Multi-time correlations in the positive-P, Q, and doubled phase-space representations

Piotr Deuar

Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

A number of physically intuitive results for the calculation of multi-time correlations in phase-space representations of quantum mechanics are obtained. They relate time-dependent stochastic samples to multi-time observables, and rely on the presence of derivative-free operator identities. In particular, expressions for time-ordered normal-ordered observables in the positive-P distribution are derived which replace Heisenberg operators with the bare time-dependent stochastic variables, confirming extension of earlier such results for the Glauber-Sudarshan P. Analogous expressions are found for the anti-normal-ordered case of the doubled phase-space Q representation, along with conversion rules among doubled phase-space s-ordered representations. The latter are then shown to be readily exploited to further calculate anti-normal and mixed-ordered multi-time observables in the positive-P, Wigner, and doubled-Wigner representations. Which mixed-order observables are amenable and which are not is indicated, and explicit tallies are given up to 4th order. Overall, the theory of quantum multi-time observables in phase-space representations is extended, allowing non-perturbative treatment of many cases. The accuracy, usability, and scalability of the results to large systems is demonstrated using stochastic simulations of the unconventional photon blockade system and a related Bose-Hubbard chain. In addition, a robust but simple algorithm for integration of stochastic equations for phase-space samples is provided.

Multi-time correlations are important for answering many physical questions. For example, the determination of lifetimes out-of-time-order correlations which are important indicators of quantum chaos, or finding the time resolution required to observe a transient effect. In general, however, they are more difficult to calculate in a quantum system than instantaneous correlations, and the difficulty grows with system size. Phase-space representations are a formulation of quantum mechanics in which the calculation of multi-time correlations has a particularly intuitive structure, and in which the difficulties of dealing with large systems are often alleviated.
In this work, the framework for calculating multi-time correlations with phase-space representations has been strongly extended to a much wider range of correlations and representations than before, facilitating future studies of large systems, including systems with dissipation.
The paper also describes a robust but simple algorithm for integration of phase space stochastic equations, something that has been difficult to find in the literature to date.

► BibTeX data

► References

[1] G. S. Agarwal. Phase-space analysis of time-correlation functions. Phys. Rev., 177: 400–407, 1969a. https:/​/​doi.org/​10.1103/​PhysRev.177.400.
https:/​/​doi.org/​10.1103/​PhysRev.177.400

[2] G. S. Agarwal. Master equations in phase-space formulation of quantum optics. Phys. Rev., 178: 2025–2035, 1969b. https:/​/​doi.org/​10.1103/​PhysRev.178.2025.
https:/​/​doi.org/​10.1103/​PhysRev.178.2025

[3] G. S. Agarwal and S. Chaturvedi. Scheme to measure the positive $P$ distribution. Phys. Rev. A, 49: R665–R667, 1994. https:/​/​doi.org/​10.1103/​PhysRevA.49.R665.
https:/​/​doi.org/​10.1103/​PhysRevA.49.R665

[4] G. S. Agarwal and E. Wolf. Calculus for functions of noncommuting operators and general phase-space methods in quantum mechanics. II. quantum mechanics in phase space. Phys. Rev. D, 2: 2187–2205, 1970a. https:/​/​doi.org/​10.1103/​PhysRevD.2.2187.
https:/​/​doi.org/​10.1103/​PhysRevD.2.2187

[5] G. S. Agarwal and E. Wolf. Calculus for functions of noncommuting operators and general phase-space methods in quantum mechanics. III. a generalized Wick theorem and multitime mapping. Phys. Rev. D, 2: 2206–2225, 1970b. https:/​/​doi.org/​10.1103/​PhysRevD.2.2206.
https:/​/​doi.org/​10.1103/​PhysRevD.2.2206

[6] Takeshi Aimi and Masatoshi Imada. Gaussian-Basis Monte Carlo Method for Numerical Study on Ground States of Itinerant and Strongly Correlated Electron Systems. J. Phys. Soc. Jpn., 76: 084709, 2007a. https:/​/​doi.org/​10.1143/​JPSJ.76.084709.
https:/​/​doi.org/​10.1143/​JPSJ.76.084709

[7] Takeshi Aimi and Masatoshi Imada. Does Simple Two-Dimensional Hubbard Model Account for High-$T_c$ Superconductivity in Copper Oxides? J. Phys. Soc. Jpn., 76: 113708, 2007b. https:/​/​doi.org/​10.1143/​JPSJ.76.113708.
https:/​/​doi.org/​10.1143/​JPSJ.76.113708

[8] Francesco Albarelli, Marco G. Genoni, Matteo G. A. Paris, and Alessandro Ferraro. Resource theory of quantum non-Gaussianity and Wigner negativity. Phys. Rev. A, 98: 052350, 2018. https:/​/​doi.org/​10.1103/​PhysRevA.98.052350.
https:/​/​doi.org/​10.1103/​PhysRevA.98.052350

[9] Juan Atalaya, Shay Hacohen-Gourgy, Leigh S. Martin, Irfan Siddiqi, and Alexander N. Korotkov. Multitime correlators in continuous measurement of qubit observables. Phys. Rev. A, 97: 020104, 2018. https:/​/​doi.org/​10.1103/​PhysRevA.97.020104.
https:/​/​doi.org/​10.1103/​PhysRevA.97.020104

[10] Motoaki Bamba, Atac Imamoğlu, Iacopo Carusotto, and Cristiano Ciuti. Origin of strong photon antibunching in weakly nonlinear photonic molecules. Phys. Rev. A, 83: 021802, 2011. https:/​/​doi.org/​10.1103/​PhysRevA.83.021802.
https:/​/​doi.org/​10.1103/​PhysRevA.83.021802

[11] D. W. Barry and P. D. Drummond. Qubit phase space: SU$(n)$ coherent-state $P$ representations. Phys. Rev. A, 78: 052108, 2008. https:/​/​doi.org/​10.1103/​PhysRevA.78.052108.
https:/​/​doi.org/​10.1103/​PhysRevA.78.052108

[12] J. R. Bell. Algorithm 334, normal random deviates. Communications of the ACM, 11 (7): 498, 1968. https:/​/​doi.org/​10.1145/​363397.363547.
https:/​/​doi.org/​10.1145/​363397.363547

[13] B. Berg, L. I. Plimak, A. Polkovnikov, M. K. Olsen, M. Fleischhauer, and W. P. Schleich. Commuting heisenberg operators as the quantum response problem: Time-normal averages in the truncated Wigner representation. Phys. Rev. A, 80: 033624, 2009. https:/​/​doi.org/​10.1103/​PhysRevA.80.033624.
https:/​/​doi.org/​10.1103/​PhysRevA.80.033624

