Searching for Coherent States: From Origins to Quantum Gravity

Pierre Martin-Dussaud

Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France
Basic Research Community for Physics e.V.

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

We discuss the notion of coherent states from three different perspectives: the seminal approach of Schrödinger, the experimental take of quantum optics, and the theoretical developments in quantum gravity. This comparative study tries to emphasise the connections between the approaches, and to offer a coherent short story of the field, so to speak. It may be useful for pedagogical purposes, as well as for specialists of quantum optics and quantum gravity willing to embed their perspective within a wider landscape.

► BibTeX data

► References

[1] Jean-Pierre Gazeau. Coherent States in Quantum Physics. Wiley-VCH, 2009. ISBN 978-3-527-40725-5. 10.1002/​9783527628285.
https:/​/​doi.org/​10.1002/​9783527628285

[2] Askold Perelomov. Generalized Coherent States and Their Applications. Springer-Verlag, Berlin Heidelberg, 1986. ISBN 978-3-540-15912-4. 10.1007/​978-3-642-61629-7.
https:/​/​doi.org/​10.1007/​978-3-642-61629-7

[3] Erwin Schrödinger. Der stetige Übergang von der Mikro- zur Makromechanik. Die Naturwissenschaften, 14 (28): 664–666, 1926. 10.1007/​BF01507634.
https:/​/​doi.org/​10.1007/​BF01507634

[4] Robert Gilmore. On the properties of Coherent States. Revista Mexicana de Física, 23: 143–187, 1974.

[5] Da Hsuan Feng, Robert Gilmore, and Wei-Min Zhang. Coherent states: Theory and some applications. Reviews of Modern Physics, 62 (4): 867, 1990. 10.1103/​RevModPhys.62.867.
https:/​/​doi.org/​10.1103/​RevModPhys.62.867

[6] Erwin Schrödinger. Collected Papers On Wave Mechanics. Blackie & Son Limited, 1928.

[7] Brian C. Hall. Quantum Theory for Mathematicians, volume 267 of Graduate Texts in Mathematics. Springer New York, New York, NY, 2013. 10.1007/​978-1-4614-7116-5.
https:/​/​doi.org/​10.1007/​978-1-4614-7116-5

[8] Troy A. Schilling. Geometry of Quantum Mechanics. PhD thesis, The Pennsylvania State University, 1996.

[9] Federico Zalamea. The Twofold Role of Observables in Classical and Quantum Kinematics. Foundations of Physics, 48 (9): 1061–1091, November 2018. 10.1007/​s10701-018-0194-8. arXiv: 1711.06914.
https:/​/​doi.org/​10.1007/​s10701-018-0194-8
arXiv:1711.06914

[10] Roy J. Glauber. Quantum Theory of Optical Coherence. Wiley-VCH, Weinheim, 2007. ISBN 978-3-527-40687-6.

[11] Lautaro Amadei and Alejandro Perez. Hawking's information puzzle: A solution realized in loop quantum cosmology. November 2019. arXiv: 1911.00306.
arXiv:1911.00306

[12] A M Perelomov. Coherent States for Arbitrary Lie Group. Commun. math. Phys., 26: 222–236, 1972. 10.1007/​BF01645091.
https:/​/​doi.org/​10.1007/​BF01645091

[13] Jean-Marie Souriau. Structure of Dynamical Systems. Birkhäuser Boston, Boston, MA, 1997. ISBN 978-1-4612-6692-1. 10.1007/​978-1-4612-0281-3.
https:/​/​doi.org/​10.1007/​978-1-4612-0281-3

[14] Brian C. Hall. The Segal-Bargmann "coherent state" transform for compact lie groups. Journal of Functional Analysis, 122 (1): 103–151, 1994. 10.1006/​jfan.1994.1064.
https:/​/​doi.org/​10.1006/​jfan.1994.1064

[15] Brian C Hall. Geometric quantization and the generalized Segal-Bargmann transform for Lie groups of compact type. Communications in Mathematical Physics, 226: 233–268, 2002. 10.1007/​s002200200607. arXiv: quant-ph/​0012105.
https:/​/​doi.org/​10.1007/​s002200200607
arXiv:quant-ph/0012105

[16] Irving E. Segal. Mathematical Problems of Relativistic Physics. In Mark Kac, editor, Lectures in Applied Mathematics, volume II. American Mathematical Society, 1960.

