Expressibility of the alternating layered ansatz for quantum computation

Kouhei Nakaji and Naoki Yamamoto

Department of Applied Physics and Physico-Informatics & Quantum Computing Center, Keio University, Hiyoshi 3-14-1, Kohoku, Yokohama, 223-8522, Japan

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

The hybrid quantum-classical algorithm is actively examined as a technique applicable even to intermediate-scale quantum computers. To execute this algorithm, the hardware efficient ansatz is often used, thanks to its implementability and expressibility; however, this ansatz has a critical issue in its trainability in the sense that it generically suffers from the so-called gradient vanishing problem. This issue can be resolved by limiting the circuit to the class of shallow alternating layered ansatz. However, even though the high trainability of this ansatz is proved, it is still unclear whether it has rich expressibility in state generation. In this paper, with a proper definition of the expressibility found in the literature, we show that the shallow alternating layered ansatz has almost the same level of expressibility as that of hardware efficient ansatz. Hence the expressibility and the trainability can coexist, giving a new designing method for quantum circuits in the intermediate-scale quantum computing era.

► BibTeX data

► References

[1] J. Preskill. Quantum computing in the nisq era and beyond. Quantum, 2: 79, 2018. https:/​/​doi.org/​10.22331/​q-2018-08-06-79.
https:/​/​doi.org/​10.22331/​q-2018-08-06-79

[2] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’brien. A variational eigenvalue solver on a photonic quantum processor. Nature communications, 5 (1): 1–7, 2014. https:/​/​doi.org/​10.1038/​ncomms5213.
https:/​/​doi.org/​10.1038/​ncomms5213

[3] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, and J. M. Gambetta. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 549 (7671): 242–246, 2017. https:/​/​doi.org/​10.1038/​nature23879.
https:/​/​doi.org/​10.1038/​nature23879

[4] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and H. Neven. Barren plateaus in quantum neural network training landscapes. Nature communications, 9 (1): 1–6, 2018. https:/​/​doi.org/​10.1038/​s41467-018-07090-4.
https:/​/​doi.org/​10.1038/​s41467-018-07090-4

[5] E. Grant, L. Wossnig, M. Ostaszewski, and M. Benedetti. An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum, 3: 214, 2019. https:/​/​doi.org/​10.22331/​q-2019-12-09-214.
https:/​/​doi.org/​10.22331/​q-2019-12-09-214

[6] J. Stokes, J. Izaac, N. Killoran, and G. Carleo. Quantum natural gradient. Quantum, 4: 269, 2020. https:/​/​doi.org/​10.22331/​q-2020-05-25-269.
https:/​/​doi.org/​10.22331/​q-2020-05-25-269

[7] N. Yamamoto. On the natural gradient for variational quantum eigensolver. arXiv preprint arXiv:1909.05074, 2019.
arXiv:1909.05074

[8] M. Cerezo, A. Sone, T. Volkoff, L. Cincio, and P. J. Coles. Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications, 12 1: 1791, 2021. https:/​/​doi.org/​10.1038/​s41467-021-21728-w.
https:/​/​doi.org/​10.1038/​s41467-021-21728-w

[9] S. Sim, P. D. Johnson, and A. Aspuru-Guzik. Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies, 2 (12): 1900070, 2019. https:/​/​doi.org/​10.1002/​qute.201900070.
https:/​/​doi.org/​10.1002/​qute.201900070

[10] T. Ali, A. Bhattacharyya, S. S. Haque, E. H. Kim, N. Moynihan, and J. Murugan. Chaos and complexity in quantum mechanics. Physical Review D, 101 (2): 026021, 2020. https:/​/​doi.org/​10.1007/​JHEP04(2017)121.
https:/​/​doi.org/​10.1007/​JHEP04(2017)121

[11] J. M. Renes, R. Blume-Kohout, A. J. Scott, and C. M. Caves. Symmetric informationally complete quantum measurements. Journal of Mathematical Physics, 45 (6): 2171–2180, 2004. https:/​/​doi.org/​10.1063/​1.1737053.
https:/​/​doi.org/​10.1063/​1.1737053

[12] A. Klappenecker and M. Rotteler. Mutually unbiased bases are complex projective 2-designs. In Proceedings. International Symposium on Information Theory, 2005. ISIT 2005., pages 1740–1744. IEEE, 2005. https:/​/​doi.org/​10.1109/​ISIT.2005.1523643.
https:/​/​doi.org/​10.1109/​ISIT.2005.1523643

