Measuring Analytic Gradients of General Quantum Evolution with the Stochastic Parameter Shift Rule
1Department of Physics and Astronomy, University of Florence, via G. Sansone 1, I-50019 Sesto Fiorentino (FI), Italy
2INFN Sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (FI), Italy
3X, the moonshot factory (x.company), Mountain View, CA, USA
4Berkeley Institute for Theoretical Science, Berkeley, CA, USA
Published: | 2021-01-25, volume 5, page 386 |
Eprint: | arXiv:2005.10299v2 |
Doi: | https://doi.org/10.22331/q-2021-01-25-386 |
Citation: | Quantum 5, 386 (2021). |
Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.
Abstract
Hybrid quantum-classical optimization algorithms represent one of the most promising application for near-term quantum computers. In these algorithms the goal is to optimize an observable quantity with respect to some classical parameters, using feedback from measurements performed on the quantum device. Here we study the problem of estimating the gradient of the function to be optimized directly from quantum measurements, generalizing and simplifying some approaches present in the literature, such as the so-called parameter-shift rule. We derive a mathematically exact formula that provides a stochastic algorithm for estimating the gradient of any multi-qubit parametric quantum evolution, without the introduction of ancillary qubits or the use of Hamiltonian simulation techniques. The gradient measurement is possible when the underlying device can realize all Pauli rotations in the expansion of the Hamiltonian whose coefficients depend on the parameter. Our algorithm continues to work, although with some approximations, even when all the available quantum gates are noisy, for instance due to the coupling between the quantum device and an unknown environment.

► BibTeX data
► References
[1] Cirq: A Python framework for creating, editing, and invoking Noisy Intermediate Scale Quantum (NISQ) circuits, 2019. https://github.com/quantumlib/Cirq.
https://github.com/quantumlib/Cirq
[2] Leonardo Banchi, Nicola Pancotti, and Sougato Bose. Quantum gate learning in qubit networks: Toffoli gate without time-dependent control. npj Quantum Inf., 2: 16019, 2016. 10.1038/npjqi.2016.19.
https://doi.org/10.1038/npjqi.2016.19
[3] Marcello Benedetti, Erika Lloyd, Stefan Sack, and Mattia Fiorentini. Parameterized quantum circuits as machine learning models. Quantum Sci. Technol., 2019. 10.1088/2058-9565/ab4eb5.
https://doi.org/10.1088/2058-9565/ab4eb5
[4] Ville Bergholm, Josh Izaac, Maria Schuld, Christian Gogolin, Carsten Blank, Keri McKiernan, and Nathan Killoran. Pennylane: Automatic differentiation of hybrid quantum-classical computations. arXiv:1811.04968, 2018.
arXiv:1811.04968
[5] Heinz-Peter Breuer and Francesco Petruccione. The theory of open quantum systems. Oxford University Press on Demand, 2002. 10.1093/acprof:oso/9780199213900.001.0001.
https://doi.org/10.1093/acprof:oso/9780199213900.001.0001
[6] Michael Broughton, Guillaume Verdon, Trevor McCourt, Antonio J Martinez, Jae Hyeon Yoo, Sergei V Isakov, Philip Massey, Murphy Yuezhen Niu, Ramin Halavati, Evan Peters, Martin Leib, Andrea Skolik, Michael Streif, David Von Dollen, Jarrod R. McClean, Sergio Boixo, Dave Bacon, Alan K. Ho, Hartmut Neven, and Masoud Mohseni. Tensorflow quantum: A software framework for quantum machine learning. arXiv:2003.02989, 2020.
arXiv:2003.02989
[7] Sébastien Bubeck. Convex optimization: Algorithms and complexity. Found. Trends Mach. Learn., 8 (3-4): 231–357, 2015. 10.1561/2200000050.
https://doi.org/10.1561/2200000050
[8] Tommaso Caneva, Tommaso Calarco, and Simone Montangero. Chopped random-basis quantum optimization. Phys. Rev. A, 84 (2): 022326, 2011. 10.1103/physreva.84.022326.
https://doi.org/10.1103/physreva.84.022326
[9] Andrew M Childs and Nathan Wiebe. Hamiltonian simulation using linear combinations of unitary operations. Quantum Information & Computation, 12 (11-12): 901–924, 2012. 10.26421/QIC12.11-12.
