Device-independent quantum key distribution with asymmetric CHSH inequalities

Erik Woodhead1,2, Antonio Acín2, and Stefano Pironio1

1Laboratoire d'Information Quantique, CP 225, Université libre de Bruxelles (ULB), Av. F. D. Roosevelt 50, 1050 Bruxelles, Belgium
2ICFO – Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


The simplest device-independent quantum key distribution protocol is based on the Clauser-Horne-Shimony-Holt (CHSH) Bell inequality and allows two users, Alice and Bob, to generate a secret key if they observe sufficiently strong correlations. There is, however, a mismatch between the protocol, in which only one of Alice's measurements is used to generate the key, and the CHSH expression, which is symmetric with respect to Alice's two measurements. We therefore investigate the impact of using an extended family of Bell expressions where we give different weights to Alice's measurements. Using this family of asymmetric Bell expressions improves the robustness of the key distribution protocol for certain experimentally-relevant correlations. As an example, the tolerable error rate improves from 7.15% to about 7.42% for the depolarising channel. Adding random noise to Alice's key before the postprocessing pushes the threshold further to more than 8.34%. The main technical result of our work is a tight bound on the von Neumann entropy of one of Alice's measurement outcomes conditioned on a quantum eavesdropper for the family of asymmetric CHSH expressions we consider and allowing for an arbitrary amount of noise preprocessing.

► BibTeX data

► References

[1] J. S. Bell, Physics 1, 195 (1964).

[2] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, Rev. Mod. Phys. 86, 419 (2014), arXiv:1303.2849 [quant-ph].

[3] A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, Phys. Rev. Lett. 98, 230501 (2007), arXiv:quant-ph/​0702152.

[4] S. Pironio, A. Acín, N. Brunner, N. Gisin, S. Massar, and V. Scarani, New J. Phys. 11, 045021 (2009), arXiv:0903.4460 [quant-ph].

[5] A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).

[6] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett. 23, 880 (1969).

[7] R. Arnon-Friedman, F. Dupuis, O. Fawzi, R. Renner, and T. Vidick, Nat. Commun. 9, 459 (2018).

[8] Y. Zhang, H. Fu, and E. Knill, Phys. Rev. Research 2, 013016 (2020), arXiv:1806.04553 [quant-ph].

[9] I. Devetak and A. Winter, Proc. R. Soc. A 461, 207 (2005), arXiv:quant-ph/​0306078.

[10] R. Renner, N. Gisin, and B. Kraus, Phys. Rev. A 72, 012332 (2005), arXiv:quant-ph/​0502064.

[11] E. Y.-Z. Tan, R. Schwonnek, K. T. Goh, I. W. Primaatmaja, and C. C.-W. Lim, (2019), arXiv:1908.11372 [quant-ph].

[12] R. Schwonnek, K. T. Goh, I. W. Primaatmaja, E. Y.-Z. Tan, R. Wolf, V. Scarani, and C. C.-W. Lim, (2020), arXiv:2005.02691 [quant-ph].

[13] F. Grasselli, G. Murta, H. Kampermann, and D. Bruß, PRX Quantum 2, 010308 (2021), arXiv:2004.14263 [quant-ph].

[14] P. Brown, H. Fawzi, and O. Fawzi, Nat. Commun. 12, 575 (2021), arXiv:2007.12575 [quant-ph].

[15] C. H. Bennett and G. Brassard, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (IEEE, New York, 1984) pp. 175–179, arXiv:2003.06557 [quant-ph].

[16] G. Murta, S. B. van Dam, J. Ribeiro, R. Hanson, and S. Wehner, Quantum Sci. Technol. 4, 035011 (2019), arXiv:1811.07983 [quant-ph].

[17] J. Kołodyński, A. Máttar, P. Skrzypczyk, E. Woodhead, D. Cavalcanti, K. Banaszek, and A. Acín, Quantum 4, 260 (2020), arXiv:1803.07089 [quant-ph].

