Thermodynamics of Minimal Coupling Quantum Heat Engines
1Institute of Theoretical Physics and Astrophysics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, 80-308 Gdańsk, Poland
2International Centre for Theory of Quantum Technologies, University of Gdańsk, 80-308 Gdańsk, Poland
Published: | 2020-12-23, volume 4, page 375 |
Eprint: | arXiv:2003.05788v4 |
Doi: | https://doi.org/10.22331/q-2020-12-23-375 |
Citation: | Quantum 4, 375 (2020). |
Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.
Abstract
The minimal-coupling quantum heat engine is a thermal machine consisting of an explicit energy storage system, heat baths, and a working body, which alternatively couples to subsystems through discrete strokes --- energy-conserving two-body quantum operations. Within this paradigm, we present a general framework of quantum thermodynamics, where a work extraction process is fundamentally limited by a flow of non-passive energy (ergotropy), while energy dissipation is expressed through a flow of passive energy. It turns out that small dimensionality of the working body and a restriction only to two-body operations make the engine fundamentally irreversible. Our main result is finding the optimal efficiency and work production per cycle within the whole class of irreversible minimal-coupling engines composed of three strokes and with the two-level working body, where we take into account all possible quantum correlations between the working body and the battery. One of the key new tools is the introduced ``control-marginal state" --- one which acts only on a working body Hilbert space, but encapsulates all features regarding work extraction of the total working body-battery system. In addition, we propose a generalization of the many-stroke engine, and we analyze efficiency vs extracted work trade-offs, as well as work fluctuations after many cycles of the running of the engine.
► BibTeX data
► References
[1] Johannes Roßnagel, Samuel T. Dawkins, Karl N. Tolazzi, Obinna Abah, Eric Lutz, Ferdinand Schmidt-Kaler, and Kilian Singer, ``A single-atom heat engine'' Science 352, 325-329 (2016).
https://doi.org/10.1126/science.aad6320
arXiv:1510.03681
[2] Nathanaël Cottet, Sébastien Jezouin, Landry Bretheau, Philippe Campagne-Ibarcq, Quentin Ficheux, Janet Anders, Alexia Auffèves, Rémi Azouit, Pierre Rouchon, and Benjamin Huard, ``Observing a quantum Maxwell demon at work'' Proceedings of the National Academy of Sciences 114, 7561–7564 (2017).
https://doi.org/10.1073/pnas.1704827114
https://www.pnas.org/content/114/29/7561
[3] James Klatzow, Jonas N. Becker, Patrick M. Ledingham, Christian Weinzetl, Krzysztof T. Kaczmarek, Dylan J. Saunders, Joshua Nunn, Ian A. Walmsley, Raam Uzdin, and Eilon Poem, ``Experimental Demonstration of Quantum Effects in the Operation of Microscopic Heat Engines'' Phys. Rev. Lett. 122, 110601 (2019).
https://doi.org/10.1103/PhysRevLett.122.110601
[4] Daniel Goldwater, Benjamin A Stickler, Lukas Martinetz, Tracy E Northup, Klaus Hornberger, and James Millen, ``Levitated electromechanics: all-electrical cooling of charged nano- and micro-particles'' Quantum Science and Technology 4, 024003 (2019).
https://doi.org/10.1088/2058-9565/aaf5f3
[5] Christian Bergenfeldt, Peter Samuelsson, Björn Sothmann, Christian Flindt, and Markus Büttiker, ``Hybrid Microwave-Cavity Heat Engine'' Phys. Rev. Lett. 112, 076803 (2014).
https://doi.org/10.1103/PhysRevLett.112.076803
[6] Andreas Dechant, Nikolai Kiesel, and Eric Lutz, ``All-Optical Nanomechanical Heat Engine'' Phys. Rev. Lett. 114, 183602 (2015).
https://doi.org/10.1103/PhysRevLett.114.183602
[7] O. Fialkoand D. W. Hallwood ``Isolated Quantum Heat Engine'' Phys. Rev. Lett. 108, 085303 (2012).
https://doi.org/10.1103/PhysRevLett.108.085303
arXiv:1109.1589
[8] Jonatan Bohr Brask, Géraldine Haack, Nicolas Brunner, and Marcus Huber, ``Autonomous quantum thermal machine for generating steady-state entanglement'' New Journal of Physics 17, 113029 (2015).
https://doi.org/10.1088/1367-2630/17/11/113029
arXiv:1504.00187
[9] Jukka P. Pekola ``Towards quantum thermodynamics in electronic?circuits'' Nature Physics 11, 118–123 (2015).
https://doi.org/10.1038/nphys3169
[10] Keye Zhang, Francesco Bariani, and Pierre Meystre, ``Quantum Optomechanical Heat Engine'' Phys. Rev. Lett. 112, 150602 (2014).
https://doi.org/10.1103/PhysRevLett.112.150602
arXiv:1402.6746
[11] H. E. D. Scoviland E. O. Schulz-DuBois ``Three-Level Masers as Heat Engines'' Phys. Rev. Lett. 2, 262–263 (1959).