[14] P. B. Blakie, A. S. Bradley, M. J. Davis, R. J. Ballagh, and C. W. Gardiner. Dynamics and statistical mechanics of ultra-cold Bose gases using c-field techniques. Advances in Physics, 57 (5): 363–455, 2008. https:/​/​doi.org/​10.1080/​00018730802564254.
https:/​/​doi.org/​10.1080/​00018730802564254

[15] A. Bohrdt, C. B. Mendl, M. Endres, and M. Knap. Scrambling and thermalization in a diffusive quantum many-body system. New Journal of Physics, 19 (6): 063001, 2017. https:/​/​doi.org/​10.1088/​1367-2630/​aa719b.
https:/​/​doi.org/​10.1088/​1367-2630/​aa719b

[16] Denys I. Bondar, Renan Cabrera, Dmitry V. Zhdanov, and Herschel A. Rabitz. Wigner phase-space distribution as a wave function. Phys. Rev. A, 88: 052108, 2013. https:/​/​doi.org/​10.1103/​PhysRevA.88.052108.
https:/​/​doi.org/​10.1103/​PhysRevA.88.052108

[17] G. E. P. Box and Mervin E. Muller. A Note on the Generation of Random Normal Deviates. The Annals of Mathematical Statistics, 29 (2): 610 – 611, 1958. https:/​/​doi.org/​10.1214/​aoms/​1177706645.
https:/​/​doi.org/​10.1214/​aoms/​1177706645

[18] Richard P. Brent. Algorithm 488, a Gaussian pseudo-random number generator. Communications of the ACM, 17 (12): 704, 1974. https:/​/​doi.org/​10.1145/​361604.361629.
https:/​/​doi.org/​10.1145/​361604.361629

[19] K. E. Cahill and R. J. Glauber. Ordered expansions in boson amplitude operators. Phys. Rev., 177: 1857–1881, 1969a. https:/​/​doi.org/​10.1103/​PhysRev.177.1857.
https:/​/​doi.org/​10.1103/​PhysRev.177.1857

[20] K. E. Cahill and R. J. Glauber. Density operators and quasiprobability distributions. Phys. Rev., 177: 1882–1902, 1969b. https:/​/​doi.org/​10.1103/​PhysRev.177.1882.
https:/​/​doi.org/​10.1103/​PhysRev.177.1882

[21] S. J. Carter, P. D. Drummond, M. D. Reid, and R. M. Shelby. Squeezing of quantum solitons. Phys. Rev. Lett., 58: 1841–1844, 1987. https:/​/​doi.org/​10.1103/​PhysRevLett.58.1841.
https:/​/​doi.org/​10.1103/​PhysRevLett.58.1841

[22] I. Carusotto and Y. Castin. An exact stochastic field method for the interacting Bose gas at thermal equilibrium. Journal of Physics B: Atomic, Molecular and Optical Physics, 34 (23): 4589, 2001. https:/​/​doi.org/​10.1088/​0953-4075/​34/​23/​305.
https:/​/​doi.org/​10.1088/​0953-4075/​34/​23/​305

[23] Iacopo Carusotto and Yvan Castin. Exact reformulation of the bosonic many-body problem in terms of stochastic wave functions: an elementary derivation. Ann. Henri Poincaré, 4 (2): 783–792, 2003. https:/​/​doi.org/​10.1007/​s00023-003-0961-7.
https:/​/​doi.org/​10.1007/​s00023-003-0961-7

[24] W. Casteels, R. Rota, F. Storme, and C. Ciuti. Probing photon correlations in the dark sites of geometrically frustrated cavity lattices. Phys. Rev. A, 93: 043833, 2016. https:/​/​doi.org/​10.1103/​PhysRevA.93.043833.
https:/​/​doi.org/​10.1103/​PhysRevA.93.043833

[25] M. Cheneau, P. Barmettler, D. Poletti, M. Endres, P. Schauß, T. Fukuhara, C. Gross, I. Bloch, C. Kollath, and S. Kuhr. Light-cone-like spreading of correlations in a quantum many-body system. Nature, 484: 484–487, 2012. https:/​/​doi.org/​10.1038/​nature10748.
https:/​/​doi.org/​10.1038/​nature10748

[26] Alessio Chiocchetta and Iacopo Carusotto. Quantum langevin model for nonequilibrium condensation. Phys. Rev. A, 90: 023633, 2014. https:/​/​doi.org/​10.1103/​PhysRevA.90.023633.
https:/​/​doi.org/​10.1103/​PhysRevA.90.023633

[27] J. F. Corney and P. D. Drummond. Gaussian Quantum Monte Carlo Methods for Fermions and Bosons. Phys. Rev. Lett., 93: 260401, 2004. https:/​/​doi.org/​10.1103/​PhysRevLett.93.260401.
https:/​/​doi.org/​10.1103/​PhysRevLett.93.260401

[28] J. F. Corney, P. D. Drummond, and A. Liebman. Quantum noise limits to terabaud communications. Opt. Commun., 140: 211–215, 1997. https:/​/​doi.org/​10.1016/​S0030-4018(97)00191-0.
https:/​/​doi.org/​10.1016/​S0030-4018(97)00191-0

[29] Joel F. Corney, Peter D. Drummond, Joel Heersink, Vincent Josse, Gerd Leuchs, and Ulrik L. Andersen. Many-body quantum dynamics of polarization squeezing in optical fibers. Phys. Rev. Lett., 97: 023606, 2006. https:/​/​doi.org/​10.1103/​PhysRevLett.97.023606.
https:/​/​doi.org/​10.1103/​PhysRevLett.97.023606

[30] Joel F. Corney, Joel Heersink, Ruifang Dong, Vincent Josse, Peter D. Drummond, Gerd Leuchs, and Ulrik L. Andersen. Simulations and experiments on polarization squeezing in optical fiber. Phys. Rev. A, 78: 023831, 2008. https:/​/​doi.org/​10.1103/​PhysRevA.78.023831.
https:/​/​doi.org/​10.1103/​PhysRevA.78.023831

[31] Fernando A. M. de Oliveira. s-order nondiagonal quasiprobabilities. Phys. Rev. A, 45: 5104–5112, 1992. https:/​/​doi.org/​10.1103/​PhysRevA.45.5104.
https:/​/​doi.org/​10.1103/​PhysRevA.45.5104

[32] K. Dechoum, P. D. Drummond, S. Chaturvedi, and M. D. Reid. Critical fluctuations and entanglement in the nondegenerate parametric oscillator. Phys. Rev. A, 70: 053807, 2004. https:/​/​doi.org/​10.1103/​PhysRevA.70.053807.
https:/​/​doi.org/​10.1103/​PhysRevA.70.053807