[13] I. Bengtsson and K. Życzkowski. Geometry of quantum states: an introduction to quantum entanglement. Cambridge university press, 2017. https:/​/​doi.org/​10.1017/​CBO9780511535048.
https:/​/​doi.org/​10.1017/​CBO9780511535048

[14] K. Życzkowski and H.-J. Sommers. Average fidelity between random quantum states. Physical Review A, 71 (3): 032313, 2005. https:/​/​doi.org/​10.1103/​PhysRevA.71.032313.
https:/​/​doi.org/​10.1103/​PhysRevA.71.032313

[15] Z. Puchała and J. Miszczak. Symbolic integration with respect to the haar measure on the unitary groups. Bulletin of the Polish Academy of Sciences: Technical Sciences, 65 (No 1): 21–27, 2017. https:/​/​doi.org/​10.1515/​bpasts-2017-0003.
https:/​/​doi.org/​10.1515/​bpasts-2017-0003

[16] F. G. Brandao, A. W. Harrow, and M. Horodecki. Local random quantum circuits are approximate polynomial-designs. Communications in Mathematical Physics, 346 (2): 397–434, 2016. https:/​/​doi.org/​10.1007/​s00220-016-2706-8.
https:/​/​doi.org/​10.1007/​s00220-016-2706-8

[17] A. Harrow and S. Mehraban. Approximate unitary $ t $-designs by short random quantum circuits using nearest-neighbor and long-range gates. arXiv preprint arXiv:1809.06957, 2018.
arXiv:1809.06957

[18] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
arXiv:1412.6980

Cited by

[1] Kosuke Ito, Wataru Mizukami, and Keisuke Fujii, "Universal noise-precision relations in variational quantum algorithms", Physical Review Research 5 2, 023025 (2023).

[2] Elijah Pelofske, Andreas Bärtschi, and Stephan Eidenbenz, "Short-depth QAOA circuits and quantum annealing on higher-order ising models", npj Quantum Information 10 1, 30 (2024).

[3] Yuxuan Du, Zhuozhuo Tu, Xiao Yuan, and Dacheng Tao, "Efficient Measure for the Expressivity of Variational Quantum Algorithms", Physical Review Letters 128 8, 080506 (2022).

[4] Ran-Yi-Liu Chen, Ben-Chi Zhao, Zhi-Xin Song, Xuan-Qiang Zhao, Kun Wang, and Xin Wang, "Hybrid quantum-classical algorithms: Foundation, design and applications", Acta Physica Sinica 70 21, 210302 (2021).

[5] Tomasz Szołdra, Piotr Sierant, Maciej Lewenstein, and Jakub Zakrzewski, "Unsupervised detection of decoupled subspaces: Many-body scars and beyond", Physical Review B 105 22, 224205 (2022).

[6] Mohannad Ibrahim, Nicholas T. Bronn, and Gregory T. Byrd, 2023 IEEE International Conference on Quantum Computing and Engineering (QCE) 39 (2023) ISBN:979-8-3503-4323-6.

[7] Lucas Friedrich and Jonas Maziero, "Avoiding barren plateaus with classical deep neural networks", Physical Review A 106 4, 042433 (2022).

[8] Kouhei Nakaji, Shumpei Uno, Yohichi Suzuki, Rudy Raymond, Tamiya Onodera, Tomoki Tanaka, Hiroyuki Tezuka, Naoki Mitsuda, and Naoki Yamamoto, "Approximate amplitude encoding in shallow parameterized quantum circuits and its application to financial market indicators", Physical Review Research 4 2, 023136 (2022).

[9] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, Yong-Jian Han, and Guo-Ping Guo, "Mitigating barren plateaus with transfer-learning-inspired parameter initializations", New Journal of Physics 25 1, 013039 (2023).

[10] Yabo Wang and Bo Qi, 2023 42nd Chinese Control Conference (CCC) 6771 (2023) ISBN:978-988-75815-4-3.

[11] Amira Abbas, David Sutter, Christa Zoufal, Aurelien Lucchi, Alessio Figalli, and Stefan Woerner, "The power of quantum neural networks", Nature Computational Science 1 6, 403 (2021).

[12] Zhan Yu, Xuanqiang Zhao, Benchi Zhao, and Xin Wang, "Optimal Quantum Dataset for Learning a Unitary Transformation", Physical Review Applied 19 3, 034017 (2023).

