Measurement sequences for magic state distillation

Jeongwan Haah1 and Matthew B. Hastings2,1

1Microsoft Quantum, Redmond, Washington, USA
2Microsoft Quantum, Santa Barbara, California, USA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Magic state distillation uses special codes to suppress errors in input states, which are often tailored to a Clifford-twirled error model. We present detailed measurement sequences for magic state distillation protocols which can suppress arbitrary errors on any part of a protocol, assuming the independence of errors across qubits. Provided with input magic states, our protocol operates on a two-dimensional square grid by measurements of $ZZ$ on horizontal pairs of qubits, $XX$ on vertical pairs, and $Z,X$ on single qubits.

► BibTeX data

► References

[1] E. Knill, ``Fault-tolerant postselected quantum computation: Schemes,'' (2004a), arXiv:quant-ph/​0402171v1.
arXiv:quant-ph/0402171v1

[2] E. Knill, ``Fault-tolerant postselected quantum computation: Threshold analysis,'' (2004b), arXiv:quant-ph/​0404104v1.
arXiv:quant-ph/0404104v1

[3] P. Aliferis, D. Gottesman, and J. Preskill, ``Quantum accuracy threshold for concatenated distance-3 codes,'' Quant. Inf. Comput. 6, 97–165 (2006), arXiv:quant-ph/​0504218.
https:/​/​doi.org/​10.26421/​QIC8.3-4
arXiv:quant-ph/0504218

[4] J. Haah, M. B. Hastings, D. Poulin, and D. Wecker, ``Magic state distillation with low space overhead and optimal asymptotic input count,'' Quantum 1, 31 (2017), arXiv:1703.07847v1.
https:/​/​doi.org/​10.22331/​q-2017-10-03-31
arXiv:1703.07847v1

[5] E. T. Campbell and M. Howard, ``Unified framework for magic state distillation and multiqubit gate synthesis with reduced resource cost,'' Phys. Rev. A 95, 022316 (2017), arXiv:1606.01904v3.
https:/​/​doi.org/​10.1103/​PhysRevA.95.022316
arXiv:1606.01904v3

[6] S. Bravyi and J. Haah, ``Magic-state distillation with low overhead,'' Phys. Rev. A 86, 052329 (2012), arXiv:1209.2426.
https:/​/​doi.org/​10.1103/​PhysRevA.86.052329
arXiv:1209.2426

[7] B. Eastin, ``Distilling one-qubit magic states into Toffoli states,'' Phys. Rev. A 87, 032321 (2013), arXiv:1212.4872.
https:/​/​doi.org/​10.1103/​PhysRevA.87.032321
arXiv:1212.4872

[8] C. Jones, ``Low-overhead constructions for the fault-tolerant Toffoli gate,'' Phys. Rev. A 87, 022328 (2013a), arXiv:1212.5069.
https:/​/​doi.org/​10.1103/​PhysRevA.87.022328
arXiv:1212.5069

[9] T. Jochym-O'Connor, Y. Yu, B. Helou, and R. Laflamme, ``The robustness of magic state distillation against errors in clifford gates,'' Quant. Inf. Comput. 13, 361–378 (2013), arXiv:1205.6715.
https:/​/​doi.org/​10.26421/​QIC13.5-6
arXiv:1205.6715

[10] P. B. Brooks, Quantum Error Correction with Biased Noise, Ph.D. thesis, California Institute of Technology (2013).
https:/​/​doi.org/​10.7907/​1TVT-J780

[11] D. Litinski, ``Magic state distillation: Not as costly as you think,'' Quantum 3, 205 (2019), arXiv:1905.06903.
https:/​/​doi.org/​10.22331/​q-2019-12-02-205
arXiv:1905.06903

[12] C. Chamberland and A. W. Cross, ``Fault-tolerant magic state preparation with flag qubits,'' Quantum 3, 143 (2019), arXiv:1811.00566.
https:/​/​doi.org/​10.22331/​q-2019-05-20-143
arXiv:1811.00566

[13] C. Chamberland and K. Noh, ``Very low overhead fault-tolerant magic state preparation using redundant ancilla encoding and flag qubits,'' npj Quantum Information 6, 91 (2020), arXiv:2003.03049.
https:/​/​doi.org/​10.1038/​s41534-020-00319-5
arXiv:2003.03049

[14] A. G. Fowler and C. Gidney, ``Low overhead quantum computation using lattice surgery,'' arXiv:1808.06709.
arXiv:1808.06709

[15] T. Karzig, C. Knapp, R. M. Lutchyn, P. Bonderson, M. B. Hastings, C. Nayak, J. Alicea, K. Flensberg, S. Plugge, Y. Oreg, et al., ``Scalable designs for quasiparticle-poisoning-protected topological quantum computation with majorana zero modes,'' Phys. Rev. B 95, 235305 (2017), arXiv:1610.05289.
https:/​/​doi.org/​10.1103/​PhysRevB.95.235305
arXiv:1610.05289

[16] N. Delfosse, B. Reichardt, and K. Svore, ``Fault-tolerant cat state preparation with low classical and quantum hardware requirement,'' (2020).

[17] C. Jones, ``Multilevel distillation of magic states for quantum computing,'' Phys. Rev. A 87, 042305 (2013b), arXiv:1210.3388v2.
https:/​/​doi.org/​10.1103/​PhysRevA.87.042305
arXiv:1210.3388v2

[18] J. Haah, ``Towers of generalized divisible quantum codes,'' Phys. Rev. A 97, 042327 (2018), arXiv:1709.08658.
https:/​/​doi.org/​10.1103/​PhysRevA.97.042327
arXiv:1709.08658

[19] S. Bravyi and A. Kitaev, ``Universal quantum computation with ideal Clifford gates and noisy ancillas,'' Phys. Rev. A 71, 022316 (2005), arXiv:quant-ph/​0403025.
https:/​/​doi.org/​10.1103/​PhysRevA.71.022316
arXiv:quant-ph/0403025

[20] J. Haah and M. B. Hastings, ``Codes and protocols for distilling $T$, controlled-$S$, and Toffoli gates,'' Quantum 2, 71 (2018), arXiv:1709.02832.
https:/​/​doi.org/​10.22331/​q-2018-06-07-71
arXiv:1709.02832

Cited by

On Crossref's cited-by service no data on citing works was found (last attempt 2021-05-07 00:48:29). On SAO/NASA ADS no data on citing works was found (last attempt 2021-05-07 00:48:30).