[33] Graham R. Dennis, Joseph J. Hope, and Mattias T. Johnsson. XMDS2: Fast, scalable simulation of coupled stochastic partial differential equations. Computer Physics Communications, 184 (1): 201–208, 2013. https:/​/​doi.org/​10.1016/​j.cpc.2012.08.016.
https:/​/​doi.org/​10.1016/​j.cpc.2012.08.016

[34] P. Deuar. First-principles quantum simulations of many-mode open interacting Bose gases using stochastic gauge methods. PhD thesis, University of Queensland, arXiv:cond-mat/​0507023, 2005. URL https:/​/​arxiv.org/​abs/​cond-mat/​0507023.
arXiv:cond-mat/0507023

[35] P. Deuar. Simulation of complete many-body quantum dynamics using controlled quantum-semiclassical hybrids. Phys. Rev. Lett., 103: 130402, 2009. https:/​/​doi.org/​10.1103/​PhysRevLett.103.130402.
https:/​/​doi.org/​10.1103/​PhysRevLett.103.130402

[36] P. Deuar. A tractable prescription for large-scale free flight expansion of wavefunctions. Computer Physics Communications, 208: 92 – 102, 2016. http:/​/​dx.doi.org/​10.1016/​j.cpc.2016.08.004.
https:/​/​doi.org/​10.1016/​j.cpc.2016.08.004

[37] P. Deuar and P. D. Drummond. Gauge $P$ representations for quantum-dynamical problems: Removal of boundary terms. Phys. Rev. A, 66: 033812, 2002. https:/​/​doi.org/​10.1103/​PhysRevA.66.033812.
https:/​/​doi.org/​10.1103/​PhysRevA.66.033812

[38] P. Deuar and P. D. Drummond. First-principles quantum dynamics in interacting Bose gases: I. the positive P representation. Journal of Physics A: Mathematical and General, 39 (5): 1163, 2006. https:/​/​doi.org/​10.1088/​0305-4470/​39/​5/​010.
https:/​/​doi.org/​10.1088/​0305-4470/​39/​5/​010

[39] P. Deuar and P. D. Drummond. Correlations in a BEC collision: First-principles quantum dynamics with 150 000 atoms. Phys. Rev. Lett., 98: 120402, 2007. https:/​/​doi.org/​10.1103/​PhysRevLett.98.120402.
https:/​/​doi.org/​10.1103/​PhysRevLett.98.120402

[40] P. Deuar, A. G. Sykes, D. M. Gangardt, M. J. Davis, P. D. Drummond, and K. V. Kheruntsyan. Nonlocal pair correlations in the one-dimensional Bose gas at finite temperature. Phys. Rev. A, 79: 043619, 2009. https:/​/​doi.org/​10.1103/​PhysRevA.79.043619.
https:/​/​doi.org/​10.1103/​PhysRevA.79.043619

[41] P. Deuar, J. Chwedeńczuk, M. Trippenbach, and P. Ziń. Bogoliubov dynamics of condensate collisions using the positive-P representation. Phys. Rev. A, 83: 063625, 2011. https:/​/​doi.org/​10.1103/​PhysRevA.83.063625.
https:/​/​doi.org/​10.1103/​PhysRevA.83.063625

[42] P. Deuar, T. Wasak, P. Ziń, J. Chwedeńczuk, and M. Trippenbach. Tradeoffs for number squeezing in collisions of Bose-Einstein condensates. Phys. Rev. A, 88: 013617, 2013. https:/​/​doi.org/​10.1103/​PhysRevA.88.013617.
https:/​/​doi.org/​10.1103/​PhysRevA.88.013617

[43] P. Deuar, J.-C. Jaskula, M. Bonneau, V. Krachmalnicoff, D. Boiron, C. I. Westbrook, and K. V. Kheruntsyan. Anisotropy in $s$-wave Bose-Einstein condensate collisions and its relationship to superradiance. Phys. Rev. A, 90: 033613, 2014. https:/​/​doi.org/​10.1103/​PhysRevA.90.033613.
https:/​/​doi.org/​10.1103/​PhysRevA.90.033613

[44] Piotr Deuar and Joanna Pietraszewicz. A semiclassical field theory that is freed of the ultraviolet catastrophe, 2019. URL https:/​/​arxiv.org/​abs/​1904.06266. arXiv:1904.06266.
arXiv:1904.06266

[45] Piotr Deuar, Alex Ferrier, Michał Matuszewski, Giuliano Orso, and Marzena H. Szymańska. Fully quantum scalable description of driven-dissipative lattice models. PRX Quantum, 2: 010319, 2021. https:/​/​doi.org/​10.1103/​PRXQuantum.2.010319.
https:/​/​doi.org/​10.1103/​PRXQuantum.2.010319

[46] Mark R. Dowling, Peter D. Drummond, Matthew J. Davis, and Piotr Deuar. Time-reversal test for stochastic quantum dynamics. Phys. Rev. Lett., 94: 130401, 2005. https:/​/​doi.org/​10.1103/​PhysRevLett.94.130401.
https:/​/​doi.org/​10.1103/​PhysRevLett.94.130401

[47] P. D. Drummond. Central partial difference propagation algorithms. Computer Physics Communications, 29 (3): 211–225, 1983. https:/​/​doi.org/​10.1016/​0010-4655(83)90001-2.
https:/​/​doi.org/​10.1016/​0010-4655(83)90001-2

[48] P. D. Drummond. Fundamentals of higher order stochastic equations. J. Phys. A, 47 (33): 335001, 2014. https:/​/​doi.org/​10.1088/​1751-8113/​47/​33/​335001.
https:/​/​doi.org/​10.1088/​1751-8113/​47/​33/​335001

[49] P. D. Drummond and J. F. Corney. Quantum dynamics of evaporatively cooled Bose-Einstein condensates. Phys. Rev. A, 60: R2661–R2664, 1999. https:/​/​doi.org/​10.1103/​PhysRevA.60.R2661.
https:/​/​doi.org/​10.1103/​PhysRevA.60.R2661

[50] P. D. Drummond and C. W. Gardiner. Generalised P-representations in quantum optics. Journal of Physics A: Mathematical and General, 13 (7): 2353, 1980. https:/​/​doi.org/​10.1088/​0305-4470/​13/​7/​018.
https:/​/​doi.org/​10.1088/​0305-4470/​13/​7/​018

[51] P. D. Drummond and I. K. Mortimer. Computer simulations of multiplicative stochastic differential equations. Journal of Computational Physics, 93 (1): 144–170, 1991. https:/​/​doi.org/​10.1016/​0021-9991(91)90077-X.
https:/​/​doi.org/​10.1016/​0021-9991(91)90077-X