https://doi.org/10.26421/QIC12.11-12
[10] Jerry M Chow, AD Córcoles, Jay M Gambetta, Chad Rigetti, BR Johnson, John A Smolin, JR Rozen, George A Keefe, Mary B Rothwell, Mark B Ketchen, et al. Simple all-microwave entangling gate for fixed-frequency superconducting qubits. Phys. Rev. Lett., 107 (8): 080502, 2011. 10.1103/PhysRevLett.107.080502.
https://doi.org/10.1103/PhysRevLett.107.080502
[11] Gavin E Crooks. Gradients of parameterized quantum gates using the parameter-shift rule and gate decomposition. arXiv:1905.13311, 2019.
arXiv:1905.13311
[12] Héctor Abraham et al. Qiskit: An open-source framework for quantum computing. 2019. 10.5281/zenodo.2562110.
https://doi.org/10.5281/zenodo.2562110
[13] Edward Farhi and Hartmut Neven. Classification with quantum neural networks on near term processors. arXiv preprint arXiv:1802.06002, 2018.
arXiv:1802.06002
[14] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate optimization algorithm. arXiv:1411.4028, 2014.
arXiv:1411.4028
[15] Laura Gentini, Alessandro Cuccoli, Stefano Pirandola, Paola Verrucchi, and Leonardo Banchi. Noise-resilient variational hybrid quantum-classical optimization. Physical Review A, 102 (5): 052414, 2020. 10.1103/PhysRevA.102.052414.
https://doi.org/10.1103/PhysRevA.102.052414
[16] Aram Harrow and John Napp. Low-depth gradient measurements can improve convergence in variational hybrid quantum-classical algorithms. arXiv:1901.05374, 2019.
arXiv:1901.05374
[17] Luca Innocenti, Leonardo Banchi, Alessandro Ferraro, Sougato Bose, and Mauro Paternostro. Supervised learning of time-independent hamiltonians for gate design. New Journal of Physics, 2020. 10.1088/1367-2630/ab8aaf.
https://doi.org/10.1088/1367-2630/ab8aaf
[18] Tyson Jones, Suguru Endo, Sam McArdle, Xiao Yuan, and Simon C Benjamin. Variational quantum algorithms for discovering hamiltonian spectra. Phys. Rev. A, 99 (6): 062304, 2019. 10.1103/PhysRevA.99.062304.
https://doi.org/10.1103/PhysRevA.99.062304
[19] Navin Khaneja, Timo Reiss, Cindie Kehlet, Thomas Schulte-Herbrüggen, and Steffen J Glaser. Optimal control of coupled spin dynamics: design of nmr pulse sequences by gradient ascent algorithms. J. Magn. Reson, 172 (2): 296–305, 2005. 10.1016/j.jmr.2004.11.004.
https://doi.org/10.1016/j.jmr.2004.11.004
[20] Hyungwon Kim and David A Huse. Ballistic spreading of entanglement in a diffusive nonintegrable system. Phys. Rev. Lett., 111 (12): 127205, 2013. 10.1103/PhysRevLett.111.127205.
https://doi.org/10.1103/PhysRevLett.111.127205
[21] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv:1412.6980, 2014.
arXiv:1412.6980
[22] Bálint Koczor and Simon C Benjamin. Quantum natural gradient generalised to non-unitary circuits. arXiv:1912.08660, 2019.
arXiv:1912.08660
[23] Jun Li, Xiaodong Yang, Xinhua Peng, and Chang-Pu Sun. Hybrid quantum-classical approach to quantum optimal control. Physical review letters, 118 (15): 150503, 2017. 10.1103/PhysRevLett.118.150503.
https://doi.org/10.1103/PhysRevLett.118.150503
[24] Ying Li and Simon C Benjamin. Efficient variational quantum simulator incorporating active error minimization. Phys. Rev. X, 7 (2): 021050, 2017. 10.1103/PhysRevX.7.021050.
https://doi.org/10.1103/PhysRevX.7.021050
[25] Seth Lloyd. Universal quantum simulators. Science, 273 (5278): 1073–1078, 1996. 10.1126/science.273.5278.1073.
https://doi.org/10.1126/science.273.5278.1073
[26] Jarrod R McClean, Sergio Boixo, Vadim N Smelyanskiy, Ryan Babbush, and Hartmut Neven. Barren plateaus in quantum neural network training landscapes. Nat. Commun., 9 (1): 4812, 2018. 10.1038/s41467-018-07090-4.
https://doi.org/10.1038/s41467-018-07090-4
[27] Willard Miller. Symmetry groups and their applications. Academic Press, 1973.
