Nonlinear extension of the quantum dynamical semigroup

Jakub Rembieliński and Paweł Caban

Department of Theoretical Physics, Faculty of Physics and Applied Informatics, University of Lodz, Pomorska 149/153, 90-236 Łódź, Poland

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


In this paper we consider deterministic nonlinear time evolutions satisfying so called convex quasi-linearity condition. Such evolutions preserve the equivalence of ensembles and therefore are free from problems with signaling. We show that if family of linear non-trace-preserving maps satisfies the semigroup property then the generated family of convex quasi-linear operations also possesses the semigroup property. Next we generalize the Gorini-Kossakowski-Sudarshan-Lindblad type equation for the considered evolution. As examples we discuss the general qubit evolution in our model as well as an extension of the Jaynes-Cummings model. We apply our formalism to spin density matrix of a charged particle moving in the electromagnetic field as well as to flavor evolution of solar neutrinos.

► BibTeX data

► References

[1] V. I. Arnol'd, V. S. Afrajmovich, Yu. S. Il'yashenko, and L. P. Shil'niov. Bifurcation Theory, volume 5. Springer-Verlag, Berlin-Heidelberg, 1994. 10.1007/​978-3-642-57884-7.

[2] V. Bargmann, L. Michel, and V. L. Telegdi. Precession of the polarization of particles moving in a homogeneous electromagnetic field. Phys. Rev. Lett., 2: 435–436, 1959. 10.1103/​PhysRevLett.2.435.

[3] A. Bassi and K. Hejazi. No-faster-than-light-signaling implies linear evolution. A re-derivation. European J. Phys., 36: 055027, 2015. 10.1088/​0143-0807/​36/​5/​055027.

[4] A. Bassi, K. Lochan, S. Satin, T. P. Singh, and H. Ulbricht. Models of wave-function collapse, underlying theories, and experimental tests. Rev. Mod. Phys., 85: 471–527, 2013. 10.1103/​RevModPhys.85.471.

[5] C. M. Bender. Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys., 70: 947–1018, 2007. 10.1088/​0034-4885/​70/​6/​r03.

[6] W. B. Berestetzki, E. M. Lifschitz, and L. P. Pitajewski. Relativistic Quantum Theory, volume 1. Nauka, Moscow, 1968.

[7] I. Białynicki-Birula and J. Mycielski. Nonlinear wave mechanics. Ann. Phys. (New York), 100: 62, 1976. 10.1016/​0003-4916(76)90057-9.

[8] N. N. Bogolubov, A. A. Logunov, and I. T. Todorov. Introduction to Axiomatic Quantum Field Theory. W. A. Benjamin, Reading, Mass., 1975.

[9] H.-J. Briegel, B.-G. Englert, N. Sterpi, and H. Walther. One-atom master: Statistics of detector clicks. Phys. Rev. A, 49: 2962–2985, 1994. 10.1103/​PhysRevA.49.2962.

[10] D. C. Brody and E.-M. Graefe. Mixed-state evolution in the presence of gain and loss. Phys. Rev. Lett., 109: 230405, 2012. 10.1103/​PhysRevLett.109.230405.

[11] P. Caban and J. Rembieliński. Lorentz-covariant reduced spin density matrix and Einstein–Podolsky–Rosen–Bohm correlations. Phys. Rev. A, 72: 012103, 2005. 10.1103/​PhysRevA.72.012103.

[12] C. Cohen-Tannoudji, B. Diu, and F. Laloë. Quantum mechanics. Wiley-VCH, 1991.

[13] M. Czachor. Mobility and non-separability. Found. Phys. Lett., 4: 351–361, 1991. 10.1007/​BF00665894.

[14] M. Czachor and H.-D. Doebner. Correlation experiments in nonlinear quantum mechanics. Phys. Lett. A, 301: 139–152, 2002. 10.1016/​S0375-9601(02)00959-3.

[15] G. C. Ghirardi, A. Rimini, and T. Weber. Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D, 34: 470–491, 1986. 10.1103/​PhysRevD.34.470.

[16] N. Gisin. A simple nonlinear dissipative quantum evolution equation. J. Phys. A: Math. Gen., 14: 2259–2267, 1981. 10.1088/​0305-4470/​14/​9/​021.

