126/​science.aao1401

[55] V. M. Schäfer, C. J. Ballance, K. Thirumalai, L. J. Stephenson, T. G. Ballance, A. M. Steane, and D. M. Lucas. Fast quantum logic gates with trapped-ion qubits. Nature, 555 (7694): 75–78, feb 2018. 10.1038/​nature25737.
https:/​/​doi.org/​10.1038/​nature25737

[56] M. D. Shulman, O. E. Dial, S. P. Harvey, H. Bluhm, V. Umansky, and A. Yacoby. Demonstration of entanglement of electrostatically coupled singlet-triplet qubits. Science, 336 (6078): 202–205, 2012. 10.1126/​science.1217692.
https:/​/​doi.org/​10.1126/​science.1217692

[57] Chao Song, Kai Xu, Wuxin Liu, Chui-ping Yang, Shi-Biao Zheng, Hui Deng, Qiwei Xie, Keqiang Huang, Qiujiang Guo, Libo Zhang, Pengfei Zhang, Da Xu, Dongning Zheng, Xiaobo Zhu, H. Wang, Y.-A. Chen, C.-Y. Lu, Siyuan Han, and Jian-Wei Pan. 10-qubit entanglement and parallel logic operations with a superconducting circuit. Phys. Rev. Lett., 119: 180511, Nov 2017. 10.1103/​PhysRevLett.119.180511.
https:/​/​doi.org/​10.1103/​PhysRevLett.119.180511

[58] A.M. Steane. Space, time, parallelism and noise requirements for reliable quantum computing. Fortschritte der Physik, 46 (4‐5): 443–457, 1998. https:/​/​doi.org/​10.1002/​(SICI)1521-3978(199806)46:4/​5<443::AID-PROP443>3.0.CO;2-8.
https:/​/​doi.org/​10.1002/​(SICI)1521-3978(199806)46:4/​5<443::AID-PROP443>3.0.CO;2-8

[59] E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V.G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature, 466 (7307): 730–734, aug 2010. 10.1038/​nature09256.
https:/​/​doi.org/​10.1038/​nature09256

[60] M. Veldhorst, C. H. Yang, J. C.C. Hwang, W. Huang, J. P. Dehollain, J. T. Muhonen, S. Simmons, A. Laucht, F. E. Hudson, K. M. Itoh, A. Morello, and A. S. Dzurak. A two-qubit logic gate in silicon. Nature, 526 (7573): 410–414, oct 2015. 10.1038/​nature15263.
https:/​/​doi.org/​10.1038/​nature15263

[61] Zhao-Ming Wang, C. Allen Bishop, Yong-Jian Gu, and Bin Shao. Duplex quantum communication through a spin chain. Phys. Rev. A, 84: 022345, Aug 2011. 10.1103/​PhysRevA.84.022345.
https:/​/​doi.org/​10.1103/​PhysRevA.84.022345

[62] Hendrik Weimer, Norman Y. Yao, Chris R. Laumann, and Mikhail D. Lukin. Long-range quantum gates using dipolar crystals. Phys. Rev. Lett., 108: 100501, Mar 2012. 10.1103/​PhysRevLett.108.100501.
https:/​/​doi.org/​10.1103/​PhysRevLett.108.100501

[63] Antoni Wójcik, Tomasz Łuczak, Paweł Kurzyński, Andrzej Grudka, Tomasz Gdala, and Małgorzata Bednarska. Unmodulated spin chains as universal quantum wires. Phys. Rev. A, 72: 034303, Sep 2005. 10.1103/​PhysRevA.72.034303.
https:/​/​doi.org/​10.1103/​PhysRevA.72.034303

[64] Zhiguang Yan, Yu-Ran Zhang, Ming Gong, Yulin Wu, Yarui Zheng, Shaowei Li, Can Wang, Futian Liang, Jin Lin, Yu Xu, Cheng Guo, Lihua Sun, Cheng-Zhi Peng, Keyu Xia, Hui Deng, Hao Rong, J. Q. You, Franco Nori, Heng Fan, Xiaobo Zhu, and Jian-Wei Pan. Strongly correlated quantum walks with a 12-qubit superconducting processor. Science, 364 (6442): 753–756, 2019. 10.1126/​science.aaw1611.
https:/​/​doi.org/​10.1126/​science.aaw1611

[65] Song Yang, Abolfazl Bayat, and Sougato Bose. Entanglement-enhanced information transfer through strongly correlated systems and its application to optical lattices. Phys. Rev. A, 84: 020302, Aug 2011. 10.1103/​PhysRevA.84.020302.
https:/​/​doi.org/​10.1103/​PhysRevA.84.020302

[66] N. Y. Yao, L. Jiang, A. V. Gorshkov, Z.-X. Gong, A. Zhai, L.-M. Duan, and M. D. Lukin. Robust quantum state transfer in random unpolarized spin chains. Phys. Rev. Lett., 106: 040505, Jan 2011. 10.1103/​PhysRevLett.106.040505.
https:/​/​doi.org/​10.1103/​PhysRevLett.106.040505

[67] Rozhin Yousefjani and Abolfazl Bayat. Simultaneous multiple-user quantum communication across a spin-chain channel. Phys. Rev. A, 102: 012418, Jul 2020. 10.1103/​PhysRevA.102.012418.
https:/​/​doi.org/​10.1103/​PhysRevA.102.012418

[68] Dongmin Yu, Han Wang, Dandan Ma, Xingdong Zhao, and Jing Qian. Adiabatic and high-fidelity quantum gates with hybrid rydberg-rydberg interactions. Opt. Express, 27 (16): 23080–23094, Aug 2019. 10.1364/​OE.27.023080.
https:/​/​doi.org/​10.1364/​OE.27.023080

[69] Man-Hong Yung and Sougato Bose. Perfect state transfer, effective gates, and entanglement generation in engineered bosonic and fermionic networks. Phys. Rev. A, 71: 032310, Mar 2005. 10.1103/​PhysRevA.71.032310.
https:/​/​doi.org/​10.1103/​PhysRevA.71.032310

[70] Man-Hong Yung, Simon C. Benjamin, and Sougato Bose. Processor core model for quantum computing. Phys. Rev. Lett., 96: 220501, Jun 2006. 10.1103/​PhysRevLett.96.220501.
https:/​/​doi.org/​10.1103/​PhysRevLett.96.220501

[71] Floris A. Zwanenburg, Andrew S. Dzurak, Andrea Morello, Michelle Y. Simmons, Lloyd C. L. Hollenberg, Gerhard Klimeck, Sven Rogge, Susan N. Coppersmith, and Mark A. Eriksson. Silicon quantum electronics. Rev. Mod. Phys., 85: 961–1019, Jul 2013. 10.1103/​RevModPhys.85.961.
https:/​/​doi.org/​10.1103/​RevModPhys.85.961

Cited by

[1] Andrew Shaw, "Classical-Quantum Noise Mitigation for NISQ Hardware", arXiv:2105.08701.

[2] Zhi-Cheng Shi, Hai-Ning Wu, Li-Tuo Shen, Jie Song, Yan Xia, X. X. Yi, and Shi-Biao Zheng, "Robust single-qubit gates by composite pulses in three-level systems", Physical Review A 103 5, 052612 (2021).

[3] Tony John George Apollaro and Wayne Jordan Chetcuti, "Two-Excitation Routing via Linear Quantum Channels", Entropy 23 1, 51 (2020).

The above citations are from SAO/NASA ADS (last updated successfully 2021-09-23 14:54:55). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2021-09-23 14:54:53).