[52] P. D. Drummond and D. F. Walls. Quantum theory of optical bistability. I. nonlinear polarisability model. Journal of Physics A: Mathematical and General, 13 (2): 725–741, 1980. https:/​/​doi.org/​10.1088/​0305-4470/​13/​2/​034.
https:/​/​doi.org/​10.1088/​0305-4470/​13/​2/​034

[53] P. D. Drummond, B. Opanchuk, L. Rosales-Zárate, M. D. Reid, and P. J. Forrester. Scaling of boson sampling experiments. Phys. Rev. A, 94: 042339, 2016. https:/​/​doi.org/​10.1103/​PhysRevA.94.042339.
https:/​/​doi.org/​10.1103/​PhysRevA.94.042339

[54] Peter D. Drummond and Bogdan Opanchuk. Initial states for quantum field simulations in phase space. Phys. Rev. Research, 2: 033304, 2020. https:/​/​doi.org/​10.1103/​PhysRevResearch.2.033304.
https:/​/​doi.org/​10.1103/​PhysRevResearch.2.033304

[55] Dominic V. Else, Bela Bauer, and Chetan Nayak. Floquet time crystals. Phys. Rev. Lett., 117: 090402, 2016. https:/​/​doi.org/​10.1103/​PhysRevLett.117.090402.
https:/​/​doi.org/​10.1103/​PhysRevLett.117.090402

[56] Ruihua Fan, Pengfei Zhang, Huitao Shen, and Hui Zhai. Out-of-time-order correlation for many-body localization. Science Bulletin, 62 (10): 707–711, 2017. https:/​/​doi.org/​10.1016/​j.scib.2017.04.011.
https:/​/​doi.org/​10.1016/​j.scib.2017.04.011

[57] M. D. Feit, J. A. Fleck, and A. Steiger. Solution of the Schrödinger equation by a spectral method. Journal of Computational Physics, 47 (3): 412–433, 1982. http:/​/​dx.doi.org/​10.1016/​0021-9991(82)90091-2.
https:/​/​doi.org/​10.1016/​0021-9991(82)90091-2

[58] Christopher Ferrie. Quasi-probability representations of quantum theory with applications to quantum information science. Reports on Progress in Physics, 74 (11): 116001, 2011. https:/​/​doi.org/​10.1088/​0034-4885/​74/​11/​116001.
https:/​/​doi.org/​10.1088/​0034-4885/​74/​11/​116001

[59] S. Finazzi, A. Le Boité, F. Storme, A. Baksic, and C. Ciuti. Corner-space renormalization method for driven-dissipative two-dimensional correlated systems. Phys. Rev. Lett., 115: 080604, 2015. https:/​/​doi.org/​10.1103/​PhysRevLett.115.080604.
https:/​/​doi.org/​10.1103/​PhysRevLett.115.080604

[60] Laura Foini and Jorge Kurchan. Eigenstate thermalization hypothesis and out of time order correlators. Phys. Rev. E, 99: 042139, 2019. https:/​/​doi.org/​10.1103/​PhysRevE.99.042139.
https:/​/​doi.org/​10.1103/​PhysRevE.99.042139

[61] Matteo Frigo and Steven G. Johnson. The design and implementation of FFTW3. Proceedings of the IEEE, 93 (2): 216–231, 2005. https:/​/​doi.org/​10.1109/​JPROC.2004.840301.
https:/​/​doi.org/​10.1109/​JPROC.2004.840301

[62] C. W. Gardiner. Quantum Noise. Springer-Verlag, Berlin, 1991. ISBN 9783662096444, 9783662096420.

[63] Martin Gärttner, Justin G. Bohnet, Arghavan Safavi-Naini, Michael L. Wall, John J. Bollinger, and Ana Maria Rey. Measuring out-of-time-order correlations and multiple quantum spectra in a trapped-ion quantum magnet. Nature Physics, 13 (8): 781–786, 2017. https:/​/​doi.org/​10.1038/​nphys4119.
https:/​/​doi.org/​10.1038/​nphys4119

[64] Martin Gärttner, Philipp Hauke, and Ana Maria Rey. Relating out-of-time-order correlations to entanglement via multiple-quantum coherences. Phys. Rev. Lett., 120: 040402, 2018. https:/​/​doi.org/​10.1103/​PhysRevLett.120.040402.
https:/​/​doi.org/​10.1103/​PhysRevLett.120.040402

[65] C. Gehrke, J. Sperling, and W. Vogel. Quantification of nonclassicality. Phys. Rev. A, 86: 052118, 2012. https:/​/​doi.org/​10.1103/​PhysRevA.86.052118.
https:/​/​doi.org/​10.1103/​PhysRevA.86.052118

[66] A. Gilchrist, C. W. Gardiner, and P. D. Drummond. Positive P representation: Application and validity. Phys. Rev. A, 55: 3014–3032, 1997. https:/​/​doi.org/​10.1103/​PhysRevA.55.3014.
https:/​/​doi.org/​10.1103/​PhysRevA.55.3014

[67] Roy J. Glauber. Coherent and incoherent states of the radiation field. Phys. Rev., 131: 2766–2788, 1963a. https:/​/​doi.org/​10.1103/​PhysRev.131.2766.
https:/​/​doi.org/​10.1103/​PhysRev.131.2766

[68] Roy J. Glauber. The quantum theory of optical coherence. Phys. Rev., 130: 2529–2539, 1963b. https:/​/​doi.org/​10.1103/​PhysRev.130.2529.
https:/​/​doi.org/​10.1103/​PhysRev.130.2529

[69] V. Goblot, B. Rauer, F. Vicentini, A. Le Boité, E. Galopin, A. Lemaı̂tre, L. Le Gratiet, A. Harouri, I. Sagnes, S. Ravets, C. Ciuti, A. Amo, and J. Bloch. Nonlinear polariton fluids in a flatband reveal discrete gap solitons. Phys. Rev. Lett., 123: 113901, 2019. https:/​/​doi.org/​10.1103/​PhysRevLett.123.113901.
https:/​/​doi.org/​10.1103/​PhysRevLett.123.113901

[70] Rong-Qiang He and Zhong-Yi Lu. Characterizing many-body localization by out-of-time-ordered correlation. Phys. Rev. B, 95: 054201, 2017. https:/​/​doi.org/​10.1103/​PhysRevB.95.054201.
https:/​/​doi.org/​10.1103/​PhysRevB.95.054201

[71] Scott E. Hoffmann, Joel F. Corney, and Peter D. Drummond. Hybrid phase-space simulation method for interacting Bose fields. Phys. Rev. A, 78: 013622, 2008. https:/​/​doi.org/​10.1103/​PhysRevA.78.013622.
https:/​/​doi.org/​10.1103/​PhysRevA.78.013622

