Entangled resource for interfacing single- and dual-rail optical qubits

David Drahi1, Demid V. Sychev2,3, Khurram K. Pirov4, Ekaterina A. Sazhina2,4, Valeriy A. Novikov5, Ian A. Walmsley1,6, and A. I. Lvovsky1,2,7

1Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
2Russian Quantum Center, 100 Novaya St., Skolkovo, Moscow 143025
3Moscow State Pedagogical University, M. Pirogovskaya Street 29, Moscow 119991, Russia
4Moscow Institute of Physics and Technology, 141700 Dolgoprudny
5Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
6Imperial College London, Exhibition Road, London, SW7 2AZ, UK
7P. N. Lebedev Physics Institute, Leninskiy prospect 53, Moscow 119991, Russia

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Today's most widely used method of encoding quantum information in optical qubits is the dual-rail basis, often carried out through the polarisation of a single photon. On the other hand, many stationary carriers of quantum information – such as atoms – couple to light via the single-rail encoding in which the qubit is encoded in the number of photons. As such, interconversion between the two encodings is paramount in order to achieve cohesive quantum networks. In this paper, we demonstrate this by generating an entangled resource between the two encodings and using it to teleport a dual-rail qubit onto its single-rail counterpart. This work completes the set of tools necessary for the interconversion between the three primary encodings of the qubit in the optical field: single-rail, dual-rail and continuous-variable.

While quantum information carried by light is typically communicated and processed in the dual-rail (e.g. polarization) encoding, the natural encoding for the coupling between light and matter is single-rail (i.e. the photon being present or absent encoding logical 0 or 1). Interconversion between these encodings has been an important outstanding problem of quantum optical technology. This paper experimentally demonstrates a solution.

► BibTeX data

► References

[1] Reed W Andrews, Robert W Peterson, Tom P Purdy, Katarina Cicak, Raymond W Simmonds, Cindy A Regal, and Konrad W Lehnert. Bidirectional and efficient conversion between microwave and optical light. Nature Physics, 10 (4): 321, 2014. 10.1038/​nphys2911.

[2] Markus Aspelmeyer, Tobias J Kippenberg, and Florian Marquardt. Cavity optomechanics. Reviews of Modern Physics, 86 (4): 1391, 2014. 10.1103/​RevModPhys.86.1391.

[3] David Awschalom, Karl K. Berggren, Hannes Bernien, Sunil Bhave, Lincoln D. Carr, Paul Davids, Sophia E. Economou, Dirk Englund, Andrei Faraon, Martin Fejer, Saikat Guha, Martin V. Gustafsson, Evelyn Hu, Liang Jiang, Jungsang Kim, Boris Korzh, Prem Kumar, Paul G. Kwiat, Marko Lončar, Mikhail D. Lukin, David A.B. Miller, Christopher Monroe, Sae Woo Nam, Prineha Narang, Jason S. Orcutt, Michael G. Raymer, Amir H. Safavi-Naeini, Maria Spiropulu, Kartik Srinivasan, Shuo Sun, Jelena Vučković, Edo Waks, Ronald Walsworth, Andrew M. Weiner, and Zheshen Zhang. Development of quantum interconnects (quics) for next-generation information technologies. PRX Quantum, 2: 017002, Feb 2021. 10.1103/​PRXQuantum.2.017002.

[4] S A Babichev, J Ries, and A I Lvovsky. Quantum scissors: teleportation of single-mode optical states by means of a nonlocal single photon. EPL (Europhysics Letters), 64 (1): 1, 2003. 10.1209/​epl/​i2003-00504-y.

[5] Stefanie Barz, Gunther Cronenberg, Anton Zeilinger, and Philip Walther. Heralded generation of entangled photon pairs. Nature Photonics, 4 (8): 553, 2010. 10.1038/​nphoton.2010.156.

[6] Charles H Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres, and William K Wootters. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett., 70: 1895–1899, Mar 1993. 10.1103/​PhysRevLett.70.1895.

[7] Dominic W. Berry, A. I. Lvovsky, and Barry C. Sanders. Interconvertibility of single-rail optical qubits. Opt. Lett., 31 (1): 107–109, Jan 2006. 10.1364/​OL.31.000107.