[18] O. Nieto Silleras, S. Pironio, and J. Silman, New J. Phys. 16, 013035 (2014), arXiv:1309.3930 [quant-ph].

[19] J.-D. Bancal, L. Sheridan, and V. Scarani, New J. Phys. 16, 033011 (2014), arXiv:1309.3894 [quant-ph].

[20] T. Lawson, N. Linden, and S. Popescu, (2010), arXiv:1011.6245 [quant-ph].

[21] A. Acín, S. Massar, and S. Pironio, Phys. Rev. Lett. 108, 100402 (2012), arXiv:1107.2754 [quant-ph].

[22] E. Woodhead and S. Pironio, Phys. Rev. Lett. 115, 150501 (2015), arXiv:1507.02889 [quant-ph].

[23] E. Woodhead, Imperfections and self testing in prepare-and-measure quantum key distribution, Ph.D. thesis, Université libre de Bruxelles (2014a).

[24] M. Berta, M. Christandl, R. Colbeck, J. M. Renes, and R. Renner, Nature Phys. 6, 659 (2010), arXiv:0909.0950 [quant-ph].

[25] E. Woodhead, New J. Phys. 18, 055010 (2016), arXiv:1512.03387 [quant-ph].

[26] E. Woodhead, Phys. Rev. A 88, 012331 (2013), arXiv:1303.4821 [quant-ph].

[27] C. Jordan, Bull. Soc. Math. Fr. 3, 103 (1875).

[28] B. S. Tsirelson, Hadronic J. Suppl. 8, 329 (1993).

[29] L. Masanes, Phys. Rev. Lett. 97, 050503 (2006), arXiv:quant-ph/​0512153.

[30] E. Woodhead, Phys. Rev. A 90, 022306 (2014b), arXiv:1405.5625 [quant-ph].

[31] C. A. Fuchs, N. Gisin, R. B. Griffiths, C.-S. Niu, and A. Peres, Phys. Rev. A 56, 1163 (1997), arXiv:quant-ph/​9701039.

[32] P. H. Eberhard, Phys. Rev. A 47, R747 (1993).

[33] X. Ma and N. Lutkenhaus, Quantum Inf. Comput. 12, 203 (2012), arXiv:1109.1203 [quant-ph].

[34] J. B. Lasserre, SIAM J. Comput. 11, 796 (2001).

[35] M. Ho, P. Sekatski, E. Y.-Z. Tan, R. Renner, J.-D. Bancal, and N. Sangouard, Phys. Rev. Lett. 124, 230502 (2020), arXiv:2005.13015 [quant-ph].

[36] P. Sekatski, J.-D. Bancal, X. Valcarce, E. Y.-Z. Tan, R. Renner, and N. Sangouard, (2020), arXiv:2009.01784 [quant-ph].

[37] R. Bhavsar, S. Ragy, and R. Colbeck, (2021), arXiv:2103.07504 [quant-ph].

Cited by

[1] Ramona Wolf, Lecture Notes in Physics 988, 159 (2021) ISBN:978-3-030-73990-4.

[2] Eva M. González-Ruiz, Sumanta K. Das, Peter Lodahl, and Anders S. Sørensen, "Violation of Bell's inequality with quantum-dot single-photon sources", Physical Review A 106 1, 012222 (2022).

[3] Karol Łukanowski, Máté Farkas, Maria Balanzó-Juandó, Antonio Acín, and Jan Kołodyński, Quantum 2.0 Conference and Exhibition QTu4C.1 (2022) ISBN:978-1-957171-11-1.

[4] Thomas A. Hahn and Ernest Y.-Z. Tan, "Fidelity bounds for device-independent advantage distillation", npj Quantum Information 8 1, 145 (2022).