[28] Kosuke Mitarai and Keisuke Fujii. Methodology for replacing indirect measurements with direct measurements. Phys. Rev. Res., 1 (1): 013006, 2019. 10.1103/PhysRevResearch.1.013006.
https://doi.org/10.1103/PhysRevResearch.1.013006
[29] Kosuke Mitarai, Makoto Negoro, Masahiro Kitagawa, and Keisuke Fujii. Quantum circuit learning. Phys. Rev. A, 98 (3): 032309, 2018. 10.1103/PhysRevA.98.032309.
https://doi.org/10.1103/PhysRevA.98.032309
[30] Ashley Montanaro. Quantum algorithms: an overview. npj Quantum Inf., 2 (1): 1–8, 2016. 10.1038/npjqi.2015.23.
https://doi.org/10.1038/npjqi.2015.23
[31] Michael A Nielsen, Mark R Dowling, Mile Gu, and Andrew C Doherty. Quantum computation as geometry. Science, 311 (5764): 1133–1135, 2006. 10.1126/science.1121541.
https://doi.org/10.1126/science.1121541
[32] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J Love, Alán Aspuru-Guzik, and Jeremy L O’Brien. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun., 5: 4213, 2014. 10.1038/ncomms5213.
https://doi.org/10.1038/ncomms5213
[33] John Preskill. Quantum computing in the nisq era and beyond. Quantum, 2: 79, 2018. 10.22331/q-2018-08-06-79.
https://doi.org/10.22331/q-2018-08-06-79
[34] Angel Rivas and Susana F Huelga. Open quantum systems. Springer, 2012. 10.1007/978-3-642-23354-8.
https://doi.org/10.1007/978-3-642-23354-8
[35] Jonathan Romero, Jonathan P Olson, and Alán Aspuru-Guzik. Quantum autoencoders for efficient compression of quantum data. Quant. Sci. Tech., 2 (4): 045001, 2017. 10.1088/2058-9565/aa8072.
https://doi.org/10.1088/2058-9565/aa8072
[36] Jonathan Romero, Ryan Babbush, Jarrod R McClean, Cornelius Hempel, Peter J Love, and Alán Aspuru-Guzik. Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz. Quantum Science and Technology, 4 (1): 014008, 2018. 10.1088/2058-9565/aad3e4.
https://doi.org/10.1088/2058-9565/aad3e4
[37] Maria Schuld and Francesco Petruccione. Supervised learning with quantum computers. Springer, 2018. 10.1007/978-3-319-96424-9.
https://doi.org/10.1007/978-3-319-96424-9
[38] Maria Schuld, Ville Bergholm, Christian Gogolin, Josh Izaac, and Nathan Killoran. Evaluating analytic gradients on quantum hardware. Phys. Rev. A, 99 (3): 032331, 2019. 10.1103/physreva.99.032331.
https://doi.org/10.1103/physreva.99.032331
[39] Maria Schuld, Alex Bocharov, Krysta M. Svore, and Nathan Wiebe. Circuit-centric quantum classifiers. Phys. Rev. A, 101: 032308, 2020. 10.1103/PhysRevA.101.032308. arXiv:1804.00633.
https://doi.org/10.1103/PhysRevA.101.032308
[40] Robert S Smith, Michael J Curtis, and William J Zeng. A practical quantum instruction set architecture. arXiv:1608.03355, 2016.
arXiv:1608.03355
[41] James C. Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Trans. Automat. Contr., 37 (3): 332–341, 1992. 10.1109/9.119632.
https://doi.org/10.1109/9.119632
[42] James Stokes, Josh Izaac, Nathan Killoran, and Giuseppe Carleo. Quantum natural gradient. Quantum, 4: 269, 2020. 10.22331/q-2020-05-25-269.
https://doi.org/10.22331/q-2020-05-25-269
[43] Ryan Sweke, Frederik Wilde, Johannes Jakob Meyer, Maria Schuld, Paul K. Fährmann, Barthélémy Meynard-Piganeau, and Jens Eisert. Stochastic gradient descent for hybrid quantum-classical optimization. Quantum, 4: 314, August 2020. 10.22331/q-2020-08-31-314.