[8] Samuel L Braunstein and H Jeff Kimble. A posteriori teleportation. Nature, 394 (6696): 840, 1998. https:/​/​doi.org/​10.1038/​29674.

[9] Samuel L Braunstein and A Mann. Measurement of the Bell operator and quantum teleportation. Physical Review A, 51 (3): R1727, 1995. 10.1103/​PhysRevA.51.R1727.

[10] Luo-Kan Chen, Hai-Lin Yong, Ping Xu, Xing-Can Yao, Tong Xiang, Zheng-Da Li, Chang Liu, He Lu, Nai-Le Liu, Li Li, et al. Experimental nested purification for a linear optical quantum repeater. Nature Photonics, 11 (11): 695, 2017. 10.1038/​s41566-017-0010-6.

[11] David Drahi. Towards practical applications of quantum optics. PhD thesis, University of Oxford, 2019.

[12] Jaromír Fiurášek. Interconversion between single-rail and dual-rail photonic qubits. Phys. Rev. A, 95: 033802, Mar 2017. 10.1103/​PhysRevA.95.033802.

[13] Christopher C Gerry, A Benmoussa, and RA Campos. Quantum nondemolition measurement of parity and generation of parity eigenstates in optical fields. Physical Review A, 72 (5): 053818, 2005. 10.1103/​PhysRevA.72.053818.

[14] Daniel Gottesman, Alexei Kitaev, and John Preskill. Encoding a qubit in an oscillator. Phys. Rev. A, 64: 012310, Jun 2001. 10.1103/​PhysRevA.64.012310.

[15] Hyunseok Jeong, Alessandro Zavatta, Minsu Kang, Seung-Woo Lee, Luca S Costanzo, Samuele Grandi, Timothy C Ralph, and Marco Bellini. Generation of hybrid entanglement of light. Nature Photonics, 8 (7): 564, 2014. 10.1038/​nphoton.2014.136.

[16] Yoon-Ho Kim, Sergei P Kulik, Maria V Chekhova, Warren P Grice, and Yanhua Shih. Experimental entanglement concentration and universal Bell-state synthesizer. Phys. Rev. A, 67: 010301, Jan 2003. 10.1103/​PhysRevA.67.010301.

[17] Ranjeet Kumar, Erick Barrios, Andrew MacRae, E Cairns, E H Huntington, and A I Lvovsky. Versatile wideband balanced detector for quantum optical homodyne tomography. Optics Communications, 285 (24): 5259–5267, 2012. 10.1016/​j.optcom.2012.07.103.

[18] Paul G Kwiat, Philippe H Eberhard, Aephraim M Steinberg, and Raymond Y Chiao. Proposal for a loophole-free bell inequality experiment. Physical Review A, 49 (5): 3209, 1994. 10.1103/​PhysRevA.49.3209.

[19] A I Lvovsky. Iterative maximum-likelihood reconstruction in quantum homodyne tomography. Journal of Optics B: Quantum and Semiclassical Optics, 6 (6): S556, 2004. 10.1088/​1464-4266/​6/​6/​014.

[20] Alexander Lvovsky. Quantum Physics: An Introduction Based on Photons. Springer-Verlag Berlin Heidelberg, 2018. ISBN 978-3-662-56584-1.

[21] Alexander I Lvovsky, Hauke Hansen, T Aichele, O Benson, J Mlynek, and S Schiller. Quantum state reconstruction of the single-photon Fock state. Physical Review Letters, 87 (5): 050402, 2001. 10.1103/​PhysRevLett.87.050402.

[22] Alexander I Lvovsky, Barry C Sanders, and Wolfgang Tittel. Optical quantum memory. Nature photonics, 3 (12): 706, 2009. 10.1038/​nphoton.2009.231.

[23] A V Masalov, A Kuzhamuratov, and A I Lvovsky. Noise spectra in balanced optical detectors based on transimpedance amplifiers. Review of Scientific Instruments, 88 (11): 113109, 2017. 10.1063/​1.5004561.

[24] Olivier Morin, Kun Huang, Jianli Liu, Hanna Le Jeannic, Claude Fabre, and Julien Laurat. Remote creation of hybrid entanglement between particle-like and wave-like optical qubits. Nature Photonics, 8 (7): 570, 2014. 10.1038/​nphoton.2014.137.