[72] A. A. Houck, H. E. Türeci, and J. Koch. On-chip quantum simulation with superconducting circuits. Nature Physics, 8: 292–299, 2012. https:/​/​doi.org/​10.1038/​nphys2251.
https:/​/​doi.org/​10.1038/​nphys2251

[73] Julian Huber, Peter Kirton, and Peter Rabl. Phase-Space Methods for Simulating the Dissipative Many-Body Dynamics of Collective Spin Systems. SciPost Phys., 10: 45, 2021. URL https:/​/​scipost.org/​10.21468/​SciPostPhys.10.2.045. https:/​/​doi.org/​10.21468/​SciPostPhys.10.2.045.
https:/​/​doi.org/​10.21468/​SciPostPhys.10.2.045

[74] M. R. Hush, S. S. Szigeti, A. R. R. Carvalho, and J. J. Hope. Controlling spontaneous-emission noise in measurement-based feedback cooling of a Bose-Einstein condensate. New J. Phys., 15 (11): 113060, 2013. https:/​/​doi.org/​10.1088/​1367-2630/​15/​11/​113060.
https:/​/​doi.org/​10.1088/​1367-2630/​15/​11/​113060

[75] K. Husimi. Some formal properties of the density matrix. Proc. Phys. Math. Soc. Jpn., 22: 264–314, 1940. https:/​/​doi.org/​10.11429/​ppmsj1919.22.4_264.
https:/​/​doi.org/​10.11429/​ppmsj1919.22.4_264

[76] Nobuyuki Ikeda and Shinzo Watanabe. Stochastic Differential Equations and Diffusion Processes, volume 24 of North-Holland Mathematical Library. North Holland, 2nd edition, 1988. ISBN 0444861726, 9780444861726.

[77] Juha Javanainen and Janne Ruostekoski. Symbolic calculation in development of algorithms: split-step methods for the Gross–Pitaevskii equation. Journal of Physics A: Mathematical and General, 39 (12): L179, 2006. https:/​/​doi.org/​10.1088/​0305-4470/​39/​12/​L02.
https:/​/​doi.org/​10.1088/​0305-4470/​39/​12/​L02

[78] Kai Ji, Vladimir N. Gladilin, and Michiel Wouters. Temporal coherence of one-dimensional nonequilibrium quantum fluids. Phys. Rev. B, 91: 045301, 2015. https:/​/​doi.org/​10.1103/​PhysRevB.91.045301.
https:/​/​doi.org/​10.1103/​PhysRevB.91.045301

[79] Guy Jumarie. Complex-valued Wiener measure: An approach via random walk in the complex plane. Statistics and Probability Letters, 42 (1): 61–67, 1999. https:/​/​doi.org/​10.1016/​S0167-7152(98)00194-1.
https:/​/​doi.org/​10.1016/​S0167-7152(98)00194-1

[80] Guy Jumarie. On the representation of fractional brownian motion as an integral with respect to $(dt)^a$. Applied Mathematics Letters, 18 (7): 739–748, 2005. https:/​/​doi.org/​10.1016/​j.aml.2004.05.014.
https:/​/​doi.org/​10.1016/​j.aml.2004.05.014

[81] P. L. Kelley and W. H. Kleiner. Theory of electromagnetic field measurement and photoelectron counting. Phys. Rev., 136: A316–A334, 1964. https:/​/​doi.org/​10.1103/​PhysRev.136.A316.
https:/​/​doi.org/​10.1103/​PhysRev.136.A316

[82] K. V. Kheruntsyan, J.-C. Jaskula, P. Deuar, M. Bonneau, G. B. Partridge, J. Ruaudel, R. Lopes, D. Boiron, and C. I. Westbrook. Violation of the Cauchy-Schwarz inequality with matter waves. Phys. Rev. Lett., 108: 260401, 2012. https:/​/​doi.org/​10.1103/​PhysRevLett.108.260401.
https:/​/​doi.org/​10.1103/​PhysRevLett.108.260401

[83] T. Kiesel, W. Vogel, V. Parigi, A. Zavatta, and M. Bellini. Experimental determination of a nonclassical Glauber-Sudarshan $P$ function. Phys. Rev. A, 78: 021804, 2008. https:/​/​doi.org/​10.1103/​PhysRevA.78.021804.
https:/​/​doi.org/​10.1103/​PhysRevA.78.021804

[84] S. Kiesewetter, Q. Y. He, P. D. Drummond, and M. D. Reid. Scalable quantum simulation of pulsed entanglement and Einstein-Podolsky-Rosen steering in optomechanics. Phys. Rev. A, 90: 043805, 2014. https:/​/​doi.org/​10.1103/​PhysRevA.90.043805.
https:/​/​doi.org/​10.1103/​PhysRevA.90.043805

[85] P. Kinsler and P. D. Drummond. Quantum dynamics of the parametric oscillator. Phys. Rev. A, 43: 6194–6208, 1991. https:/​/​doi.org/​10.1103/​PhysRevA.43.6194.
https:/​/​doi.org/​10.1103/​PhysRevA.43.6194

[86] Katja Klobas, Matthieu Vanicat, Juan P Garrahan, and Tomaž Prosen. Matrix product state of multi-time correlations. Journal of Physics A: Mathematical and Theoretical, 53 (33): 335001, 2020. https:/​/​doi.org/​10.1088/​1751-8121/​ab8c62.
https:/​/​doi.org/​10.1088/​1751-8121/​ab8c62

[87] Peter E. Kloeden and Eckhard Platen. Numerical solution of stochastic differential equations. Stochastic Modelling and Applied Probability. Springer-verlag, Berlin Heidelberg, 1992. ISBN 978-3-540-54062-5. https:/​/​doi.org/​10.1007/​978-3-662-12616-5.
https:/​/​doi.org/​10.1007/​978-3-662-12616-5

[88] J. K. Korbicz, J. I. Cirac, Jan Wehr, and M. Lewenstein. Hilbert's 17th problem and the quantumness of states. Phys. Rev. Lett., 94: 153601, 2005. https:/​/​doi.org/​10.1103/​PhysRevLett.94.153601.
https:/​/​doi.org/​10.1103/​PhysRevLett.94.153601

[89] F. Krumm, J. Sperling, and W. Vogel. Multitime correlation functions in nonclassical stochastic processes. Phys. Rev. A, 93: 063843, 2016. https:/​/​doi.org/​10.1103/​PhysRevA.93.063843.
https:/​/​doi.org/​10.1103/​PhysRevA.93.063843

[90] Ryogo Kubo, Morikazu Toda, and Natsuki Hashitsume. Statistical Physics II. Springer-Verlag, Berlin, 1985. ISBN 978-3-540-53833-2. https:/​/​doi.org/​10.1007/​978-3-642-58244-8.
https:/​/​doi.org/​10.1007/​978-3-642-58244-8