[17] N. Gisin. Irreversible quantum dynamics and the Hilbert space structure of quantum kinematics. J. Math. Phys., 24: 1779, 1983. 10.1063/​1.525895.

[18] N. Gisin. Weinberg's non-linear quantum mechanics and supraluminal communications. Phys. Lett. A, 143: 1–2, 1990. 10.1016/​0375-9601(90)90786-N.

[19] N. Gisin and M. Rigo. Relevant and irrelevant nonlinear Schrödinger equations. J. Phys. A: Math. Gen., 28: 7375–7390, 1995. 10.1088/​0305-4470/​28/​24/​030.

[20] J. Grabowski, M. Kuś, and G. Marmo. Symmetries, group actions, and entanglement. Open Systems and Information Dynamics, 13: 343–362, 2006. 10.1007/​s11080-006-9013-3.

[21] R. Grimaudo, A. S. M. de Castro, M. Kuś, and A. Messina. Exactly solvable time-dependent pseudo-Hermitian su(1,1) Hamiltonian models. Phys. Rev. A, 98: 033835, 2018. 10.1103/​PhysRevA.98.033835.

[22] B. Helou and Y. Chen. Extensions of Born's rule to non-linear quantum mechanics, some of which do not imply superluminal communication. Journal of Physics: Conference Series, 880: 012021, 2017. 10.1088/​1742-6596/​880/​1/​012021.

[23] John D. Jackson. Classical electrodynamics. John Wiley & Sons, New York, 1999.

[24] E. T. Jaynes and F. W. Cummings. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE, 51: 89, 1963. 10.1109/​PROC.1963.1664.

[25] K. Kawabata, Y. Ashida, and M. Ueda. Information retrieval and criticality in parity-time-symmetric systems. Phys. Rev. Lett., 119: 190401, 2017. 10.1103/​PhysRevLett.119.190401.

[26] K. Kraus. States, Effects, and Operations. Springer, Berlin, Heidelberg, 1983. 10.1007/​3-540-12732-1.

[27] M. Maltoni and A. Yu. Smirnov. Solar neutrinos and neutrino physics. Eur. Phys. J. A, 52: 87, 2016. 10.1140/​epja/​i2016-16087-0.

[28] N. Moiseyev. Non-Hermitian quantum mechanics. Cambridge University Press, Cambridge, UK, 2011. 10.1017/​CBO9780511976186.

[29] J. Polchinski. Weinberg's nonlinear quantum mechanics and the Einstein-Podolsky-Rosen paradox. Phys. Rev. Lett., 66: 397–400, 1991. 10.1103/​PhysRevLett.66.397.

[30] J. Rembieliński and P. Caban. Nonlinear evolution and signaling. Phys. Rev. Research, 2: 012027, 2020. 10.1103/​PhysRevResearch.2.012027.

[31] J. Rembieliński and J. Ciborowski. in preparation.

[32] A. Sergi and K. G. Zloshchastiev. Non-Hermitian quantum dynamics of a two-level system and models of dissipative environments. Int. J. Mod. Phys. B, 27: 1350163, 2013. 10.1142/​S0217979213501634.

[33] A. Sergi and K. G. Zloshchastiev. Time correlation functions for non-Hermitian quantum systems. Phys. Rev. A, 91: 062108, 2015. 10.1103/​PhysRevA.91.062108.

[34] B. W. Shore and P. L. Knight. The Jaynes–Cummings model. J. Modern Optics, 40: 1195–1238, 1993. 10.1080/​09500349314551321.

[35] S. Weinberg. Testing quantum mechanics. Ann. Phys. (New York), 194: 336–386, 1989a. https:/​/​​10.1016/​0003-4916(89)90276-5.

[36] S. Weinberg. Precision tests of quantum mechanics. Phys. Rev. Lett., 62: 485–488, 1989b. 10.1103/​PhysRevLett.62.485.

[37] K. G. Zloshchastiev. Non-Hermitian Hamiltonians and stability of pure states. Eur. Phys. J. D, 69: 253, 2015. 10.1140/​epjd/​e2015-60384-0.

Cited by

On Crossref's cited-by service no data on citing works was found (last attempt 2021-04-23 03:06:53). On SAO/NASA ADS no data on citing works was found (last attempt 2021-04-23 03:06:53).