[25] Markus Müller, Samir Bounouar, Klaus D Jöns, M Glässl, and P Michler. On-demand generation of indistinguishable polarization-entangled photon pairs. Nature Photonics, 8 (3): 224, 2014. 10.1038/​nphoton.2013.377.

[26] Jian-Wei Pan, Sara Gasparoni, Markus Aspelmeyer, Thomas Jennewein, and Anton Zeilinger. Experimental realization of freely propagating teleported qubits. Nature, 421 (6924): 721, 2003. 10.1038/​nature01412.

[27] Stefano Pirandola, Jens Eisert, Christian Weedbrook, Akira Furusawa, and Samuel L Braunstein. Advances in quantum teleportation. Nature photonics, 9 (10): 641, 2015. 10.1038/​nphoton.2015.154.

[28] T C Ralph, A P Lund, and H M Wiseman. Adaptive phase measurements in linear optical quantum computation. Journal of Optics B: Quantum and Semiclassical Optics, 7 (10): S245, 2005. 10.1088/​1464-4266/​7/​10/​007.

[29] Cass A Sackett, David Kielpinski, Brian E King, Christopher Langer, Volker Meyer, Christopher J Myatt, M Rowe, QA Turchette, Wayne M Itano, David J Wineland, et al. Experimental entanglement of four particles. Nature, 404 (6775): 256, 2000. 10.1038/​35005011.

[30] Demid V Sychev, Alexander E Ulanov, Egor S Tiunov, Anastasia A Pushkina, A Kuzhamuratov, Valery Novikov, and A I Lvovsky. Entanglement and teleportation between polarization and wave-like encodings of an optical qubit. Nature Communications, 9 (1): 3672, 2018. 10.1038/​s41467-018-06055-x.

[31] Pierre Vernaz-Gris, Kun Huang, Mingtao Cao, Alexandra S Sheremet, and Julien Laurat. Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble. Nature Communications, 9 (1): 363, 2018. 10.1038/​s41467-017-02775-8.

[32] Claudia Wagenknecht, Che-Ming Li, Andreas Reingruber, Xiao-Hui Bao, Alexander Goebel, Yu-Ao Chen, Qiang Zhang, Kai Chen, and Jian-Wei Pan. Experimental demonstration of a heralded entanglement source. Nature Photonics, 4 (8): 549, 2010. 10.1038/​nphoton.2010.123.

Cited by

[1] Sergei Slussarenko and Geoff J. Pryde, "Photonic quantum information processing: A concise review", Applied Physics Reviews 6 4, 041303 (2019).

[2] A. I. Lvovsky, Philippe Grangier, Alexei Ourjoumtsev, Valentina Parigi, Masahide Sasaki, and Rosa Tualle-Brouri, "Production and applications of non-Gaussian quantum states of light", arXiv:2006.16985.

[3] Shuro Izumi, Jonas S. Neergaard-Nielsen, and Ulrik L. Andersen, "Tomography of a Feedback Measurement with Photon Detection", Physical Review Letters 124 7, 070502 (2020).

[4] Kao-Fang Chang, Ta-Pang Wang, Chun-Yi Chen, Yi-Hsin Chen, Yu-Sheng Wang, Yong-Fan Chen, Ying-Cheng Chen, and Ite A. Yu, "Low-loss high-fidelity frequency beam splitter with tunable split ratio based on electromagnetically induced transparency", Physical Review Research 3 1, 013096 (2021).

[5] Seongjeon Choi, Seok-Hyung Lee, and Hyunseok Jeong, "Teleportation of a multiphoton qubit using hybrid entanglement with a loss-tolerant carrier qubit", Physical Review A 102 1, 012424 (2020).

[6] Sh. V. Egamov, A. M. Khidirov, Kh. O. Urinov, and Kh. A. Zhumanov, "Waveguide Logic Gates for Magnetooptical Qubits", Technical Physics Letters 46 10, 947 (2020).

[7] Seongjeon Choi, Seok-Hyung Lee, and Hyunseok Jeong, "Loss-tolerant transmission of multiphoton-qubit information via hybrid entanglement", arXiv:2003.07044.

The above citations are from SAO/NASA ADS (last updated successfully 2021-10-22 18:54:56). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2021-10-22 18:54:55).