[5] Pavel Sekatski, Jean-Daniel Bancal, Xavier Valcarce, Ernest Y.-Z. Tan, Renato Renner, and Nicolas Sangouard, "Device-independent quantum key distribution from generalized CHSH inequalities", Quantum 5, 444 (2021).

[6] Máté Farkas, Maria Balanzó-Juandó, Karol Łukanowski, Jan Kołodyński, and Antonio Acín, "Bell Nonlocality Is Not Sufficient for the Security of Standard Device-Independent Quantum Key Distribution Protocols", Physical Review Letters 127 5, 050503 (2021).

[7] Marie Ioannou, Maria Ana Pereira, Davide Rusca, Fadri Grünenfelder, Alberto Boaron, Matthieu Perrenoud, Alastair A. Abbott, Pavel Sekatski, Jean-Daniel Bancal, Nicolas Maring, Hugo Zbinden, and Nicolas Brunner, "Receiver-Device-Independent Quantum Key Distribution", Quantum 6, 718 (2022).

[8] D. P. Nadlinger, P. Drmota, B. C. Nichol, G. Araneda, D. Main, R. Srinivas, D. M. Lucas, C. J. Ballance, K. Ivanov, E. Y.-Z. Tan, P. Sekatski, R. L. Urbanke, R. Renner, N. Sangouard, and J.-D. Bancal, "Experimental quantum key distribution certified by Bell's theorem", Nature 607 7920, 682 (2022).

[9] Mhlambululi Mafu, Comfort Sekga, and Makhamisa Senekane, "Security of Bennett–Brassard 1984 Quantum-Key Distribution under a Collective-Rotation Noise Channel", Photonics 9 12, 941 (2022).

[10] Junior R. Gonzales-Ureta, Ana Predojević, and Adán Cabello, "Device-independent quantum key distribution based on Bell inequalities with more than two inputs and two outputs", Physical Review A 103 5, 052436 (2021).

[11] Feihu Xu, Yu-Zhe Zhang, Qiang Zhang, and Jian-Wei Pan, "Device-Independent Quantum Key Distribution with Random Postselection", Physical Review Letters 128 11, 110506 (2022).

[12] Peter Brown, Hamza Fawzi, and Omar Fawzi, "Computing conditional entropies for quantum correlations", Nature Communications 12 1, 575 (2021).

[13] Wen-Zhao Liu, Yu-Zhe Zhang, Yi-Zheng Zhen, Ming-Han Li, Yang Liu, Jingyun Fan, Feihu Xu, Qiang Zhang, and Jian-Wei Pan, "Toward a Photonic Demonstration of Device-Independent Quantum Key Distribution", Physical Review Letters 129 5, 050502 (2022).

[14] Xavier Valcarce, Julian Zivy, Nicolas Sangouard, and Pavel Sekatski, "Self-testing two-qubit maximally entangled states from generalized Clauser-Horne-Shimony-Holt tests", Physical Review Research 4 1, 013049 (2022).

[15] Ernest Y.-Z. Tan, Pavel Sekatski, Jean-Daniel Bancal, René Schwonnek, Renato Renner, Nicolas Sangouard, and Charles C.-W. Lim, "Improved DIQKD protocols with finite-size analysis", Quantum 6, 880 (2022).

[16] Michele Masini, Stefano Pironio, and Erik Woodhead, "Simple and practical DIQKD security analysis via BB84-type uncertainty relations and Pauli correlation constraints", Quantum 6, 843 (2022).

[17] Emanuel-Cristian Boghiu, Flavien Hirsch, Pei-Sheng Lin, Marco Túlio Quintino, and Joseph Bowles, "Device-independent and semi-device-independent entanglement certification in broadcast Bell scenarios", arXiv:2111.06358, (2021).

The above citations are from Crossref's cited-by service (last updated successfully 2023-02-03 23:15:17) and SAO/NASA ADS (last updated successfully 2023-02-03 23:15:18). The list may be incomplete as not all publishers provide suitable and complete citation data.