Structure optimization for parameterized quantum circuits

Mateusz Ostaszewski1,2, Edward Grant2,3, and Marcello Benedetti2,4

1Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland
2Department of Computer Science, University College London, WC1E 6BT London, United Kingdom
3Rahko Limited, N4 3JP London, United Kingdom
4Cambridge Quantum Computing Limited, CB2 1UB Cambridge, United Kingdom

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

We propose an efficient method for simultaneously optimizing both the structure and parameter values of quantum circuits with only a small computational overhead. Shallow circuits that use structure optimization perform significantly better than circuits that use parameter updates alone, making this method particularly suitable for noisy intermediate-scale quantum computers. We demonstrate the method for optimizing a variational quantum eigensolver for finding the ground states of Lithium Hydride and the Heisenberg model in simulation, and for finding the ground state of Hydrogen gas on the IBM Melbourne quantum computer.

► BibTeX data

► References

[1] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J. Love, Alán Aspuru-Guzik, and Jeremy L. O’Brien, ``A variational eigenvalue solver on a photonic quantum processor'' Nature Communications 5, 4213 (2014).
https:/​/​doi.org/​10.1038/​ncomms5213

[2] E. Farhi, J. Goldstone, S. Gutmann, and H. Neven, ``Quantum Algorithms for Fixed Qubit Architectures'' (2017).
arXiv:1703.06199

[3] Edward Farhiand Hartmut Neven ``Classification with Quantum Neural Networks on Near Term Processors'' (2018).
arXiv:1802.06002

[4] Marcello Benedetti, Delfina Garcia-Pintos, Oscar Perdomo, Vicente Leyton-Ortega, Yunseong Nam, and Alejandro Perdomo-Ortiz, ``A generative modeling approach for benchmarking and training shallow quantum circuits'' npj Quantum Information 5 (2019).
https:/​/​doi.org/​10.1038/​s41534-019-0157-8

[5] Marcello Benedetti, Edward Grant, Leonard Wossnig, and Simone Severini, ``Adversarial quantum circuit learning for pure state approximation'' New Journal of Physics 21, 043023 (2019).
https:/​/​doi.org/​10.1088/​1367-2630/​ab14b5

[6] Hongxiang Chen, Leonard Wossnig, Simone Severini, Hartmut Neven, and Masoud Mohseni, ``Universal discriminative quantum neural networks'' (2018).
arXiv:1805.08654

[7] Edward Grant, Marcello Benedetti, Shuxiang Cao, Andrew Hallam, Joshua Lockhart, Vid Stojevic, Andrew G Green, and Simone Severini, ``Hierarchical quantum classifiers'' npj Quantum Information 4, 1–8 (2018).
https:/​/​doi.org/​10.1038/​s41534-018-0116-9

[8] Marcello Benedetti, Erika Lloyd, Stefan Sack, and Mattia Fiorentini, ``Parameterized quantum circuits as machine learning models'' Quantum Science and Technology 4, 043001 (2019).
https:/​/​doi.org/​10.1088/​2058-9565/​ab4eb5

[9] K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, ``Quantum circuit learning'' Phys. Rev. A 98, 032309 (2018).
https:/​/​doi.org/​10.1103/​PhysRevA.98.032309

[10] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M. Chow, and Jay M. Gambetta, ``Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets'' Nature 549, 242–246 (2017).
https:/​/​doi.org/​10.1038/​nature23879

[11] Kosuke Mitarai, Tennin Yan, and Keisuke Fujii, ``Generalization of the Output of a Variational Quantum Eigensolver by Parameter Interpolation with a Low-depth Ansatz'' Phys. Rev. Applied 11, 044087 (2019).
https:/​/​doi.org/​10.1103/​PhysRevApplied.11.044087

[12] Artur F. Izmaylov, Tzu-Ching Yen, and Ilya G. Ryabinkin, ``Revising the measurement process in the variational quantum eigensolver: is it possible to reduce the number of separately measured operators?'' Chem. Sci. 10, 3746–3755 (2019).
https:/​/​doi.org/​10.1039/​C8SC05592K

[13] Edward Grant, Leonard Wossnig, Mateusz Ostaszewski, and Marcello Benedetti, ``An initialization strategy for addressing barren plateaus in parametrized quantum circuits'' Quantum 3, 214 (2019).
https:/​/​doi.org/​10.22331/​q-2019-12-09-214