[91] C. Lamprecht, M. K. Olsen, P. D. Drummond, and H. Ritsch. Positive-P and Wigner representations for quantum-optical systems with nonorthogonal modes. Phys. Rev. A, 65: 053813, 2002. https:/​/​doi.org/​10.1103/​PhysRevA.65.053813.
https:/​/​doi.org/​10.1103/​PhysRevA.65.053813

[92] Melvin Lax. Quantum noise. XI. multitime correspondence between quantum and classical stochastic processes. Phys. Rev., 172: 350–361, 1968. https:/​/​doi.org/​10.1103/​PhysRev.172.350.
https:/​/​doi.org/​10.1103/​PhysRev.172.350

[93] Hai-Woong Lee. Theory and application of the quantum phase-space distribution functions. Physics Reports, 259 (3): 147–211, 1995. https:/​/​doi.org/​10.1016/​0370-1573(95)00007-4.
https:/​/​doi.org/​10.1016/​0370-1573(95)00007-4

[94] R. J. Lewis-Swan and K. V. Kheruntsyan. Proposal for demonstrating the Hong–Ou–Mandel effect with matter waves. Nature Commun., 5: 3752, 2014. https:/​/​doi.org/​10.1038/​ncomms4752.
https:/​/​doi.org/​10.1038/​ncomms4752

[95] R. J. Lewis-Swan and K. V. Kheruntsyan. Proposal for a motional-state Bell inequality test with ultracold atoms. Phys. Rev. A, 91: 052114, 2015. https:/​/​doi.org/​10.1103/​PhysRevA.91.052114.
https:/​/​doi.org/​10.1103/​PhysRevA.91.052114

[96] T. C. H. Liew and V. Savona. Single photons from coupled quantum modes. Phys. Rev. Lett., 104: 183601, 2010. https:/​/​doi.org/​10.1103/​PhysRevLett.104.183601.
https:/​/​doi.org/​10.1103/​PhysRevLett.104.183601

[97] Andreas M Läuchli and Corinna Kollath. Spreading of correlations and entanglement after a quench in the one-dimensional Bose-Hubbard model. Journal of Statistical Mechanics: Theory and Experiment, 2008 (05): P05018, 2008. https:/​/​doi.org/​10.1088/​1742-5468/​2008/​05/​p05018.
https:/​/​doi.org/​10.1088/​1742-5468/​2008/​05/​p05018

[98] Juan Maldacena, Stephen H. Shenker, and Douglas Stanford. A bound on chaos. Journal of High Energy Physics, 2016 (8): 106, 2016. https:/​/​doi.org/​10.1007/​JHEP08(2016)106.
https:/​/​doi.org/​10.1007/​JHEP08(2016)106

[99] L. Mandel. Antinormally ordered correlations and quantum counters. Phys. Rev., 152: 438–451, 1966. https:/​/​doi.org/​10.1103/​PhysRev.152.438.
https:/​/​doi.org/​10.1103/​PhysRev.152.438

[100] Stephan Mandt, Darius Sadri, Andrew A Houck, and Hakan E Türeci. Stochastic differential equations for quantum dynamics of spin-boson networks. New Journal of Physics, 17 (5): 053018, 2015. https:/​/​doi.org/​10.1088/​1367-2630/​17/​5/​053018.
https:/​/​doi.org/​10.1088/​1367-2630/​17/​5/​053018

[101] Amy C. Mathey, Charles W. Clark, and L. Mathey. Decay of a superfluid current of ultracold atoms in a toroidal trap. Phys. Rev. A, 90: 023604, 2014. https:/​/​doi.org/​10.1103/​PhysRevA.90.023604.
https:/​/​doi.org/​10.1103/​PhysRevA.90.023604

[102] S. L. W. Midgley, S. Wüster, M. K. Olsen, M. J. Davis, and K. V. Kheruntsyan. Comparative study of dynamical simulation methods for the dissociation of molecular Bose-Einstein condensates. Phys. Rev. A, 79: 053632, 2009. https:/​/​doi.org/​10.1103/​PhysRevA.79.053632.
https:/​/​doi.org/​10.1103/​PhysRevA.79.053632

[103] Magdalena Moczała-Dusanowska, Łukasz Dusanowski, Stefan Gerhardt, Yu Ming He, Marcus Reindl, Armando Rastelli, Rinaldo Trotta, Niels Gregersen, Sven Höfling, and Christian Schneider. Strain-tunable single-photon source based on a quantum dot–micropillar system. ACS Photonics, 6 (8): 2025–2031, 2019. https:/​/​doi.org/​10.1021/​acsphotonics.9b00481.
https:/​/​doi.org/​10.1021/​acsphotonics.9b00481

[104] Ekaterina Moreva, Marco Gramegna, Giorgio Brida, Lorenzo Maccone, and Marco Genovese. Quantum time: Experimental multitime correlations. Phys. Rev. D, 96: 102005, 2017. https:/​/​doi.org/​10.1103/​PhysRevD.96.102005.
https:/​/​doi.org/​10.1103/​PhysRevD.96.102005

[105] J. E. Moyal. Quantum mechanics as a statistical theory. Mathematical Proceedings of the Cambridge Philosophical Society, 45 (01): 99–124, 1949. https:/​/​doi.org/​10.1017/​S0305004100000487.
https:/​/​doi.org/​10.1017/​S0305004100000487

[106] Ray Ng and Erik S. Sørensen. Exact real-time dynamics of quantum spin systems using the positive-P representation. J. Phys. A, 44: 065305, 2011. https:/​/​doi.org/​10.1088/​1751-8113/​44/​6/​065305.
https:/​/​doi.org/​10.1088/​1751-8113/​44/​6/​065305

[107] Ray Ng, Erik S. Sørensen, and Piotr Deuar. Simulation of the dynamics of many-body quantum spin systems using phase-space techniques. Phys. Rev. B, 88: 144304, 2013. https:/​/​doi.org/​10.1103/​PhysRevB.88.144304.
https:/​/​doi.org/​10.1103/​PhysRevB.88.144304

[108] A. A. Norrie, R. J. Ballagh, and C. W. Gardiner. Quantum turbulence in condensate collisions: An application of the classical field method. Phys. Rev. Lett., 94: 040401, 2005. https:/​/​doi.org/​10.1103/​PhysRevLett.94.040401.
https:/​/​doi.org/​10.1103/​PhysRevLett.94.040401

[109] M. K. Olsen, L. I. Plimak, and M. Fleischhauer. Quantum-theoretical treatments of three-photon processes. Phys. Rev. A, 65: 053806, 2002. https:/​/​doi.org/​10.1103/​PhysRevA.65.053806.
https:/​/​doi.org/​10.1103/​PhysRevA.65.053806

