Expressibility of the alternating layered ansatz for quantum computation

Kouhei Nakaji and Naoki Yamamoto

Department of Applied Physics and Physico-Informatics & Quantum Computing Center, Keio University, Hiyoshi 3-14-1, Kohoku, Yokohama, 223-8522, Japan

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

The hybrid quantum-classical algorithm is actively examined as a technique applicable even to intermediate-scale quantum computers. To execute this algorithm, the hardware efficient ansatz is often used, thanks to its implementability and expressibility; however, this ansatz has a critical issue in its trainability in the sense that it generically suffers from the so-called gradient vanishing problem. This issue can be resolved by limiting the circuit to the class of shallow alternating layered ansatz. However, even though the high trainability of this ansatz is proved, it is still unclear whether it has rich expressibility in state generation. In this paper, with a proper definition of the expressibility found in the literature, we show that the shallow alternating layered ansatz has almost the same level of expressibility as that of hardware efficient ansatz. Hence the expressibility and the trainability can coexist, giving a new designing method for quantum circuits in the intermediate-scale quantum computing era.

► BibTeX data

► References

[1] J. Preskill. Quantum computing in the nisq era and beyond. Quantum, 2: 79, 2018. https:/​/​doi.org/​10.22331/​q-2018-08-06-79.
https:/​/​doi.org/​10.22331/​q-2018-08-06-79

[2] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’brien. A variational eigenvalue solver on a photonic quantum processor. Nature communications, 5 (1): 1–7, 2014. https:/​/​doi.org/​10.1038/​ncomms5213.
https:/​/​doi.org/​10.1038/​ncomms5213

[3] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, and J. M. Gambetta. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 549 (7671): 242–246, 2017. https:/​/​doi.org/​10.1038/​nature23879.
https:/​/​doi.org/​10.1038/​nature23879

[4] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and H. Neven. Barren plateaus in quantum neural network training landscapes. Nature communications, 9 (1): 1–6, 2018. https:/​/​doi.org/​10.1038/​s41467-018-07090-4.
https:/​/​doi.org/​10.1038/​s41467-018-07090-4

[5] E. Grant, L. Wossnig, M. Ostaszewski, and M. Benedetti. An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum, 3: 214, 2019. https:/​/​doi.org/​10.22331/​q-2019-12-09-214.
https:/​/​doi.org/​10.22331/​q-2019-12-09-214

[6] J. Stokes, J. Izaac, N. Killoran, and G. Carleo. Quantum natural gradient. Quantum, 4: 269, 2020. https:/​/​doi.org/​10.22331/​q-2020-05-25-269.
https:/​/​doi.org/​10.22331/​q-2020-05-25-269

[7] N. Yamamoto. On the natural gradient for variational quantum eigensolver. arXiv preprint arXiv:1909.05074, 2019.
arXiv:1909.05074

[8] M. Cerezo, A. Sone, T. Volkoff, L. Cincio, and P. J. Coles. Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications, 12 1: 1791, 2021. https:/​/​doi.org/​10.1038/​s41467-021-21728-w.
https:/​/​doi.org/​10.1038/​s41467-021-21728-w

[9] S. Sim, P. D. Johnson, and A. Aspuru-Guzik. Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies, 2 (12): 1900070, 2019. https:/​/​doi.org/​10.1002/​qute.201900070.
https:/​/​doi.org/​10.1002/​qute.201900070

[10] T. Ali, A. Bhattacharyya, S. S. Haque, E. H. Kim, N. Moynihan, and J. Murugan. Chaos and complexity in quantum mechanics. Physical Review D, 101 (2): 026021, 2020. https:/​/​doi.org/​10.1007/​JHEP04(2017)121.
https:/​/​doi.org/​10.1007/​JHEP04(2017)121

[11] J. M. Renes, R. Blume-Kohout, A. J. Scott, and C. M. Caves. Symmetric informationally complete quantum measurements. Journal of Mathematical Physics, 45 (6): 2171–2180, 2004. https:/​/​doi.org/​10.1063/​1.1737053.
https:/​/​doi.org/​10.1063/​1.1737053

[12] A. Klappenecker and M. Rotteler. Mutually unbiased bases are complex projective 2-designs. In Proceedings. International Symposium on Information Theory, 2005. ISIT 2005., pages 1740–1744. IEEE, 2005. https:/​/​doi.org/​10.1109/​ISIT.2005.1523643.
https:/​/​doi.org/​10.1109/​ISIT.2005.1523643

