Versatile Super-Sensitive Metrology Using Induced Coherence

Nathaniel R. Miller1,2, Sven Ramelow3, and William N. Plick1

1University of Dayton, Department of Physics, Dayton, OH, 45469, United States
2Louisiana State University, Department of Physics and Astronomy, Baton Rouge, LA, 70803, United States
3Faculty of Physics, Humboldt-University Berlin, Berlin 12489, Germany

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

We theoretically analyze the phase sensitivity of the Induced-Coherence (Mandel-Type) Interferometer, including the case where the sensitivity is "boosted" into the bright input regime with coherent-light seeding. We find scaling which reaches below the shot noise limit, even when seeding the spatial mode which does not interact with the sample – or when seeding the undetected mode. It is a hybrid of a linear and a non-linear (Yurke-Type) interferometer, and aside from the supersensitivity, is distinguished from other systems by "preferring" an imbalance in the gains of the two non-linearities (with the second gain being optimal at $\textit{low}$ values), and non-monotonic behavior of the sensitivity as a function of the gain of the second non-linearity. Furthermore, the setup allows use of subtracted intensity measurements, instead of direct (additive) or homodyne measurements – a significant practical advantage. Bright, super-sensitive phase estimation of an object with different light fields for interaction and detection is possible, with various potential applications, especially in cases where the sample may be sensitive to light, or is most interesting in frequency domains outside what is easily detected, or when desiring bright-light phase estimation with sensitive/delicate detectors. We use an analysis in terms of general squeezing and discover that super-sensitivity occurs only in this case – that is, the effect is not present with the spontaneous-parametric-down-conversion approximation, which many previous analyses and experiments have focused on.

Quantum interferometry is a crowded field with many new protocols (and variants thereof) proposed. New, practical, potentially-transformative setups are rare. We present what we believe is one such case – where totally-new abilities are added to the quantum interferometry toolkit. The most striking of which is that bright, super-sensitive phase estimation of an object with different light fields for interaction and detection can be achieved with the proposed device.

That is to say, one can not only measure the properties of an object using a light field which has never interacted with that object (which has been known), but also it is possible to use a bright laser to enhance the sensitivity of the device when the laser also has not interacted with the sample. Or, conversely, when the laser does interact with the sample, but does not hit the detectors.

This, along with other practical advantages, means this type of interferometer may be broadly-useful in situations when samples or detectors are very sensitive to light – or when one wishes to measure an object with one frequency domain of light, and use the better detectors from another.

► BibTeX data

► References

[1] ``Ein neuer Interferenzrefraktor'', L. Zehnder, Zeitschrift für Instrumentenkunde 11, 275 (1891).

[2] ``Über einen Interferenzrefraktor'', L. Mach, Zeitschrift für Instrumentenkunde 12, 89 (1892).

[3] ``Quantum-mechanical noise in an interferometer'', C.M. Caves, Phys. Rev. D 23, 1693 (1981).
https:/​/​doi.org/​10.1103/​PhysRevD.23.1693

[4] ``Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light'', The LIGO Scientific Collaboration, Nat. Photonics 7, 613 (2013).
https:/​/​doi.org/​10.1038/​nphoton.2013.177

[5] ``Quantum optical metrology — the lowdown on high-N00N states'', J.P. Dowling, Contemp. Phys. 49, 125 (2008).
https:/​/​doi.org/​10.1080/​00107510802091298

[6] ``Quantum-enhanced interferometry with weak thermal light'', S.M.H. Rafsanjani, M. Mirhosseini, O.S. Magaña-Loaiza, B.T. Gard, R. Birrittella, B.E. Koltenbah, C.G. Parazzoli, B.A. Capron, C.C. Gerry, J.P. Dowling, and R.W. Boyd, Optica 4, 487 (2017).
https:/​/​doi.org/​10.1364/​OPTICA.4.000487

[7] ``Nonlinear interferometers in quantum optics'', M.V. Chekhova, and Z.Y. Ou, Advances in Optics and Photonics 8, 104 (2016).
https:/​/​doi.org/​10.1364/​AOP.8.000104

[8] ``Quantum SU(1,1) interferometers: Basic principles and applications'', Z.Y. Ou, and X. Li, APL Photonics 5, 080902 (2020).
https:/​/​doi.org/​10.1063/​5.0004873