[14] Rui Li, Unai Alvarez-Rodriguez, Lucas Lamata, and Enrique Solano, ``Approximate Quantum Adders with Genetic Algorithms: An IBM Quantum Experience'' Quantum Measurements and Quantum Metrology 4, 1 –7 (26 Jul. 2017).
https:/​/​doi.org/​10.1515/​qmetro-2017-0001
https:/​/​www.degruyter.com/​view/​journals/​qmetro/​4/​1/​article-p1.xml

[15] Harper R. Grimsley, Sophia E. Economou, Edwin Barnes, and Nicholas J. Mayhall, ``An adaptive variational algorithm for exact molecular simulations on a quantum computer'' Nature Communications 10 (2019).
https:/​/​doi.org/​10.1038/​s41467-019-10988-2

[16] Ken M. Nakanishi, Keisuke Fujii, and Synge Todo, ``Sequential minimal optimization for quantum-classical hybrid algorithms'' Phys. Rev. Research 2, 043158 (2020).
https:/​/​doi.org/​10.1103/​PhysRevResearch.2.043158

[17] Robert M. Parrish, Joseph T. Iosue, Asier Ozaeta, and Peter L. McMahon, ``A Jacobi Diagonalization and Anderson Acceleration Algorithm For Variational Quantum Algorithm Parameter Optimization'' (2019).
arXiv:1904.03206

[18] D.P. Bertsekas ``Nonlinear Programming'' Athena Scientific (1999).

[19] Ankan Sahaand Ambuj Tewari ``On the Finite Time Convergence of Cyclic Coordinate Descent Methods'' (2010).
arXiv:1005.2146

[20] Stephen J Wright ``Coordinate descent algorithms'' Mathematical Programming 151, 3–34 (2015).
https:/​/​doi.org/​10.1007/​s10107-015-0892-3

[21] Jarrod R. McClean, Sergio Boixo, Vadim N. Smelyanskiy, Ryan Babbush, and Hartmut Neven, ``Barren plateaus in quantum neural network training landscapes'' Nature Communications 9 (2018).
https:/​/​doi.org/​10.1038/​s41467-018-07090-4

[22] Héctor Abraham, Ismail Yunus Akhalwaya, Gadi Aleksandrowicz, Thomas Alexander, Eli Arbel, Abraham Asfaw, Carlos Azaustre, Panagiotis Barkoutsos, George Barron, and Luciano Bello, ``Qiskit: An Open-source Framework for Quantum Computing'' (2019).
https:/​/​doi.org/​10.5281/​zenodo.2562110

[23] Sukin Sim, Peter D. Johnson, and Alán Aspuru-Guzik, ``Expressibility and Entangling Capability of Parameterized Quantum Circuits for Hybrid Quantum-Classical Algorithms'' Advanced Quantum Technologies 2, 1900070 (2019).
https:/​/​doi.org/​10.1002/​qute.201900070

[24] J. C. Spall ``Multivariate stochastic approximation using a simultaneous perturbation gradient approximation'' IEEE Transactions on Automatic Control 37, 332–341 (1992).
https:/​/​doi.org/​10.1109/​9.119632

[25] Diederik P. Kingmaand Jimmy Ba ``Adam: A Method for Stochastic Optimization'' (2014).
arXiv:1412.6980

[26] Anders Sørensenand Klaus Mølmer ``Quantum Computation with Ions in Thermal Motion'' Phys. Rev. Lett. 82, 1971–1974 (1999).
https:/​/​doi.org/​10.1103/​PhysRevLett.82.1971

[27] Norbert M. Linke, Dmitri Maslov, Martin Roetteler, Shantanu Debnath, Caroline Figgatt, Kevin A. Landsman, Kenneth Wright, and Christopher Monroe, ``Experimental comparison of two quantum computing architectures'' Proceedings of the National Academy of Sciences 114, 3305–3310 (2017).
https:/​/​doi.org/​10.1073/​pnas.1618020114
https:/​/​www.pnas.org/​content/​114/​13/​3305

Cited by

[1] Ran-Yi-Liu Chen, Ben-Chi Zhao, Zhi-Xin Song, Xuan-Qiang Zhao, Kun Wang, and Xin Wang, "Hybrid quantum-classical algorithms: Foundation, design and applications", Acta Physica Sinica 70 21, 210302 (2021).

[2] S. Mangini, F. Tacchino, D. Gerace, D. Bajoni, and C. Macchiavello, "Quantum computing models for artificial neural networks", Europhysics Letters 134 1, 10002 (2021).