[13] Louis Schatzki, Martín Larocca, Quynh T. Nguyen, Frédéric Sauvage, and M. Cerezo, "Theoretical guarantees for permutation-equivariant quantum neural networks", npj Quantum Information 10 1, 12 (2024).

[14] Maurice Weber, Abhinav Anand, Alba Cervera-Lierta, Jakob S. Kottmann, Thi Ha Kyaw, Bo Li, Alán Aspuru-Guzik, Ce Zhang, and Zhikuan Zhao, "Toward reliability in the NISQ era: Robust interval guarantee for quantum measurements on approximate states", Physical Review Research 4 3, 033217 (2022).

[15] Chih-Chieh Chen, Masaru Sogabe, Kodai Shiba, Katsuyoshi Sakamoto, and Tomah Sogabe, "General Vapnik–Chervonenkis dimension bounds for quantum circuit learning", Journal of Physics: Complexity 3 4, 045007 (2022).

[16] Tobias Haug and M. S. Kim, "Natural parametrized quantum circuit", Physical Review A 106 5, 052611 (2022).

[17] Keren Li and Pan Gao, "A NISQ Method to Simulate Hermitian Matrix Evolution", Entropy 24 7, 899 (2022).

[18] Jonathan Wei Zhong Lau, Tobias Haug, Leong Chuan Kwek, and Kishor Bharti, "NISQ Algorithm for Hamiltonian simulation via truncated Taylor series", SciPost Physics 12 4, 122 (2022).

[19] M. R. Perelshtein, A. I. Pakhomchik, Ar. A. Melnikov, M. Podobrii, A. Termanova, I. Kreidich, B. Nuriev, S. Iudin, C. W. Mansell, and V. M. Vinokur, "NISQ-compatible approximate quantum algorithm for unconstrained and constrained discrete optimization", Quantum 7, 1186 (2023).

[20] Xiaozhen Ge, Re-Bing Wu, and Herschel Rabitz, "The optimization landscape of hybrid quantum–classical algorithms: From quantum control to NISQ applications", Annual Reviews in Control 54, 314 (2022).

[21] M. R. Nirmal, Sharma S. R. K. C. Yamijala, Kalpak Ghosh, Sumit Kumar, and Manoj Nambiar, 2024 16th International Conference on COMmunication Systems & NETworkS (COMSNETS) 1034 (2024) ISBN:979-8-3503-8311-9.

[22] Ivana Miháliková, Matej Pivoluska, Martin Plesch, Martin Friák, Daniel Nagaj, and Mojmír Šob, "The Cost of Improving the Precision of the Variational Quantum Eigensolver for Quantum Chemistry", Nanomaterials 12 2, 243 (2022).

[23] M. Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R. McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, and Patrick J. Coles, "Variational quantum algorithms", Nature Reviews Physics 3 9, 625 (2021).

[24] Junyu Liu, Khadijeh Najafi, Kunal Sharma, Francesco Tacchino, Liang Jiang, and Antonio Mezzacapo, "Analytic Theory for the Dynamics of Wide Quantum Neural Networks", Physical Review Letters 130 15, 150601 (2023).

[25] Muhammad Kashif and Saif Al-Kuwari, 2022 IEEE International Conference on Rebooting Computing (ICRC) 36 (2022) ISBN:979-8-3503-4709-8.

[26] Joe Gibbs, Kaitlin Gili, Zoë Holmes, Benjamin Commeau, Andrew Arrasmith, Lukasz Cincio, Patrick J. Coles, and Andrew Sornborger, "Long-time simulations for fixed input states on quantum hardware", npj Quantum Information 8 1, 135 (2022).

[27] Oleksandr Kyriienko, Annie E. Paine, and Vincent E. Elfving, "Solving nonlinear differential equations with differentiable quantum circuits", Physical Review A 103 5, 052416 (2021).

[28] Mohannad M. Ibrahim, Hamed Mohammadbagherpoor, Cynthia Rios, Nicholas T. Bronn, and Gregory T. Byrd, "Evaluation of Parameterized Quantum Circuits With Cross-Resonance Pulse-Driven Entanglers", IEEE Transactions on Quantum Engineering 3, 1 (2022).

[29] Ze‐Tong Li, Fan‐Xu Meng, Han Zeng, Zhai‐Rui Gong, Zai‐Chen Zhang, and Xu‐Tao Yu, "A Gradient‐Cost Multiobjective Alternate Framework for Variational Quantum Eigensolver with Variable Ansatz", Advanced Quantum Technologies 6 5, 2200130 (2023).