[9] ``SU(2) and SU(1,1) interferometers'', B. Yurke, S.L. McCall, and J.R. Klauder, Phys. Rev. A 33, 4033 (1985).
https:/​/​doi.org/​10.1103/​PhysRevA.33.4033

[10] ``Coherent-light-boosted, sub-shot noise, quantum interferometry'', W.N. Plick, J.P. Dowling, and G.S. Agarwal, New J. Phys. 12, 083014 (2010).
https:/​/​doi.org/​10.1088/​1367-2630/​12/​8/​083014

[11] ``Effect of losses on the performance of an SU(1,1) interferometer'', A.M. Marino, N.V. Corzo Trejo, and P.D. Lett, Phys. Rev. A 86, 023844 (2012).
https:/​/​doi.org/​10.1103/​PhysRevA.86.023844

[12] ``Enhancement of the phase-measurement sensitivity beyond the standard quantum limit by a nonlinear interferometer'', Z.Y. Ou, Phys. Rev. A 85 023815 (2012).
https:/​/​doi.org/​10.1103/​PhysRevA.85.023815

[13] ``Sub-shot-noise-limited phase estimation via SU(1,1) interferometer with thermal states'', X. Ma, C. You, S. Adhikari, E.S. Matekole, R.T. Glasser, H. Lee, and J.P. Dowling, Optics Exp. 26, 18492 (2018).
https:/​/​doi.org/​10.1364/​OE.26.018492

[14] ``Phase sensitivity of gain-unbalanced nonlinear interferometers'', E. Giese, S. Lemieux, M. Manceau, R. Fickler, and R.W. Boyd, Phys. Rev. A 96, 053863 (2017).
https:/​/​doi.org/​10.1103/​PhysRevA.96.053863

[15] ``Improving the phase super-sensitivity of squeezing-assisted interferometers by squeeze factor unbalancing'', M. Manceau, F. Khalili, and M. Chekhova, New J. Phys. 19, 013014 (2017).
https:/​/​doi.org/​10.1088/​1367-2630/​aa53d1

[16] ``The phase sensitivity of a fully quantum three-mode nonlinear interferometer'', J. Flórez, E. Giese, D. Curic, L. Giner, R.W. Boyd, and J.S. Lundeen, New J. Phys. 20, 123022 (2018).
https:/​/​doi.org/​10.1088/​1367-2630/​aaf3d2

[17] ``Conclusive Precision Bounds for SU(1,1) Interferometers'', C. You, S. Adhikari, X. Ma, M. Sasaki, M. Takeoka, and J.P. Dowling, Phys. Rev. A 99, 042122 (2019).
https:/​/​doi.org/​10.1103/​PhysRevA.99.042122

[18] ``Realization o`f a nonlinear interferometer with parametric amplifiers'', J. Jing, C. Liu, Z. Zhou, Z.Y. Ou, and W. Zhang, App. Phys. Lett. 99, 011110 (2011).
https:/​/​doi.org/​10.1063/​1.3606549

[19] ``Quantum metrology with parametric amplifier-based photon correlation interferometers'', F. Hudelist, J. Kong, C. Liu, Z.Y. Ou, and W. Zhang, Nat. Comm. 5, 3049 (2014).
https:/​/​doi.org/​10.1038/​ncomms4049

[20] ``Naturally stable Sagnac-Michelson nonlinear interferometer'', J.M. Lukens, N.A. Peters, and R.C. Pooser, Opt. Lett. 41, 5438 (2016).
https:/​/​doi.org/​10.1364/​OL.41.005438

[21] ``Phase sensing beyond the standard quantum limit with a variation on the SU(1,1) interferometer'', B.E. Anderson, P. Gupta, B.L. Schmittberger, T. Horrom, C. Hermann-Avigliano, K.M. Jones, and P.D. Lett, Optica 4, 2334 (2017).
https:/​/​doi.org/​10.1364/​OPTICA.4.000752

[22] ``Detection loss tolerant supersensitive phase measurement with an SU(1,1) interferometer'', M. Manceau, G. Leuchs, F. Khalili, and M. Chekhova, Phys. Rev. Lett. 119, 223604 (2017).
https:/​/​doi.org/​10.1364/​OL.41.005438

