Bipartite quantum measurements with optimal single-sided distinguishability

Jakub Czartowski1 and Karol Życzkowski1,2,3

1Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków, Poland
2Centrum Fizyki Teoretycznej PAN, Al. Lotników 32/46, 02-668 Warszawa, Poland
3National Quantum Information Center (KCIK), University of Gdańsk, Poland

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

We analyse orthogonal bases in a composite $N\times N$ Hilbert space describing a bipartite quantum system and look for a basis with optimal single-sided mutual state distinguishability. This condition implies that in each subsystem the $N^2$ reduced states form a regular simplex of a maximal edge length, defined with respect to the trace distance. In the case $N=2$ of a two-qubit system our solution coincides with the elegant joint measurement introduced by Gisin. We derive explicit expressions of an analogous constellation for $N=3$ and provide a general construction of $N^2$ states forming such an optimal basis in ${\cal H}_N \otimes {\cal H}_N$. Our construction is valid for all dimensions for which a symmetric informationally complete (SIC) generalized measurement is known. Furthermore, we show that the one-party measurement that distinguishes the states of an optimal basis of the composite system leads to a local quantum state tomography with a linear reconstruction formula. Finally, we test the introduced tomographical scheme on a complete set of three mutually unbiased bases for a single qubit using two different IBM machines.

Quantum nonlocality has long been among the most unsettling properties of quantum mechanics, as exemplified by the now famous Bell inequality. Recent studies extended these investigations for a network settings giving rise to so-called nonlinear Bell inequalities. Gisin and collaborators have identified a distinguished basis for two-qubit system, called Elegant Joint Measurement (EJM), which yields particularly high breaking of Bell inequality related to the triangular network of three parties with one randomness source for each pair among them.

In our work we extend the prior results by first analysing the properties of EJM in terms of entangling power and typicality of quantum gates, demonstrating its optimality. Furthermore, we introduce a family of similar bases for two systems of arbitrary identical dimension. Their existence depends on another widely studied set of quantum states, so called Symmetric Informationally Complete generalized measurements (SIC). We conjecture that their existence may be interdependent, with one existing only if the other exists. Finally, we demonstrate the usefulness of the newly introduced family of quantum measurements by showing its ability to distinguish between orthogonal bipartite states states basing on the information from one side only. These theoretical results are supplemented by real world implementation on quantum computers provided by IBM to the public domain.

► BibTeX data

► References

[1] A. Peres, Quantum Theory: Concepts and Methods. Springer, 1995.

[2] I. Bengtsson and K. Życzkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement, II ed. Cambridge University Press, 2017.

[3] 4 J. S. Bell, ``On the problem of hidden variables in quantum mechanics,'' Rev. Mod. Phys., vol. 38, pp. 447–452, 1966. URL: https:/​/​doi.org/​10.1103/​RevModPhys.38.447 0pt.
https:/​/​doi.org/​10.1103/​RevModPhys.38.447

[4] 4 N. Gisin and H. Bechmann-Pasquinucci, ``Bell inequality, Bell states and maximally entangled states for n qubits,'' Phys. Let. A, vol. 246, no. 1-2, pp. 1–6, 1998. URL: https:/​/​doi.org/​10.1016/​S0375-9601(98)00516-7 0pt.
https:/​/​doi.org/​10.1016/​S0375-9601(98)00516-7

[5] 4 C. H. Bennett and G. Brassard, ``Quantum cryptography: Public key distribution and coin tossing,'' in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, 1984, pp. 175–179. URL: https:/​/​doi.org/​10.1016/​j.tcs.2014.05.025 0pt.
https:/​/​doi.org/​10.1016/​j.tcs.2014.05.025

[6] 4 N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, ``Quantum cryptography,'' Rev. Mod. Phys., vol. 74, pp. 145–195, 2002. URL: https:/​/​doi.org/​10.1103/​RevModPhys.74.145 0pt.
https:/​/​doi.org/​10.1103/​RevModPhys.74.145

[7] 4 S. Massar and S. Popescu, ``Optimal extraction of information from finite quantum ensembles,'' Phys. Rev. Lett., vol. 74, pp. 1259–1263, 1995. URL: https:/​/​doi.org/​10.1103/​PhysRevLett.74.1259 0pt.
https:/​/​doi.org/​10.1103/​PhysRevLett.74.1259

[8] 4 A. J. Scott, ``Tight informationally complete quantum measurements,'' J. Phys. A, vol. 39, p. 13507–13530, 2006. URL: https:/​/​doi.org/​10.1088/​0305-4470/​39/​43/​009 0pt.
https:/​/​doi.org/​10.1088/​0305-4470/​39/​43/​009

[9] 4 N. Gisin, ``The elegant joint quantum measurement and some conjectures about N-locality in the triangle and other configurations,'' preprint arXiv:1708.05556, 2017. URL: https:/​/​arxiv.org/​abs/​1708.05556 0pt.
arXiv:1708.05556