https://doi.org/10.22331/q-2020-08-31-314
[44] Barnaby van Straaten and Bálint Koczor. Measurement cost of metric-aware variational quantum algorithms. arXiv preprint arXiv:2005.05172, 2020.
arXiv:2005.05172
[45] Ralph M Wilcox. Exponential operators and parameter differentiation in quantum physics. J. Math. Phys., 8 (4): 962–982, 1967. 10.1063/1.1705306.
https://doi.org/10.1063/1.1705306
[46] Xiao Yuan, Suguru Endo, Qi Zhao, Ying Li, and Simon C Benjamin. Theory of variational quantum simulation. Quantum, 3: 191, 2019. 10.22331/q-2019-10-07-191.
https://doi.org/10.22331/q-2019-10-07-191
Cited by
[1] Oleksandr Kyriienko and Vincent E. Elfving, "Generalized quantum circuit differentiation rules", Physical Review A 104 5, 052417 (2021).
[2] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, Yong-Jian Han, and Guo-Ping Guo, "Mitigating barren plateaus with transfer-learning-inspired parameter initializations", New Journal of Physics 25 1, 013039 (2023).
[3] David Wierichs, Josh Izaac, Cody Wang, and Cedric Yen-Yu Lin, "General parameter-shift rules for quantum gradients", Quantum 6, 677 (2022).
[4] Olivia Di Matteo, Josh Izaac, Thomas R. Bromley, Anthony Hayes, Christina Lee, Maria Schuld, Antal Száva, Chase Roberts, and Nathan Killoran, "Quantum Computing with Differentiable Quantum Transforms", ACM Transactions on Quantum Computing 4 3, 1 (2023).
[5] Artur F. Izmaylov, Robert A. Lang, and Tzu-Ching Yen, "Analytic gradients in variational quantum algorithms: Algebraic extensions of the parameter-shift rule to general unitary transformations", Physical Review A 104 6, 062443 (2021).
[6] Marcello Benedetti, Brian Coyle, Mattia Fiorentini, Michael Lubasch, and Matthias Rosenkranz, "Variational Inference with a Quantum Computer", Physical Review Applied 16 4, 044057 (2021).
[7] Le Bin Ho, Optica Quantum 2.0 Conference and Exhibition QM4B.4 (2023) ISBN:978-1-957171-27-2.
[8] Paolo Braccia, Leonardo Banchi, and Filippo Caruso, "Quantum Noise Sensing by Generating Fake Noise", Physical Review Applied 17 2, 024002 (2022).
[9] Maria Schuld and Nathan Killoran, "Is Quantum Advantage the Right Goal for Quantum Machine Learning?", PRX Quantum 3 3, 030101 (2022).
[10] Lukas Franken, Bogdan Georgiev, Sascha Mucke, Moritz Wolter, Raoul Heese, Christian Bauckhage, and Nico Piatkowski, 2022 IEEE Congress on Evolutionary Computation (CEC) 1 (2022) ISBN:978-1-6654-6708-7.
[11] Paolo Solinas, Simone Caletti, and Giovanni Minuto, "Quantum gradient evaluation through quantum non-demolition measurements", The European Physical Journal D 77 5, 76 (2023).
[12] Benjamin A. Cordier, Nicolas P. D. Sawaya, Gian Giacomo Guerreschi, and Shannon K. McWeeney, "Biology and medicine in the landscape of quantum advantages", Journal of The Royal Society Interface 19 196, 20220541 (2022).
[13] Alexey Melnikov, Mohammad Kordzanganeh, Alexander Alodjants, and Ray-Kuang Lee, "Quantum machine learning: from physics to software engineering", Advances in Physics: X 8 1, 2165452 (2023).
[14] Johannes Jakob Meyer, Johannes Borregaard, and Jens Eisert, "A variational toolbox for quantum multi-parameter estimation", npj Quantum Information 7 1, 89 (2021).
[15] Frédéric Sauvage and Florian Mintert, "Optimal Control of Families of Quantum Gates", Physical Review Letters 129 5, 050507 (2022).
[16] P. William, Vivek Parganiha, and D.B. Pardeshi, Quantum Computing in Cybersecurity 201 (2023) ISBN:9781394166336.