[3] Weikang Li and Dong-Ling Deng, "Recent advances for quantum classifiers", Science China Physics, Mechanics & Astronomy 65 2, 220301 (2022).

[4] Jules Tilly, P. V. Sriluckshmy, Akashkumar Patel, Enrico Fontana, Ivan Rungger, Edward Grant, Robert Anderson, Jonathan Tennyson, and George H. Booth, "Reduced density matrix sampling: Self-consistent embedding and multiscale electronic structure on current generation quantum computers", Physical Review Research 3 3, 033230 (2021).

[5] Brian Coyle, Mina Doosti, Elham Kashefi, and Niraj Kumar, "Progress toward practical quantum cryptanalysis by variational quantum cloning", Physical Review A 105 4, 042604 (2022).

[6] F. Barratt, James Dborin, Matthias Bal, Vid Stojevic, Frank Pollmann, and A. G. Green, "Parallel quantum simulation of large systems on small NISQ computers", npj Quantum Information 7 1, 79 (2021).

[7] Sergio Altares-López, Angela Ribeiro, and Juan José García-Ripoll, "Automatic design of quantum feature maps", Quantum Science and Technology 6 4, 045015 (2021).

[8] Nam Nguyen and Kwang-Cheng Chen, "Quantum Embedding Search for Quantum Machine Learning", IEEE Access 10, 41444 (2022).

[9] Maria Schuld, Ryan Sweke, and Johannes Jakob Meyer, "Effect of data encoding on the expressive power of variational quantum-machine-learning models", Physical Review A 103 3, 032430 (2021).

[10] Noah F. Berthusen, Thaís V. Trevisan, Thomas Iadecola, and Peter P. Orth, "Quantum dynamics simulations beyond the coherence time on noisy intermediate-scale quantum hardware by variational Trotter compression", Physical Review Research 4 2, 023097 (2022).

[11] David Wierichs, Josh Izaac, Cody Wang, and Cedric Yen-Yu Lin, "General parameter-shift rules for quantum gradients", Quantum 6, 677 (2022).

[12] Zhimin He, Junjian Su, Chuangtao Chen, Minghua Pan, and Haozhen Situ, "Search space pruning for quantum architecture search", The European Physical Journal Plus 137 4, 491 (2022).

[13] Xin Wang, Zhixin Song, and Youle Wang, "Variational Quantum Singular Value Decomposition", arXiv:2006.02336, Quantum 5, 483 (2021).

[14] Tatiana A. Bespalova and Oleksandr Kyriienko, "Hamiltonian Operator Approximation for Energy Measurement and Ground-State Preparation", PRX Quantum 2 3, 030318 (2021).

[15] P. Besserve and T. Ayral, "Unraveling correlated material properties with noisy quantum computers: Natural orbitalized variational quantum eigensolving of extended impurity models within a slave-boson approach", Physical Review B 105 11, 115108 (2022).

[16] Bálint Koczor and Simon C. Benjamin, "Quantum analytic descent", Physical Review Research 4 2, 023017 (2022).

[17] Kirill Plekhanov, Matthias Rosenkranz, Mattia Fiorentini, and Michael Lubasch, "Variational quantum amplitude estimation", Quantum 6, 670 (2022).

[18] Marcello Benedetti, Mattia Fiorentini, and Michael Lubasch, "Hardware-efficient variational quantum algorithms for time evolution", Physical Review Research 3 3, 033083 (2021).

[19] Hrushikesh Patil, Yulun Wang, and Predrag S. Krstić, "Variational quantum linear solver with a dynamic ansatz", Physical Review A 105 1, 012423 (2022).

[20] Hiroshi C. Watanabe, Rudy Raymond, Yu-Ya Ohnishi, Eriko Kaminishi, and Michihiko Sugawara, 2021 IEEE International Conference on Quantum Computing and Engineering (QCE) 100 (2021) ISBN:978-1-6654-1691-7.

[21] Adam Glos, Aleksandra Krawiec, and Zoltán Zimborás, "Space-efficient binary optimization for variational quantum computing", npj Quantum Information 8 1, 39 (2022).

[22] Asahi Chikaoka and Haozhao Liang, "Quantum computing for the Lipkin model with unitary coupled cluster and structure learning ansatz * ", Chinese Physics C 46 2, 024106 (2022).