[110] M. K. Olsen, A. B. Melo, K. Dechoum, and A. Z. Khoury. Quantum phase-space analysis of the pendular cavity. Phys. Rev. A, 70: 043815, 2004. https:/​/​doi.org/​10.1103/​PhysRevA.70.043815.
https:/​/​doi.org/​10.1103/​PhysRevA.70.043815

[111] Bogdan Opanchuk, Rodney Polkinghorne, Oleksandr Fialko, Joachim Brand, and Peter D. Drummond. Quantum simulations of the early universe. Annalen der Physik, 525 (10-11): 866–876, 2013. https:/​/​doi.org/​10.1002/​andp.201300113.
https:/​/​doi.org/​10.1002/​andp.201300113

[112] Bogdan Opanchuk, Laura Rosales-Zárate, Margaret D. Reid, and Peter D. Drummond. Simulating and assessing boson sampling experiments with phase-space representations. Phys. Rev. A, 97: 042304, 2018. https:/​/​doi.org/​10.1103/​PhysRevA.97.042304.
https:/​/​doi.org/​10.1103/​PhysRevA.97.042304

[113] Bogdan Opanchuk, Laura Rosales-Zárate, Margaret D. Reid, and Peter D. Drummond. Robustness of quantum Fourier transform interferometry. Opt. Lett., 44 (2): 343–346, 2019. https:/​/​doi.org/​10.1364/​OL.44.000343.
https:/​/​doi.org/​10.1364/​OL.44.000343

[114] J. Pietraszewicz, M. Stobińska, and P. Deuar. Correlation evolution in dilute Bose-Einstein condensates after quantum quenches. Phys. Rev. A, 99: 023620, 2019. https:/​/​doi.org/​10.1103/​PhysRevA.99.023620.
https:/​/​doi.org/​10.1103/​PhysRevA.99.023620

[115] L. I. Plimak and M. K. Olsen. Quantum-field-theoretical approach to phase–space techniques: Symmetric Wick theorem and multitime Wigner representation. Annals of Physics, 351: 593 – 619, 2014. https:/​/​doi.org/​10.1016/​j.aop.2014.09.010.
https:/​/​doi.org/​10.1016/​j.aop.2014.09.010

[116] L. I. Plimak, M. K. Olsen, M. Fleischhauer, and M. J. Collett. Beyond the Fokker-Planck equation: Stochastic simulation of complete Wigner representation for the optical parametric oscillator. Europhysics Letters (EPL), 56 (3): 372–378, 2001. https:/​/​doi.org/​10.1209/​epl/​i2001-00529-8.
https:/​/​doi.org/​10.1209/​epl/​i2001-00529-8

[117] L. I. Plimak, M. Fleischhauer, M. K. Olsen, and M. J. Collett. Quantum-field-theoretical approach to phase-space techniques: Generalizing the positive-P representation. Phys. Rev. A, 67: 013812, 2003. https:/​/​doi.org/​10.1103/​PhysRevA.67.013812.
https:/​/​doi.org/​10.1103/​PhysRevA.67.013812

[118] Anatoli Polkovnikov. Phase space representation of quantum dynamics. Annals of Physics, 325 (8): 1790 – 1852, 2010. http:/​/​dx.doi.org/​10.1016/​j.aop.2010.02.006.
https:/​/​doi.org/​10.1016/​j.aop.2010.02.006

[119] Martin Ringbauer, Fabio Costa, Michael E. Goggin, Andrew G. White, and Fedrizzi Alessandro. Multi-time quantum correlations with no spatial analog. NPJ Quantum Information, 4: 37, 2018. https:/​/​doi.org/​10.1038/​s41534-018-0086-y.
https:/​/​doi.org/​10.1038/​s41534-018-0086-y

[120] J. A. Ross, P. Deuar, D. K. Shin, K. F. Thomas, B. M. Henson, S. S. Hodgman, and A. G Truscott. Survival of the quantum depletion of a condensate after release from a harmonic trap in theory and experiment, 2021. URL https:/​/​arxiv.org/​abs/​2103.15283. arXiv:2103.15283.
arXiv:2103.15283

[121] Mutsuo Saito and Makoto Matsumoto. Simd-oriented fast Mersenne twister: a 128-bit pseudorandom number generator. In Alexander Keller, Stefan Heinrich, and Harald Niederreiter, editors, Monte Carlo and Quasi-Monte Carlo Methods 2006, pages 607–622, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-74496-2. https:/​/​doi.org/​10.1007/​978-3-540-74496-2_36.
https:/​/​doi.org/​10.1007/​978-3-540-74496-2_36

[122] Sebastian Schmidt and Jens Koch. Circuit qed lattices: Towards quantum simulation with superconducting circuits. Annalen der Physik, 525 (6): 395–412, 2013. https:/​/​doi.org/​10.1002/​andp.201200261.
https:/​/​doi.org/​10.1002/​andp.201200261

[123] C. Schneider, K. Winkler, M. D. Fraser, M. Kamp, Y. Yamamoto, E. A. Ostrovskaya, and S. Höfling. Exciton-polariton trapping and potential landscape engineering. Reports on Progress in Physics, 80 (1): 016503, 2016. https:/​/​doi.org/​10.1088/​0034-4885/​80/​1/​016503.
https:/​/​doi.org/​10.1088/​0034-4885/​80/​1/​016503

[124] Huitao Shen, Pengfei Zhang, Ruihua Fan, and Hui Zhai. Out-of-time-order correlation at a quantum phase transition. Phys. Rev. B, 96: 054503, 2017. https:/​/​doi.org/​10.1103/​PhysRevB.96.054503.
https:/​/​doi.org/​10.1103/​PhysRevB.96.054503

[125] Alice Sinatra, Carlos Lobo, and Yvan Castin. The truncated Wigner method for Bose-condensed gases: limits of validity and applications. Journal of Physics B: Atomic, Molecular and Optical Physics, 35 (17): 3599, 2002. https:/​/​doi.org/​10.1088/​0953-4075/​35/​17/​301.
https:/​/​doi.org/​10.1088/​0953-4075/​35/​17/​301

[126] A. M. Smith and C. W. Gardiner. Simulations of nonlinear quantum damping using the positive P representation. Phys. Rev. A, 39: 3511–3524, 1989. https:/​/​doi.org/​10.1103/​PhysRevA.39.3511.
https:/​/​doi.org/​10.1103/​PhysRevA.39.3511

[127] Robert W. Spekkens. Negativity and contextuality are equivalent notions of nonclassicality. Phys. Rev. Lett., 101: 020401, 2008. https:/​/​doi.org/​10.1103/​PhysRevLett.101.020401.
https:/​/​doi.org/​10.1103/​PhysRevLett.101.020401