[13] I. Bengtsson and K. Życzkowski. Geometry of quantum states: an introduction to quantum entanglement. Cambridge university press, 2017. https:/​/​doi.org/​10.1017/​CBO9780511535048.
https:/​/​doi.org/​10.1017/​CBO9780511535048

[14] K. Życzkowski and H.-J. Sommers. Average fidelity between random quantum states. Physical Review A, 71 (3): 032313, 2005. https:/​/​doi.org/​10.1103/​PhysRevA.71.032313.
https:/​/​doi.org/​10.1103/​PhysRevA.71.032313

[15] Z. Puchała and J. Miszczak. Symbolic integration with respect to the haar measure on the unitary groups. Bulletin of the Polish Academy of Sciences: Technical Sciences, 65 (No 1): 21–27, 2017. https:/​/​doi.org/​10.1515/​bpasts-2017-0003.
https:/​/​doi.org/​10.1515/​bpasts-2017-0003

[16] F. G. Brandao, A. W. Harrow, and M. Horodecki. Local random quantum circuits are approximate polynomial-designs. Communications in Mathematical Physics, 346 (2): 397–434, 2016. https:/​/​doi.org/​10.1007/​s00220-016-2706-8.
https:/​/​doi.org/​10.1007/​s00220-016-2706-8

[17] A. Harrow and S. Mehraban. Approximate unitary $ t $-designs by short random quantum circuits using nearest-neighbor and long-range gates. arXiv preprint arXiv:1809.06957, 2018.
arXiv:1809.06957

[18] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
arXiv:1412.6980

Cited by

[1] Jonathan Wei Zhong Lau, Tobias Haug, Leong Chuan Kwek, and Kishor Bharti, "NISQ Algorithm for Hamiltonian simulation via truncated Taylor series", SciPost Physics 12 4, 122 (2022).

[2] Jonathan Wei Zhong Lau, Kian Hwee Lim, Harshank Shrotriya, and Leong Chuan Kwek, "NISQ computing: where are we and where do we go?", AAPPS Bulletin 32 1, 27 (2022).

[3] Yuxuan Du, Zhuozhuo Tu, Xiao Yuan, and Dacheng Tao, "Efficient Measure for the Expressivity of Variational Quantum Algorithms", Physical Review Letters 128 8, 080506 (2022).

[4] Xiaozhen Ge, Re-Bing Wu, and Herschel Rabitz, "The optimization landscape of hybrid quantum–classical algorithms: From quantum control to NISQ applications", Annual Reviews in Control (2022).

[5] Ivana Miháliková, Matej Pivoluska, Martin Plesch, Martin Friák, Daniel Nagaj, and Mojmír Šob, "The Cost of Improving the Precision of the Variational Quantum Eigensolver for Quantum Chemistry", Nanomaterials 12 2, 243 (2022).

[6] Joonho Kim, Jaedeok Kim, and Dario Rosa, "Universal effectiveness of high-depth circuits in variational eigenproblems", Physical Review Research 3 2, 023203 (2021).

[7] M. Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R. McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, and Patrick J. Coles, "Variational quantum algorithms", arXiv:2012.09265, Nature Reviews Physics 3 9, 625 (2021).

[8] Ran-Yi-Liu Chen, Ben-Chi Zhao, Zhi-Xin Song, Xuan-Qiang Zhao, Kun Wang, and Xin Wang, "Hybrid quantum-classical algorithms: Foundation, design and applications", Acta Physica Sinica 70 21, 210302 (2021).

[9] Tomasz Szołdra, Piotr Sierant, Maciej Lewenstein, and Jakub Zakrzewski, "Unsupervised detection of decoupled subspaces: Many-body scars and beyond", Physical Review B 105 22, 224205 (2022).

[10] Eliott Rosenberg, Paul Ginsparg, and Peter L McMahon, "Experimental error mitigation using linear rescaling for variational quantum eigensolving with up to 20 qubits", Quantum Science and Technology 7 1, 015024 (2022).

[11] Oleksandr Kyriienko, Annie E. Paine, and Vincent E. Elfving, "Solving nonlinear differential equations with differentiable quantum circuits", Physical Review A 103 5, 052416 (2021).

[12] Kouhei Nakaji, Shumpei Uno, Yohichi Suzuki, Rudy Raymond, Tamiya Onodera, Tomoki Tanaka, Hiroyuki Tezuka, Naoki Mitsuda, and Naoki Yamamoto, "Approximate amplitude encoding in shallow parameterized quantum circuits and its application to financial market indicators", Physical Review Research 4 2, 023136 (2022).