[23] Yuto Takaki, Kosuke Mitarai, Makoto Negoro, Keisuke Fujii, and Masahiro Kitagawa, "Learning temporal data with a variational quantum recurrent neural network", Physical Review A 103 5, 052414 (2021).

[24] Thomas Hubregtsen, Frederik Wilde, Shozab Qasim, and Jens Eisert, "Single-component gradient rules for variational quantum algorithms", Quantum Science and Technology 7 3, 035008 (2022).

[25] Hongxiang Chen, Max Nusspickel, Jules Tilly, and George H. Booth, "Variational quantum eigensolver for dynamic correlation functions", Physical Review A 104 3, 032405 (2021).

[26] L. C. G. Govia, C. Poole, M. Saffman, and H. K. Krovi, "Freedom of the mixer rotation axis improves performance in the quantum approximate optimization algorithm", Physical Review A 104 6, 062428 (2021).

[27] David Amaro, Carlo Modica, Matthias Rosenkranz, Mattia Fiorentini, Marcello Benedetti, and Michael Lubasch, "Filtering variational quantum algorithms for combinatorial optimization", Quantum Science and Technology 7 1, 015021 (2022).

[28] Jules Tilly, Hongxiang Chen, Shuxiang Cao, Dario Picozzi, Kanav Setia, Ying Li, Edward Grant, Leonard Wossnig, Ivan Rungger, George H. Booth, and Jonathan Tennyson, "The Variational Quantum Eigensolver: a review of methods and best practices", arXiv:2111.05176.

[29] Sam McArdle, Suguru Endo, Alán Aspuru-Guzik, Simon C. Benjamin, and Xiao Yuan, "Quantum computational chemistry", Reviews of Modern Physics 92 1, 015003 (2020).

[30] Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav Anand, Matthias Degroote, Hermanni Heimonen, Jakob S. Kottmann, Tim Menke, Wai-Keong Mok, Sukin Sim, Leong-Chuan Kwek, and Alán Aspuru-Guzik, "Noisy intermediate-scale quantum algorithms", Reviews of Modern Physics 94 1, 015004 (2022).

[31] Marcello Benedetti, Erika Lloyd, Stefan Sack, and Mattia Fiorentini, "Parameterized quantum circuits as machine learning models", Quantum Science and Technology 4 4, 043001 (2019).

[32] Arthur G. Rattew, Shaohan Hu, Marco Pistoia, Richard Chen, and Steve Wood, "A Domain-agnostic, Noise-resistant, Hardware-efficient Evolutionary Variational Quantum Eigensolver", arXiv:1910.09694.

[33] Oinam Romesh Meitei, Bryan T. Gard, George S. Barron, David P. Pappas, Sophia E. Economou, Edwin Barnes, and Nicholas J. Mayhall, "Gate-free state preparation for fast variational quantum eigensolver simulations: ctrl-VQE", arXiv:2008.04302.

[34] Chris Cade, Lana Mineh, Ashley Montanaro, and Stasja Stanisic, "Strategies for solving the Fermi-Hubbard model on near-term quantum computers", Physical Review B 102 23, 235122 (2020).

[35] Ken M. Nakanishi, Keisuke Fujii, and Synge Todo, "Sequential minimal optimization for quantum-classical hybrid algorithms", Physical Review Research 2 4, 043158 (2020).

[36] Andrea Mari, Thomas R. Bromley, and Nathan Killoran, "Estimating the gradient and higher-order derivatives on quantum hardware", Physical Review A 103 1, 012405 (2021).

[37] David Wierichs, Christian Gogolin, and Michael Kastoryano, "Avoiding local minima in variational quantum eigensolvers with the natural gradient optimizer", Physical Review Research 2 4, 043246 (2020).

[38] I. Rungger, N. Fitzpatrick, H. Chen, C. H. Alderete, H. Apel, A. Cowtan, A. Patterson, D. Munoz Ramo, Y. Zhu, N. H. Nguyen, E. Grant, S. Chretien, L. Wossnig, N. M. Linke, and R. Duncan, "Dynamical mean field theory algorithm and experiment on quantum computers", arXiv:1910.04735.

[39] D. Chivilikhin, A. Samarin, V. Ulyantsev, I. Iorsh, A. R. Oganov, and O. Kyriienko, "MoG-VQE: Multiobjective genetic variational quantum eigensolver", arXiv:2007.04424.

[40] Sukin Sim, Jonathan Romero, Jérôme F. Gonthier, and Alexander A. Kunitsa, "Adaptive pruning-based optimization of parameterized quantum circuits", Quantum Science and Technology 6 2, 025019 (2021).