[17] Mahabubul Alam and Swaroop Ghosh, "QNet: A Scalable and Noise-Resilient Quantum Neural Network Architecture for Noisy Intermediate-Scale Quantum Computers", Frontiers in Physics 9, 755139 (2022).
[18] Quoc Chuong Nguyen, Le Bin Ho, Lan Nguyen Tran, and Hung Q Nguyen, "Qsun: an open-source platform towards practical quantum machine learning applications", Machine Learning: Science and Technology 3 1, 015034 (2022).
[19] Stefano Barison, Filippo Vicentini, and Giuseppe Carleo, "An efficient quantum algorithm for the time evolution of parameterized circuits", Quantum 5, 512 (2021).
[20] Thomas Hubregtsen, Frederik Wilde, Shozab Qasim, and Jens Eisert, "Single-component gradient rules for variational quantum algorithms", Quantum Science and Technology 7 3, 035008 (2022).
[21] Tomislav Piskor, Jan-Michael Reiner, Sebastian Zanker, Nicolas Vogt, Michael Marthaler, Frank K. Wilhelm, and Florian G. Eich, "Using gradient-based algorithms to determine ground-state energies on a quantum computer", Physical Review A 105 6, 062415 (2022).
[22] Sohrab Sajadimanesh, Jean Paul Latyr Faye, and Ehsan Atoofian, 2022 IEEE International Conference on Networking, Architecture and Storage (NAS) 1 (2022) ISBN:978-1-6654-5408-7.
[23] Satwik Kundu and Swaroop Ghosh, Proceedings of the Great Lakes Symposium on VLSI 2022 463 (2022) ISBN:9781450393225.
[24] Ivana Nikoloska, Osvaldo Simeone, Leonardo Banchi, and Petar Veličković, "Time-warping invariant quantum recurrent neural networks via quantum-classical adaptive gating", Machine Learning: Science and Technology 4 4, 045038 (2023).
[25] Antoine Michel, Sebastian Grijalva, Loïc Henriet, Christophe Domain, and Antoine Browaeys, "Blueprint for a digital-analog variational quantum eigensolver using Rydberg atom arrays", Physical Review A 107 4, 042602 (2023).
[26] Gian-Luca R Anselmetti, David Wierichs, Christian Gogolin, and Robert M Parrish, "Local, expressive, quantum-number-preserving VQE ansätze for fermionic systems", New Journal of Physics 23 11, 113010 (2021).
[27] Reza Haghshenas, Johnnie Gray, Andrew C. Potter, and Garnet Kin-Lic Chan, "Variational Power of Quantum Circuit Tensor Networks", Physical Review X 12 1, 011047 (2022).
[28] Merel A. Schalkers and Matthias Möller, Communications in Computer and Information Science 1585, 308 (2022) ISBN:978-3-031-06667-2.
[29] Beng Yee Gan, Daniel Leykam, and Dimitris G. Angelakis, "Fock state-enhanced expressivity of quantum machine learning models", EPJ Quantum Technology 9 1, 16 (2022).
[30] Shuo Liu, Shi-Xin Zhang, Shao-Kai Jian, and Hong Yao, "Training variational quantum algorithms with random gate activation", Physical Review Research 5 3, L032040 (2023).
[31] Hervè Atsè Corti, Leonardo Banchi, and Alessandro Cidronali, "Robustness of a universal gate set implementation in transmon systems via Chopped Random Basis optimal control", Physics Letters A 438, 128119 (2022).
[32] He-Liang Huang, Xiao-Yue Xu, Chu Guo, Guojing Tian, Shi-Jie Wei, Xiaoming Sun, Wan-Su Bao, and Gui-Lu Long, "Near-term quantum computing techniques: Variational quantum algorithms, error mitigation, circuit compilation, benchmarking and classical simulation", Science China Physics, Mechanics & Astronomy 66 5, 250302 (2023).
[33] Nannan Ma, Wenhao Chu, P. Z. Zhao, and Jiangbin Gong, "Adiabatic quantum learning", Physical Review A 108 4, 042420 (2023).
[34] Maria Schuld and Francesco Petruccione, Quantum Science and Technology 177 (2021) ISBN:978-3-030-83097-7.
[35] Roeland Wiersema, Cunlu Zhou, Juan Felipe Carrasquilla, and Yong Baek Kim, "Measurement-induced entanglement phase transitions in variational quantum circuits", SciPost Physics 14 6, 147 (2023).