[17] V. Bargmann. On a Hilbert Space of Analytic Functions and an Associated Integral Transform. Communications on Pure and Applied Mathematics, XIV: 187–214, 1961. 10.1002/​cpa.3160140303.
https:/​/​doi.org/​10.1002/​cpa.3160140303

[18] Brian C. Hall and Jeffrey J. Mitchell. Coherent states on spheres. Journal of Mathematical Physics, 43 (3): 1211–1236, 2002. 10.1063/​1.1446664. arXiv: quant-ph/​0109086.
https:/​/​doi.org/​10.1063/​1.1446664
arXiv:quant-ph/0109086

[19] John R. Klauder and Bo-Sture Skagerstam. Coherent States - Applications in Physics and Mathematical Physics. World Scientific, 1985. 10.1142/​0096.
https:/​/​doi.org/​10.1142/​0096

[20] Abhay Ashtekar, Jerzy Lewandowski, Donald Marolf, Jose Mourao, and Thomas Thiemann. Coherent state transforms for spaces of connections. J. Funct. Anal., 135: 519–551, 1996. 10.1006/​jfan.1996.0018. arXiv: gr-qc/​9412014.
https:/​/​doi.org/​10.1006/​jfan.1996.0018
arXiv:gr-qc/9412014

[21] Etera R. Livine and Simone Speziale. New spinfoam vertex for quantum gravity. Physical Review D - Particles, Fields, Gravitation and Cosmology, D76 (8): 84028, 2007. 10.1103/​PhysRevD.76.084028. arXiv: 0705.0674.
https:/​/​doi.org/​10.1103/​PhysRevD.76.084028
arXiv:0705.0674

[22] Thomas Thiemann. Gauge Field Theory Coherent States (GCS): I. General properties. Classical and Quantum Gravity, 18 (11): 2025–2064, 2001. 10.1088/​0264-9381/​18/​11/​304. arXiv: hep-th/​0005233.
https:/​/​doi.org/​10.1088/​0264-9381/​18/​11/​304
arXiv:hep-th/0005233

[23] T. Thiemann and O. Winkler. Gauge Field Theory Coherent States (GCS): III. Ehrenfest Theorems. Class. Quantum Grav., 18 (21): 4629–4681, November 2001a. 10.1088/​0264-9381/​18/​21/​315. arXiv: hep-th/​0005234.
https:/​/​doi.org/​10.1088/​0264-9381/​18/​21/​315
arXiv:hep-th/0005234

[24] T. Thiemann and O. Winkler. Gauge Field Theory Coherent States (GCS): IV. Infinite Tensor Product and Thermodynamical Limit. Class. Quantum Grav., 18 (23): 4997–5053, December 2001b. 10.1088/​0264-9381/​18/​23/​302. arXiv: hep-th/​0005235.
https:/​/​doi.org/​10.1088/​0264-9381/​18/​23/​302
arXiv:hep-th/0005235

[25] T. Thiemann and O. Winkler. Gauge Field Theory Coherent States (GCS): II. Peakedness Properties. Class. Quantum Grav., 18 (14): 2561–2636, July 2001c. 10.1088/​0264-9381/​18/​14/​301. arXiv: hep-th/​0005237.
https:/​/​doi.org/​10.1088/​0264-9381/​18/​14/​301
arXiv:hep-th/0005237