[30] Hiroyuki Tezuka, Shumpei Uno, and Naoki Yamamoto, "Generative model for learning quantum ensemble with optimal transport loss", Quantum Machine Intelligence 6 1, 6 (2024).

[31] Yingli Yang, Zongkang Zhang, Anbang Wang, Xiaosi Xu, Xiaoting Wang, and Ying Li, "Maximizing quantum-computing expressive power through randomized circuits", Physical Review Research 6 2, 023098 (2024).

[32] Andrew Arrasmith, Zoë Holmes, M Cerezo, and Patrick J Coles, "Equivalence of quantum barren plateaus to cost concentration and narrow gorges", Quantum Science and Technology 7 4, 045015 (2022).

[33] Joonho Kim, Jaedeok Kim, and Dario Rosa, "Universal effectiveness of high-depth circuits in variational eigenproblems", Physical Review Research 3 2, 023203 (2021).

[34] Gabriel Matos, Chris N. Self, Zlatko Papić, Konstantinos Meichanetzidis, and Henrik Dreyer, "Characterization of variational quantum algorithms using free fermions", Quantum 7, 966 (2023).

[35] C. Tabares, A. Muñoz de las Heras, L. Tagliacozzo, D. Porras, and A. González-Tudela, "Variational Quantum Simulators Based on Waveguide QED", Physical Review Letters 131 7, 073602 (2023).

[36] Qiang Miao and Thomas Barthel, "Isometric tensor network optimization for extensive Hamiltonians is free of barren plateaus", Physical Review A 109 5, L050402 (2024).

[37] Keerthi Kumaran, Manas Sajjan, Sangchul Oh, and Sabre Kais, "Random projection using random quantum circuits", Physical Review Research 6 1, 013010 (2024).

[38] Hiroshi Yano, Yudai Suzuki, Kohei Itoh, Rudy Raymond, and Naoki Yamamoto, "Efficient Discrete Feature Encoding for Variational Quantum Classifier", IEEE Transactions on Quantum Engineering 2, 1 (2021).

[39] Andrea Delgado and Kathleen E. Hamilton, "Unsupervised quantum circuit learning in high energy physics", Physical Review D 106 9, 096006 (2022).

[40] Minzhao Liu, Junyu Liu, Yuri Alexeev, and Liang Jiang, "Estimating the randomness of quantum circuit ensembles up to 50 qubits", npj Quantum Information 8 1, 137 (2022).

[41] Meghashrita Das, Arundhuti Naskar, Pabitra Mitra, and Biswajit Basu, "Shallow quantum neural networks (SQNNs) with application to crack identification", Applied Intelligence (2024).

[42] Jonathan Wei Zhong Lau, Kian Hwee Lim, Harshank Shrotriya, and Leong Chuan Kwek, "NISQ computing: where are we and where do we go?", AAPPS Bulletin 32 1, 27 (2022).

[43] Xiongzhi Zeng, Yi Fan, Jie Liu, Zhenyu Li, and Jinlong Yang, "Quantum Neural Network Inspired Hardware Adaptable Ansatz for Efficient Quantum Simulation of Chemical Systems", Journal of Chemical Theory and Computation 19 23, 8587 (2023).

[44] Zheng-Hang Sun, Yong-Yi Wang, Yu-Ran Zhang, Franco Nori, and Heng Fan, "Variational generation of spin squeezing on one-dimensional quantum devices with nearest-neighbor interactions", Physical Review Research 5 4, 043285 (2023).

[45] Guillermo González-García, Rahul Trivedi, and J. Ignacio Cirac, "Error Propagation in NISQ Devices for Solving Classical Optimization Problems", PRX Quantum 3 4, 040326 (2022).

[46] Eliott Rosenberg, Paul Ginsparg, and Peter L McMahon, "Experimental error mitigation using linear rescaling for variational quantum eigensolving with up to 20 qubits", Quantum Science and Technology 7 1, 015024 (2022).

[47] Valentin Heyraud, Zejian Li, Kaelan Donatella, Alexandre Le Boité, and Cristiano Ciuti, "Efficient Estimation of Trainability for Variational Quantum Circuits", PRX Quantum 4 4, 040335 (2023).

[48] Hirotoshi Hirai, "Practical application of quantum neural network to materials informatics", Scientific Reports 14 1, 8583 (2024).