[128] J. Sperling. Characterizing maximally singular phase-space distributions. Phys. Rev. A, 94: 013814, 2016. https:/​/​doi.org/​10.1103/​PhysRevA.94.013814.
https:/​/​doi.org/​10.1103/​PhysRevA.94.013814

[129] J Sperling and W Vogel. Quasiprobability distributions for quantum-optical coherence and beyond. Physica Scripta, 95 (3): 034007, 2020. https:/​/​doi.org/​10.1088/​1402-4896/​ab5501.
https:/​/​doi.org/​10.1088/​1402-4896/​ab5501

[130] Herbert Spohn. Kinetic equations from hamiltonian dynamics: Markovian limits. Rev. Mod. Phys., 52: 569–615, 1980. https:/​/​doi.org/​10.1103/​RevModPhys.52.569.
https:/​/​doi.org/​10.1103/​RevModPhys.52.569

[131] M. J. Steel, M. K. Olsen, L. I. Plimak, P. D. Drummond, S. M. Tan, M. J. Collett, D. F. Walls, and R. Graham. Dynamical quantum noise in trapped Bose-Einstein condensates. Phys. Rev. A, 58: 4824–4835, 1998. https:/​/​doi.org/​10.1103/​PhysRevA.58.4824.
https:/​/​doi.org/​10.1103/​PhysRevA.58.4824

[132] E. C. G. Sudarshan. Equivalence of Semiclassical and Quantum Mechanical Descriptions of Statistical Light Beams. Phys. Rev. Lett., 10: 277–279, 1963. https:/​/​doi.org/​10.1103/​PhysRevLett.10.277.
https:/​/​doi.org/​10.1103/​PhysRevLett.10.277

[133] Brian Swingle, Gregory Bentsen, Monika Schleier-Smith, and Patrick Hayden. Measuring the scrambling of quantum information. Phys. Rev. A, 94: 040302, 2016. https:/​/​doi.org/​10.1103/​PhysRevA.94.040302.
https:/​/​doi.org/​10.1103/​PhysRevA.94.040302

[134] Tomasz Świsłocki and Piotr Deuar. Quantum fluctuation effects on the quench dynamics of thermal quasicondensates. Journal of Physics B: Atomic, Molecular and Optical Physics, 49 (14): 145303, 2016. https:/​/​doi.org/​10.1088/​0953-4075/​49/​14/​145303.
https:/​/​doi.org/​10.1088/​0953-4075/​49/​14/​145303

[135] Andrzej Syrwid, Jakub Zakrzewski, and Krzysztof Sacha. Time crystal behavior of excited eigenstates. Phys. Rev. Lett., 119: 250602, 2017. https:/​/​doi.org/​10.1103/​PhysRevLett.119.250602.
https:/​/​doi.org/​10.1103/​PhysRevLett.119.250602

[136] Kishore Thapliyal, Subhashish Banerjee, Anirban Pathak, S. Omkar, and V. Ravishankar. Quasiprobability distributions in open quantum systems: Spin-qubit systems. Annals of Physics, 362: 261–286, 2015. https:/​/​doi.org/​10.1016/​j.aop.2015.07.029.
https:/​/​doi.org/​10.1016/​j.aop.2015.07.029

[137] Hidekazu Tsukiji, Hideaki Iida, Teiji Kunihiro, Akira Ohnishi, and Toru T. Takahashi. Entropy production from chaoticity in Yang-Mills field theory with use of the Husimi function. Phys. Rev. D, 94: 091502, 2016. https:/​/​doi.org/​10.1103/​PhysRevD.94.091502.
https:/​/​doi.org/​10.1103/​PhysRevD.94.091502

[138] Victor Veitch, Christopher Ferrie, David Gross, and Joseph Emerson. Negative quasi-probability as a resource for quantum computation. New Journal of Physics, 14 (11): 113011, 2012. https:/​/​doi.org/​10.1088/​1367-2630/​14/​11/​113011.
https:/​/​doi.org/​10.1088/​1367-2630/​14/​11/​113011

[139] Werner Vogel. Nonclassical correlation properties of radiation fields. Phys. Rev. Lett., 100: 013605, 2008. https:/​/​doi.org/​10.1103/​PhysRevLett.100.013605.
https:/​/​doi.org/​10.1103/​PhysRevLett.100.013605

[140] M. J. Werner and P. D. Drummond. Robust algorithms for solving stochastic partial differential equations. Journal of Computational Physics, 132 (2): 312 – 326, 1997. https:/​/​doi.org/​10.1006/​jcph.1996.5638.
https:/​/​doi.org/​10.1006/​jcph.1996.5638

[141] E. Wigner. On the Quantum Correction For Thermodynamic Equilibrium. Phys. Rev., 40: 749–759, 1932. https:/​/​doi.org/​10.1103/​PhysRev.40.749.
https:/​/​doi.org/​10.1103/​PhysRev.40.749

[142] Frank Wilczek. Quantum time crystals. Phys. Rev. Lett., 109: 160401, 2012. https:/​/​doi.org/​10.1103/​PhysRevLett.109.160401.
https:/​/​doi.org/​10.1103/​PhysRevLett.109.160401

[143] Michiel Wouters and Vincenzo Savona. Stochastic classical field model for polariton condensates. Phys. Rev. B, 79: 165302, 2009. https:/​/​doi.org/​10.1103/​PhysRevB.79.165302.
https:/​/​doi.org/​10.1103/​PhysRevB.79.165302

[144] S. Wüster, J. F. Corney, J. M. Rost, and P. Deuar. Quantum dynamics of long-range interacting systems using the positive-$P$ and gauge-$P$ representations. Phys. Rev. E, 96: 013309, 2017. https:/​/​doi.org/​10.1103/​PhysRevE.96.013309.
https:/​/​doi.org/​10.1103/​PhysRevE.96.013309

[145] J. Zhang, P. W. Hess, A. Kyprianidis, P. Becker, A. Lee, J. Smith, G. Pagano, I. D. Potirniche, A. C. Potter, A. Vishwanath, N. Y. Yao, and C. Monroe. Observation of a discrete time crystal. Nature, 543 (7644): 217, 2017. https:/​/​doi.org/​10.1038/​nature21413.
https:/​/​doi.org/​10.1038/​nature21413

Cited by

[1] Piotr Deuar, Alex Ferrier, Michał Matuszewski, Giuliano Orso, and Marzena H. Szymańska, "Fully quantum scalable description of driven dissipative lattice models", arXiv:2012.02014.

The above citations are from SAO/NASA ADS (last updated successfully 2021-09-21 14:22:03). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2021-09-21 14:22:02).