[23] ``Optimal phase measurements with bright- and vacuum-seeded SU(1,1) interferometers'', B.E. Anderson, B.L. Schmittberger, P. Gupta, K.M. Jones, and P.D. Lett, Phys. Rev. A 95, 063843 (2017).
https:/​/​doi.org/​10.1103/​PhysRevA.95.063843

[24] ``Atom-Light Hybrid Interferometer'', B. Chen, C. Qiu, S. Chen, J. Guo, L.Q. Chen, Z.Y. Ou, and W. Zhang, Phys. Rev. Lett. 115, 043602 (2015).
https:/​/​doi.org/​10.1103/​PhysRevLett.115.043602

[25] ``Pumped-Up SU(1,1) Interferometry'', S.S. Szigeti, R.J. Lewis-Swan, and S.A. Haine, Phys. Rev. Lett. 118, 150401 (2017).
https:/​/​doi.org/​10.1103/​PhysRevLett.118.150401

[26] ``SU(2)-in-SU(1,1) nested interferometer'', W. Du, J. Kong, J. Jia, S. Ming, C.H. Yuan, J.F.Chen, Z.Y.Ou, M.W. Mitchell, and W. Zhang, arXiv:2004.14266v1 (2020).
arXiv:2004.14266v1

[27] ``Quantum Interferometer Combining Squeezing and Parametric Amplification'', X. Zuo, Z. Yan, Y. Feng, J. Ma, X. Jia, C. Xie, and K. Peng, Phys. Rev. Let. 124, 173602 (2020).
https:/​/​doi.org/​10.1103/​PhysRevLett.124.173602

[28] ``Induced Coherence and Indistinguishably in Optical Interference'', X.Y. Zou, L.J. Wang, and L. Mandel, Phys. Rev. Lett. 67, 318 (1991).
https:/​/​doi.org/​10.1103/​PhysRevLett.67.318

[29] ``Quantum imaging with undetected photons'', G. Barreto Lemos, V. Borish, G.D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, Nature 512, 409 (2014).
https:/​/​doi.org/​10.1038/​nature13586

[30] ``Theory of quantum imaging with undetected photons'', M. Lahiri, R. Lapkiewicz, G. Barreto Lemos, and A. Zeilinger, Phys. Rev. A 92, 013832 (2015).
https:/​/​doi.org/​10.1103/​PhysRevA.92.013832

[31] ``Delayed-choice gedanken experiments and their realizations'', X. Ma, J. Kofler, and A. Zeilinger, Rev. Mod. Phys. 88, 015005 (2016).
https:/​/​doi.org/​10.1103/​RevModPhys.88.015005

[32] ``Optical sectioning in induced coherence tomography with frequency-entangled photons'', A. Vallés, G. Jiménez, L.J. Salazar-Serrano, and J.P. Torres, Phys. Rev. A 97, 023824 (2018).
https:/​/​doi.org/​10.1103/​PhysRevA.97.023824

[33] ``Quantum-enhanced spectroscopy with entangled multiphoton states'', H.T. Dinani, M.K. Gupta, J.P. Dowling, and D.W. Berry, Phys. Rev. A 93, 063804 (2016).
https:/​/​doi.org/​10.1103/​PhysRevA.93.063804

[34] ``Measurement of infrared optical constants with visible photons'', A. Paterova, H. Yang, C. An, D. Kalashnikov, and L. Krivitsky, New. J. Phys. 20, 043015 (2018).
https:/​/​doi.org/​10.1088/​1367-2630/​aab5ce

[35] ``Infrared spectroscopy with visible light'', D.A. Kalashnikov, A.V. Paterova, S.P. Kulik, and L.A. Krivitsky, Nat. Photonics 10, 98 (2016).
https:/​/​doi.org/​10.1038/​nphoton.2015.252

[36] ``Absorption spectroscopy at the ultimate quantum limit from single-photon states'', R. Whittaker, C. Erven, A. Neville, M. Berry, J.L. O'Brien, H. Cable, and J.C.F. Matthews, New J. Phys. 19, 023013 (2017).
https:/​/​doi.org/​10.1088/​1367-2630/​aa5512

[37] ``Frequency comb single-photon interferometry'', S.K. Lee, N.S. Han, T.H. Yoon, and M. Cho, Comm. Phys. 1, 51 (2018).
https:/​/​doi.org/​10.1038/​s42005-018-0051-2