[49] Wenyang Qian, Robert Basili, Soham Pal, Glenn Luecke, and James P. Vary, "Solving hadron structures using the basis light-front quantization approach on quantum computers", Physical Review Research 4 4, 043193 (2022).

[50] Kaito Wada, Rudy Raymond, Yuki Sato, and Hiroshi C Watanabe, "Sequential optimal selections of single-qubit gates in parameterized quantum circuits", Quantum Science and Technology 9 3, 035030 (2024).

[51] Jules Tilly, Hongxiang Chen, Shuxiang Cao, Dario Picozzi, Kanav Setia, Ying Li, Edward Grant, Leonard Wossnig, Ivan Rungger, George H. Booth, and Jonathan Tennyson, "The Variational Quantum Eigensolver: A review of methods and best practices", Physics Reports 986, 1 (2022).

[52] Chen Ding, Xiao-Yue Xu, Shuo Zhang, He-Liang Huang, and Wan-Su Bao, "Evaluating the resilience of variational quantum algorithms to leakage noise", Physical Review A 106 4, 042421 (2022).

[53] Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav Anand, Matthias Degroote, Hermanni Heimonen, Jakob S. Kottmann, Tim Menke, Wai-Keong Mok, Sukin Sim, Leong-Chuan Kwek, and Alán Aspuru-Guzik, "Noisy intermediate-scale quantum algorithms", Reviews of Modern Physics 94 1, 015004 (2022).

[54] M. Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R. McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, and Patrick J. Coles, "Variational Quantum Algorithms", arXiv:2012.09265, (2020).

[55] Zoë Holmes, Kunal Sharma, M. Cerezo, and Patrick J. Coles, "Connecting Ansatz Expressibility to Gradient Magnitudes and Barren Plateaus", PRX Quantum 3 1, 010313 (2022).

[56] A. V. Uvarov and J. D. Biamonte, "On barren plateaus and cost function locality in variational quantum algorithms", Journal of Physics A Mathematical General 54 24, 245301 (2021).

[57] Tyler Volkoff and Patrick J. Coles, "Large gradients via correlation in random parameterized quantum circuits", Quantum Science and Technology 6 2, 025008 (2021).

[58] Tobias Haug, Kishor Bharti, and M. S. Kim, "Capacity and Quantum Geometry of Parametrized Quantum Circuits", PRX Quantum 2 4, 040309 (2021).

[59] Abhijat Sarma, Thomas W. Watts, Mudassir Moosa, Yilian Liu, and Peter L. McMahon, "Quantum Variational Solving of Nonlinear and Multi-Dimensional Partial Differential Equations", arXiv:2311.01531, (2023).

[60] Paul Over, Sergio Bengoechea, Thomas Rung, Francesco Clerici, Leonardo Scandurra, Eugene de Villiers, and Dieter Jaksch, "Boundary Treatment for Variational Quantum Simulations of Partial Differential Equations on Quantum Computers", arXiv:2402.18619, (2024).

[61] Alba Cervera-Lierta, Jakob S. Kottmann, and Alán Aspuru-Guzik, "Meta-Variational Quantum Eigensolver: Learning Energy Profiles of Parameterized Hamiltonians for Quantum Simulation", PRX Quantum 2 2, 020329 (2021).

[62] Raoul Heese, Thore Gerlach, Sascha Mücke, Sabine Müller, Matthias Jakobs, and Nico Piatkowski, "Explaining Quantum Circuits with Shapley Values: Towards Explainable Quantum Machine Learning", arXiv:2301.09138, (2023).

[63] Mohannad Ibrahim, Nicholas T. Bronn, and Gregory T. Byrd, "Crosstalk-Based Parameterized Quantum Circuit Approximation", arXiv:2305.04172, (2023).

[64] Waheeda Saib, Petros Wallden, and Ismail Akhalwaya, "The Effect of Noise on the Performance of Variational Algorithms for Quantum Chemistry", arXiv:2108.12388, (2021).

[65] Shamminuj Aktar, Andreas Bärtschi, Diane Oyen, Stephan Eidenbenz, and Abdel-Hameed A. Badawy, "Graph Neural Networks for Parameterized Quantum Circuits Expressibility Estimation", arXiv:2405.08100, (2024).

The above citations are from Crossref's cited-by service (last updated successfully 2024-05-24 19:15:51) and SAO/NASA ADS (last updated successfully 2024-05-24 19:15:52). The list may be incomplete as not all publishers provide suitable and complete citation data.