[36] S. Mangini, F. Tacchino, D. Gerace, D. Bajoni, and C. Macchiavello, "Quantum computing models for artificial neural networks", Europhysics Letters 134 1, 10002 (2021).
[37] Wang Fang, Mingsheng Ying, and Xiaodi Wu, "Differentiable Quantum Programming with Unbounded Loops", ACM Transactions on Software Engineering and Methodology 33 1, 1 (2024).
[38] Johannes Jakob Meyer, "Gradients just got more flexible", Quantum Views 5, 50 (2021).
[39] Dirk Oliver Theis, ""Proper" Shift Rules for Derivatives of Perturbed-Parametric Quantum Evolutions", Quantum 7, 1052 (2023).
[40] Seyed Shakib Vedaie, Archismita Dalal, Eduardo J. Páez, and Barry C. Sanders, "Framework for learning and control in the classical and quantum domains", Annals of Physics 458, 169471 (2023).
[41] Sanjib Ghosh, Tanjung Krisnanda, Tomasz Paterek, and Timothy C. H. Liew, "Realising and compressing quantum circuits with quantum reservoir computing", Communications Physics 4 1, 105 (2021).
[42] Kirill Plekhanov, Matthias Rosenkranz, Mattia Fiorentini, and Michael Lubasch, "Variational quantum amplitude estimation", Quantum 6, 670 (2022).
[43] Le Bin Ho, "A stochastic evaluation of quantum Fisher information matrix with generic Hamiltonians", EPJ Quantum Technology 10 1, 37 (2023).
[44] Mahabubul Alam, Satwik Kundu, Rasit Onur Topaloglu, and Swaroop Ghosh, 2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD) 1 (2021) ISBN:978-1-6654-4507-8.
[45] Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav Anand, Matthias Degroote, Hermanni Heimonen, Jakob S. Kottmann, Tim Menke, Wai-Keong Mok, Sukin Sim, Leong-Chuan Kwek, and Alán Aspuru-Guzik, "Noisy intermediate-scale quantum algorithms", Reviews of Modern Physics 94 1, 015004 (2022).
[46] Andrea Mari, Thomas R. Bromley, and Nathan Killoran, "Estimating the gradient and higher-order derivatives on quantum hardware", Physical Review A 103 1, 012405 (2021).
[47] Ieva Čepaitė, Brian Coyle, and Elham Kashefi, "A Continuous Variable Born Machine", arXiv:2011.00904, (2020).
[48] Maiyuren Srikumar, Charles D. Hill, and Lloyd C. L. Hollenberg, "Clustering and enhanced classification using a hybrid quantum autoencoder", Quantum Science and Technology 7 1, 015020 (2022).
[49] Jakob S. Kottmann, Abhinav Anand, and Alán Aspuru-Guzik, "A Feasible Approach for Automatically Differentiable Unitary Coupled-Cluster on Quantum Computers", arXiv:2011.05938, (2020).
[50] Lennart Bittel, Jens Watty, and Martin Kliesch, "Fast gradient estimation for variational quantum algorithms", arXiv:2210.06484, (2022).
[51] Saad Yalouz, Emiel Koridon, Bruno Senjean, Benjamin Lasorne, Francesco Buda, and Lucas Visscher, "Analytical nonadiabatic couplings and gradients within the state-averaged orbital-optimized variational quantum eigensolver", arXiv:2109.04576, (2021).
[52] Paolo Braccia, Filippo Caruso, and Leonardo Banchi, "How to enhance quantum generative adversarial learning of noisy information", New Journal of Physics 23 5, 053024 (2021).
[53] Le Bin Ho, "Stochastic approach for quantum metrology with generic Hamiltonians", arXiv:2204.01055, (2022).
[54] Korbinian Kottmann and Nathan Killoran, "Evaluating analytic gradients of pulse programs on quantum computers", arXiv:2309.16756, (2023).
The above citations are from Crossref's cited-by service (last updated successfully 2023-12-07 03:19:50) and SAO/NASA ADS (last updated successfully 2023-12-07 03:19:53). The list may be incomplete as not all publishers provide suitable and complete citation data.
This Paper is published in Quantum under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Copyright remains with the original copyright holders such as the authors or their institutions.
Pingback: Perspective in Quantum Views by Johannes Jakob Meyer "Gradients just got more flexibl"