[38] ``Interferometric quantum spectroscopy with undetected photons via distinguishability modulation'', S.K. Lee, T.H. Yoon, and M. Cho, Optics Exp. 27, 14853 (2019).
https:/​/​doi.org/​10.1364/​OE.27.014853

[39] ``Frequency-domain optical coherence tomography with undetected mid-infrared photons'', A. Vanselow1, P. Kaufmann, I. Zorin, B. Heise, H.M. Chrzanowski1, and S. Ramelow, Optica 7, 1729 (2020).
https:/​/​doi.org/​10.1364/​OPTICA.400128

[40] ``Microscopy with undetected photons in the mid-infrared'', I. Kviatkovsky, H.M. Chrzanowski, E.G. Avery, H. Bartolomaeus, S. Ramelow, Science Advances 6, eabd0264 (2020).
https:/​/​doi.org/​10.1126/​sciadv.abd0264
https:/​/​advances.sciencemag.org/​content/​6/​42/​eabd0264/​tab-pdf

[41] ``Coherence and multimode correlations from vacuum fluctuations in a microwave superconducting cavity'', P. Lähteenmäki1, G.S. Paraoanu, J. Hassel, and P.J. Hakonen, Nat. Comm. 7, 12548 (2016).
https:/​/​doi.org/​10.1038/​ncomms12548

[42] ``Entanglement, coherence, and redistribution of quantum resources in double spontaneous down-conversion processes'', D.E. Bruschi, C. Sabín, and G.S. Paraoanu, Phys. Rev. A 95, 062324 (2017).
https:/​/​doi.org/​10.1103/​PhysRevA.95.062324

[43] ``Statistical distance and the geometry of quantum states'' S.L. Braunstein, and C.M. Caves, Phys. Rev. Lett. 72, 3439 (1994).
https:/​/​doi.org/​10.1103/​PhysRevLett.72.3439

[44] http:/​/​math.ucsd.edu/​$\sim$ncalg/​.
http:/​/​math.ucsd.edu/​~ncalg/​

[45] ``Controlling induced coherence for quantum imaging'', M.I. Kolobov, E. Giese, S. Lemieux, R. Fickler, and R.W. Boyd, J. of Optics 19, 054003 (2017).
https:/​/​doi.org/​10.1088/​2040-8986/​aa64a2

Cited by

[1] Mirco Kutas, Björn Erik Haase, Felix Riexinger, Joshua Hennig, Patricia Bickert, Tobias Pfeiffer, Michael Bortz, Daniel Molter, and Georg von Freymann, "Quantum Sensing with Extreme Light", Advanced Quantum Technologies 5 6, 2100164 (2022).

[2] Gabriela Barreto Lemos, Radek Lapkiewicz, Armin Hochrainer, Mayukh Lahiri, and Anton Zeilinger, "One-Photon Measurement of Two-Photon Entanglement", Physical Review Letters 130 9, 090202 (2023).

[3] Gabriela Barreto Lemos, Mayukh Lahiri, Sven Ramelow, Radek Lapkiewicz, and William N. Plick, "Quantum imaging and metrology with undetected photons: tutorial", Journal of the Optical Society of America B 39 8, 2200 (2022).

[4] Gabriela Barreto Lemos, Radek Lapkiewicz, Armin Hochrainer, Mayukh Lahiri, and Anton Zeilinger, "One-photon measurement of two-photon entanglement", arXiv:2009.02851, (2020).

[5] Chiara Lindner, Jachin Kunz, Simon J. Herr, Sebastian Wolf, Jens Kießling, and Frank Kühnemann, "Nonlinear interferometer for Fourier-transform mid-infrared gas spectroscopy using near-infrared detection", Optics Express 29 3, 4035 (2021).

[6] Arturo Rojas-Santana, Gerard J. Machado, Dorilian Lopez-Mago, and Juan P. Torres, "Frequency-correlation requirements on the biphoton wave function in an induced-coherence experiment between separate sources", Physical Review A 102 5, 053711 (2020).

The above citations are from Crossref's cited-by service (last updated successfully 2023-09-21 20:56:31) and SAO/NASA ADS (last updated successfully 2023-09-21 20:56:32). The list may be incomplete as not all publishers provide suitable and complete citation data.