[10] 4 N. Gisin, ``Entanglement 25 years after quantum teleportation: Testing joint measurements in quantum networks,'' Entropy, vol. 21, p. 325, 2019. URL: https:/​/​doi.org/​10.3390/​e21030325 0pt.
https:/​/​doi.org/​10.3390/​e21030325

[11] 4 A. Tavakoli, N. Gisin, and C. Branciard, ``Bilocal Bell inequalities violated by the quantum elegant joint measurement,'' arXiv preprint: 2006.16694, 2020. URL: https:/​/​arxiv.org/​abs/​2006.16694 0pt.
arXiv:2006.16694

[12] 4 J. M. Renes, R. Blume-Kohout, A. J. Scott, and C. M. Caves, ``Symmetric informationally complete quantum measurements,'' J. Math. Phys., pp. 2171–2180, 2004. URL: https:/​/​doi.org/​10.1063/​1.1737053 0pt.
https:/​/​doi.org/​10.1063/​1.1737053

[13] 4 A. J. Scott, ``SICs: Extending the list of solutions,'' preprint arXiv:1703.03993, 2017. URL: https:/​/​arxiv.org/​abs/​1703.03993 0pt.
arXiv:1703.03993

[14] 4 M. Appleby, T.-Y. Chien, S. Flammia, and S. Waldron, ``Constructing exact symmetric informationally complete measurements from numerical solutions,'' J. Phys. A, vol. 51, no. 16, p. 165302, 2018. URL: https:/​/​doi.org/​10.1088/​1751-8121/​aab4cd 0pt.
https:/​/​doi.org/​10.1088/​1751-8121/​aab4cd

[15] 4 M. Grassl and A. J. Scott, ``Fibonacci-Lucas SIC-POVMs,'' J. Math. Phys., vol. 58, p. 122201, 2017. URL: https:/​/​doi.org/​10.1063/​1.4995444 0pt.
https:/​/​doi.org/​10.1063/​1.4995444

[16] 4 M. Appleby and I. Bengtsson, ``Simplified exact SICs,'' J. Math. Phys., vol. 60, no. 6, p. 062203, 2019. URL: https:/​/​doi.org/​10.1063/​1.5081508 0pt.
https:/​/​doi.org/​10.1063/​1.5081508

[17] M. Grassl, unpublished.

[18] 4 C. A. Fuchs, M. C. Hoang, and B. C. Stacey, ``The SIC question: History and state of play,'' Axioms, vol. 6, p. 21, 2017. URL: https:/​/​doi.org/​10.3390/​axioms6030021 0pt.
https:/​/​doi.org/​10.3390/​axioms6030021

[19] 4 I. Bengtsson, ``SICs: Some explanations,'' Found. Phys., vol. 50, pp. 1794–1808, 2020. URL: https:/​/​doi.org/​10.1007/​s10701-020-00341-9 0pt.
https:/​/​doi.org/​10.1007/​s10701-020-00341-9

[20] 4 N. Gisin and S. Popescu, ``Spin flips and quantum information for antiparallel spins,'' Phys. Rev. Lett., vol. 83, no. 2, pp. 432–435, 1999. URL: https:/​/​doi.org/​10.1103/​PhysRevLett.83.432 0pt.
https:/​/​doi.org/​10.1103/​PhysRevLett.83.432

[21] 4 A. Tavakoli, I. Bengtsson, N. Gisin, and J. M. Renes, ``Compounds of symmetric informationally complete measurements and their application in quantum key distribution,'' Phys. Rev. Research, vol. 2, p. 043122, 2020. URL: https:/​/​doi.org/​10.1103/​PhysRevResearch.2.043122 0pt.
https:/​/​doi.org/​10.1103/​PhysRevResearch.2.043122

[22] 4 C. W. Helstrom, ``Quantum detection and estimation theory,'' J. Stat. Phys., vol. 1, pp. 231–252, 1969. URL: https:/​/​doi.org/​10.1007/​BF01007479 0pt.
https:/​/​doi.org/​10.1007/​BF01007479

[23] 4 T. Decker, D. Janzing, and M. Rötteler, ``Implementation of group-covariant positive operator valued measures by orthogonal measurements,'' J. Math. Phys., vol. 46, no. 1, p. 012104, 2005. URL: https:/​/​doi.org/​10.1063/​1.1827924 0pt.
https:/​/​doi.org/​10.1063/​1.1827924

[24] G. Zauner, ``Quantendesigns: Grundzüge einer nichtkommutativen Designtheorie,'' Ph.D. dissertation, University of Vienna, 1999.