[13] Jules Tilly, Hongxiang Chen, Shuxiang Cao, Dario Picozzi, Kanav Setia, Ying Li, Edward Grant, Leonard Wossnig, Ivan Rungger, George H. Booth, and Jonathan Tennyson, "The Variational Quantum Eigensolver: A review of methods and best practices", Physics Reports 986, 1 (2022).

[14] Amira Abbas, David Sutter, Christa Zoufal, Aurelien Lucchi, Alessio Figalli, and Stefan Woerner, "The power of quantum neural networks", Nature Computational Science 1 6, 403 (2021).

[15] Hiroshi Yano, Yudai Suzuki, Kohei Itoh, Rudy Raymond, and Naoki Yamamoto, "Efficient Discrete Feature Encoding for Variational Quantum Classifier", IEEE Transactions on Quantum Engineering 2, 1 (2021).

[16] Maurice Weber, Abhinav Anand, Alba Cervera-Lierta, Jakob S. Kottmann, Thi Ha Kyaw, Bo Li, Alán Aspuru-Guzik, Ce Zhang, and Zhikuan Zhao, "Toward reliability in the NISQ era: Robust interval guarantee for quantum measurements on approximate states", Physical Review Research 4 3, 033217 (2022).

[17] Andrew Arrasmith, Zoë Holmes, M Cerezo, and Patrick J Coles, "Equivalence of quantum barren plateaus to cost concentration and narrow gorges", Quantum Science and Technology 7 4, 045015 (2022).

[18] Keren Li and Pan Gao, "A NISQ Method to Simulate Hermitian Matrix Evolution", Entropy 24 7, 899 (2022).

[19] Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav Anand, Matthias Degroote, Hermanni Heimonen, Jakob S. Kottmann, Tim Menke, Wai-Keong Mok, Sukin Sim, Leong-Chuan Kwek, and Alán Aspuru-Guzik, "Noisy intermediate-scale quantum algorithms", Reviews of Modern Physics 94 1, 015004 (2022).

[20] Zoë Holmes, Kunal Sharma, M. Cerezo, and Patrick J. Coles, "Connecting Ansatz Expressibility to Gradient Magnitudes and Barren Plateaus", PRX Quantum 3 1, 010313 (2022).

[21] Tyler Volkoff and Patrick J. Coles, "Large gradients via correlation in random parameterized quantum circuits", Quantum Science and Technology 6 2, 025008 (2021).

[22] Joe Gibbs, Kaitlin Gili, Zoë Holmes, Benjamin Commeau, Andrew Arrasmith, Lukasz Cincio, Patrick J. Coles, and Andrew Sornborger, "Long-time simulations with high fidelity on quantum hardware", arXiv:2102.04313.

[23] A. V. Uvarov and J. D. Biamonte, "On barren plateaus and cost function locality in variational quantum algorithms", Journal of Physics A Mathematical General 54 24, 245301 (2021).

[24] Tobias Haug, Kishor Bharti, and M. S. Kim, "Capacity and Quantum Geometry of Parametrized Quantum Circuits", PRX Quantum 2 4, 040309 (2021).

[25] Alba Cervera-Lierta, Jakob S. Kottmann, and Alán Aspuru-Guzik, "Meta-Variational Quantum Eigensolver: Learning Energy Profiles of Parameterized Hamiltonians for Quantum Simulation", PRX Quantum 2 2, 020329 (2021).

[26] Tobias Haug and M. S. Kim, "Natural parameterized quantum circuit", arXiv:2107.14063.

[27] Zhan Yu, Xuanqiang Zhao, Benchi Zhao, and Xin Wang, "Optimal quantum dataset for learning a unitary transformation", arXiv:2203.00546.

[28] Waheeda Saib, Petros Wallden, and Ismail Akhalwaya, "The Effect of Noise on the Performance of Variational Algorithms for Quantum Chemistry", arXiv:2108.12388.

[29] Chen Ding, Xiao-Yue Xu, Shuo Zhang, Wan-Su Bao, and He-Liang Huang, "Evaluating the Resilience of Variational Quantum Algorithms to Leakage Noise", arXiv:2208.05378.

The above citations are from Crossref's cited-by service (last updated successfully 2022-10-04 09:32:22) and SAO/NASA ADS (last updated successfully 2022-10-04 09:32:23). The list may be incomplete as not all publishers provide suitable and complete citation data.