[26] Eugenio Bianchi, Elena Magliaro, and Claudio Perini. Coherent spin-networks. Phys. Rev., D82: 24012, 2010a. 10.1103/​PhysRevD.82.024012. arXiv: 0912.4054.
https:/​/​doi.org/​10.1103/​PhysRevD.82.024012
arXiv:0912.4054

[27] Eugenio Bianchi, Elena Magliaro, and Claudio Perini. Spinfoams in the holomorphic representation. Phys. Rev., D82: 124031, 2010b. 10.1103/​PhysRevD.82.124031. arXiv: 1004.4550.
https:/​/​doi.org/​10.1103/​PhysRevD.82.124031
arXiv:1004.4550

[28] Hanno Sahlmann, Thomas Thiemann, and Oliver Winkler. Coherent states for canonical quantum general relativity and the infinite tensor product extension. Nucl. Phys., B606: 401–440, 2001. 10.1016/​S0550-3213(01)00226-7. arXiv: gr-qc/​0102038.
https:/​/​doi.org/​10.1016/​S0550-3213(01)00226-7
arXiv:gr-qc/0102038

[29] Laurent Freidel and Simone Speziale. Twisted geometries: A geometric parametrization of SU(2) phase space. Physical Review D - Particles, Fields, Gravitation and Cosmology, 82 (8): 1–16, 2010. 10.1103/​PhysRevD.82.084040. arXiv: 1001.2748.
https:/​/​doi.org/​10.1103/​PhysRevD.82.084040
arXiv:1001.2748

[30] H. Minkowski. Allgemeine Lehrsätze über die konvexe Polyeder. Nachr. Ges. Wiss. Goettingen, pages 198–219, 1897.

[31] Eugenio Bianchi, Pietro Donà, and Simone Speziale. Polyhedra in loop quantum gravity. Phys. Rev., D83: 44035, 2011. 10.1103/​PhysRevD.83.044035. arXiv: 1009.3402.
https:/​/​doi.org/​10.1103/​PhysRevD.83.044035
arXiv:1009.3402

[32] Fabio Anzà and Simone Speziale. A note on the secondary simplicity constraints in loop quantum gravity. 32 (19): 195015, October 2015. 10.1088/​0264-9381/​32/​19/​195015. arXiv: 1409.0836.
https:/​/​doi.org/​10.1088/​0264-9381/​32/​19/​195015
arXiv:1409.0836

[33] Carlo Rovelli and Francesca Vidotto. Covariant Loop Quantum Gravity. Cambridge University Press, 2014. 10.1017/​CBO9781107706910.
https:/​/​doi.org/​10.1017/​CBO9781107706910

[34] Laurent Freidel and Etera R. Livine. U(N) coherent states for loop quantum gravity. Journal of Mathematical Physics, 52 (5), 2011. 10.1063/​1.3587121. arXiv: 1005.2090.
https:/​/​doi.org/​10.1063/​1.3587121
arXiv:1005.2090

[35] Florian Girelli and Giuseppe Sellaroli. SO*(2N) coherent states for loop quantum gravity. Journal of Mathematical Physics, 58 (7), 2017. 10.1063/​1.4993223. arXiv: 1701.07519.
https:/​/​doi.org/​10.1063/​1.4993223
arXiv:1701.07519

[36] Laurent Freidel and Jeff Hnybida. A Discrete and Coherent Basis of Intertwiners. Class. Quantum Grav., 31 (1): 015019, January 2014. 10.1088/​0264-9381/​31/​1/​015019. arXiv: 1305.3326.
https:/​/​doi.org/​10.1088/​0264-9381/​31/​1/​015019
arXiv:1305.3326

Cited by

[1] Roberto Casadio and Fabio Scardigli, "Generalized Uncertainty Principle, Classical Mechanics, and General Relativity", Physics Letters B 807, 135558 (2020).

The above citations are from SAO/NASA ADS (last updated successfully 2021-03-02 06:01:08). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2021-03-02 06:01:07).