[25] 4 G. Zauner, ``Quantum designs: Foundations of a noncommutative design theory,'' Int. J. of Quant. Inf., vol. 09, pp. 445–507, 2011. URL: https:/​/​doi.org/​10.1142/​S0219749911006776 0pt.
https:/​/​doi.org/​10.1142/​S0219749911006776

[26] 4 B. C. Stacey, ``Sporadic SICs and exceptional Lie algebras,'' preprint arXiv: 1911.05809, 2019. URL: https:/​/​arxiv.org/​abs/​1911.05809 0pt.
arXiv:1911.05809

[27] 4 J. Czartowski, D. Goyeneche, M. Grassl, and K. Życzkowski, ``Isoentangled mutually unbiased bases, symmetric quantum measurements, and mixed-state designs,'' Phys. Rev. Lett., vol. 124, p. 090503, 2020. URL: https:/​/​doi.org/​10.1103/​PhysRevLett.124.090503 0pt.
https:/​/​doi.org/​10.1103/​PhysRevLett.124.090503

[28] 4 J. Walgate, A. J. Short, L. Hardy, and V. Vedral, ``Local distinguishability of multipartite orthogonal quantum states,'' Phys. Rev. Lett., vol. 85, p. 4972, 2000. URL: https:/​/​doi.org/​10.1103/​PhysRevLett.85.4972 0pt.
https:/​/​doi.org/​10.1103/​PhysRevLett.85.4972

[29] 4 S. M. Cohen, ``Local distinguishability with preservation of entanglement,'' Phys. Rev. A, vol. 75, p. 052313, 2007. URL: https:/​/​doi.org/​10.1103/​PhysRevA.75.052313 0pt.
https:/​/​doi.org/​10.1103/​PhysRevA.75.052313

[30] 4 Z.-C. Zhang, F. Gao, S.-J. Qin, H.-J. Zuo, and Q.-Y. Wen, ``Local distinguishability of maximally entangled states in canonical form,'' Quantum Inf. Process., vol. 14, pp. 3961–3969, 2015. URL: https:/​/​doi.org/​10.1007/​s11128-015-1092-z 0pt.
https:/​/​doi.org/​10.1007/​s11128-015-1092-z

[31] 4 S. Akibue and G. Kato, ``Bipartite discrimination of independently prepared quantum states as a counterexample to a parallel repetition conjecture,'' Phys. Rev. A, vol. 97, p. 042309, 2018. URL: https:/​/​doi.org/​10.1103/​PhysRevA.97.042309 0pt.
https:/​/​doi.org/​10.1103/​PhysRevA.97.042309

[32] 4 B. Kraus and J. I. Cirac, ``Optimal creation of entanglement using a two-qubit gate,'' Phys. Rev. A, vol. 63, no. 6, 2001. URL: https:/​/​doi.org/​10.1103/​PhysRevA.63.062309 0pt.
https:/​/​doi.org/​10.1103/​PhysRevA.63.062309

[33] 4 J. Zhang, J. Vala, S. Sastry, and K. B. Whaley, ``Minimum construction of two-qubit quantum operations,'' Phys. Rev. Lett., vol. 93, p. 020502, 2004. URL: https:/​/​doi.org/​10.1103/​PhysRevLett.93.020502 0pt.
https:/​/​doi.org/​10.1103/​PhysRevLett.93.020502

[34] 4 B. Jonnadula, P. Mandayam, K. Życzkowski, and A. Lakshminarayan, ``Entanglement measures of bipartite quantum gates and their thermalization under arbitrary interaction strength,'' Phys. Rev. Research, vol. 2, p. 043126, 2020. URL: https:/​/​doi.org/​10.1103/​PhysRevResearch.2.043126 0pt.
https:/​/​doi.org/​10.1103/​PhysRevResearch.2.043126

[35] 4 D. Goyeneche, D. Alsina, J. I. Latorre, A. Riera, and K. Życzkowski, ``Absolutely maximally entangled states, combinatorial designs, and multiunitary matrices,'' Phys. Rev. A, vol. 92, p. 032316, 2015. URL: https:/​/​doi.org/​10.1103/​PhysRevA.92.032316 0pt.
https:/​/​doi.org/​10.1103/​PhysRevA.92.032316

[36] 4 E. Bäumer, N. Gisin, and A. Tavakoli, ``Certification of highly entangled measurements and nonlocality via scalable entanglement-swapping on quantum computers,'' preprint arXiv: 2009.14028, 2020. URL: https:/​/​arxiv.org/​abs/​2009.14028 0pt.
arXiv:2009.14028

[37] 4 F. Vatan and C. Williams, ``Optimal quantum circuits for general two-qubit gates,'' Phys. Rev. A, vol. 69, p. 032315, 2004. URL: https:/​/​doi.org/​10.1103/​PhysRevA.69.032315 0pt.
https:/​/​doi.org/​10.1103/​PhysRevA.69.032315

Cited by

On Crossref's cited-by service no data on citing works was found (last attempt 2021-10-27 11:58:16). On SAO/NASA ADS no data on citing works was found (last attempt 2021-10-27 11:58:17).