[41] Ryan LaRose and Brian Coyle, "Robust data encodings for quantum classifiers", Physical Review A 102 3, 032420 (2020).

[42] Sheng-Hsuan Lin, Rohit Dilip, Andrew G. Green, Adam Smith, and Frank Pollmann, "Real- and imaginary-time evolution with compressed quantum circuits", arXiv:2008.10322.

[43] Shi-Xin Zhang, Chang-Yu Hsieh, Shengyu Zhang, and Hong Yao, "Neural predictor based quantum architecture search", Machine Learning: Science and Technology 2 4, 045027 (2021).

[44] Youle Wang, Guangxi Li, and Xin Wang, "Variational quantum Gibbs state preparation with a truncated Taylor series", arXiv:2005.08797, Physical Review Applied 16 5, 054035 (2020).

[45] Zhide Lu, Pei-Xin Shen, and Dong-Ling Deng, "Markovian Quantum Neuroevolution for Machine Learning", Physical Review Applied 16 4, 044039 (2021).

[46] Niladri Gomes, Anirban Mukherjee, Feng Zhang, Thomas Iadecola, Cai-Zhuang Wang, Kai-Ming Ho, Peter P. Orth, and Yong-Xin Yao, "Adaptive Variational Quantum Imaginary Time Evolution Approach for Ground State Preparation", arXiv:2102.01544.

[47] Jules Tilly, Glenn Jones, Hongxiang Chen, Leonard Wossnig, and Edward Grant, "Computation of molecular excited states on IBM quantum computers using a discriminative variational quantum eigensolver", Physical Review A 102 6, 062425 (2020).

[48] Kerstin Beer, Daniel List, Gabriel Müller, Tobias J. Osborne, and Christian Struckmann, "Training Quantum Neural Networks on NISQ Devices", arXiv:2104.06081.

[49] Santosh Kumar Radha, "Quantum option pricing using Wick rotated imaginary time evolution", arXiv:2101.04280.

[50] Mohammad Pirhooshyaran and Tamas Terlaky, "Quantum Circuit Design Search", arXiv:2012.04046.

[51] Soumik Adhikary, "Entanglement assisted training algorithm for supervised quantum classifiers", Quantum Information Processing 20 8, 254 (2021).

[52] Hongxiang Chen, Michael Vasmer, Nikolas P. Breuckmann, and Edward Grant, "Machine learning logical gates for quantum error correction", arXiv:1912.10063.

[53] Shuxiang Cao, Leonard Wossnig, Brian Vlastakis, Peter Leek, and Edward Grant, "Cost-function embedding and dataset encoding for machine learning with parametrized quantum circuits", Physical Review A 101 5, 052309 (2020).

[54] Waheeda Saib, Petros Wallden, and Ismail Akhalwaya, "The Effect of Noise on the Performance of Variational Algorithms for Quantum Chemistry", arXiv:2108.12388.

[55] Andrew Patterson, Hongxiang Chen, Leonard Wossnig, Simone Severini, Dan Browne, and Ivan Rungger, "Quantum state discrimination using noisy quantum neural networks", Physical Review Research 3 1, 013063 (2021).

[56] James Dborin, Fergus Barratt, Vinul Wimalaweera, Lewis Wright, and Andrew G. Green, "Matrix Product State Pre-Training for Quantum Machine Learning", arXiv:2106.05742.

[57] Xuchen You and Xiaodi Wu, "Exponentially Many Local Minima in Quantum Neural Networks", arXiv:2110.02479.

[58] Oinam Romesh Meitei, Bryan T. Gard, George S. Barron, David P. Pappas, Sophia E. Economou, Edwin Barnes, and Nicholas J. Mayhall, "Gate-free state preparation for fast variational quantum eigensolver simulations", npj Quantum Information 7, 155 (2021).

[59] Kerstin Beer and Gabriel Müller, "Dissipative quantum generative adversarial networks", arXiv:2112.06088.

[60] Hao-Kai Zhang, Chengkai Zhu, Geng Liu, and Xin Wang, "Fundamental limitations on optimization in variational quantum algorithms", arXiv:2205.05056.

The above citations are from Crossref's cited-by service (last updated successfully 2022-05-18 04:55:48) and SAO/NASA ADS (last updated successfully 2022-05-18 04:55:50). The list may be incomplete as not all publishers provide suitable and complete citation data.