https://doi.org/10.1103/PhysRevLett.2.262
[12] R Alicki ``The quantum open system as a model of the heat engine'' Journal of Physics A: Mathematical and General 12, L103–L107 (1979).
https://doi.org/10.1088/0305-4470/12/5/007
[13] Marlan O. Scully ``Extracting Work from a Single Thermal Bath via Quantum Negentropy'' Phys. Rev. Lett. 87, 220601 (2001).
https://doi.org/10.1103/PhysRevLett.87.220601
[14] Marlan O. Scully ``Improving the Efficiency of an Ideal Heat Engine: The Quantum Afterburner'' Phys. Rev. Lett 88, 050602 (2002).
https://doi.org/10.1103/PhysRevLett.88.050602
[15] Paul Skrzypczyk, Anthony J. Short, and Sandu Popescu, ``Work extraction and thermodynamics for individual quantum systems'' Nature Communications 5 (2014).
https://doi.org/10.1038/ncomms5185
[16] D. Gelbwaser-Klimovsky, R. Alicki, and G. Kurizki, ``Work and energy gain of heat-pumped quantized amplifiers'' EPL (Europhysics Letters) 103, 60005 (2013).
https://doi.org/10.1209/0295-5075/103/60005
arXiv:1306.1472
[17] Raam Uzdin, Amikam Levy, and Ronnie Kosloff, ``Equivalence of Quantum Heat Machines, and Quantum-Thermodynamic Signatures'' Phys. Rev. X 5, 031044 (2015).
https://doi.org/10.1103/PhysRevX.5.031044
[18] Raam Uzdin, Amikam Levy, and Ronnie Kosloff, ``Quantum Heat Machines Equivalence, Work Extraction beyond Markovianity, and Strong Coupling via Heat Exchangers'' Entropy 18, 124 (2016).
https://doi.org/10.3390/e18040124
arXiv:1602.04925
[19] Arnab Ghosh, David Gelbwaser-Klimovsky, Wolfgang Niedenzu, Alexander I. Lvovsky, Igor Mazets, Marlan O. Scully, and Gershon Kurizki, ``Two-level masers as heat-to-work converters'' Proceedings of the National Academy of Science 115, 9941–9944 (2018).
https://doi.org/10.1073/pnas.1805354115
arXiv:1712.08936
[20] Janet Andersand Vittorio Giovannetti ``Thermodynamics of discrete quantum processes'' New Journal of Physics 15, 033022 (2013).
https://doi.org/10.1088/1367-2630/15/3/033022
arXiv:1211.0183
[21] Krzysztof Szczygielski, David Gelbwaser-Klimovsky, and Robert Alicki, ``Markovian master equation and thermodynamics of a two-level system in a strong laser field'' Phys. Rev. E 87, 012120 (2013).
https://doi.org/10.1103/PhysRevE.87.012120
arXiv:1211.5665
[22] Vasco Cavina, Andrea Mari, and Vittorio Giovannetti, ``Slow Dynamics and Thermodynamics of Open Quantum Systems'' Phys. Rev. Lett. 119, 050601 (2017).
https://doi.org/10.1103/PhysRevLett.119.050601
arXiv:1704.01509
[23] M. Perarnau-Llobet, H. Wilming, A. Riera, R. Gallego, and J. Eisert, ``Strong Coupling Corrections in Quantum Thermodynamics'' Phys. Rev. Lett. 120, 120602 (2018).
https://doi.org/10.1103/PhysRevLett.120.120602
arXiv:1704.05864
[24] Ronnie Kosloffand Amikam Levy ``Quantum Heat Engines and Refrigerators: Continuous Devices'' Annual Review of Physical Chemistry 65, 365–393 (2014) PMID: 24689798.
https://doi.org/10.1146/annurev-physchem-040513-103724
[25] E. B. Davies ``Markovian master equations'' Commun. Math. Phys. 39, 91–110 (1974).
https://doi.org/10.1007/BF01608389
[26] Vittorio Gorini, Andrzej Kossakowski, and E. C. G. Sudarshan, ``Completely positive dynamical semigroups of N-level systems'' Journal of Mathematical Physics 17, 821–825 (1976).
https://doi.org/10.1063/1.522979
[27] G. Lindblad ``On the generators of quantum dynamical semigroups'' Communications in Mathematical Physics 48, 119–130 (1976).
https://doi.org/10.1007/BF01608499
[28] R Alickiand K Lendi ``Quantum dynamical semigroups and applications'' Springer (2007).
https://doi.org/10.1007/3-540-70861-8
https://cds.cern.ch/record/1105909
[29] Raam Uzdinand Ronnie Kosloff ``The multilevel four-stroke swap engine and its environment'' New Journal of Physics 16, 095003 (2014).
https://doi.org/10.1088/1367-2630/16/9/095003
[30] Philipp Strasberg, Gernot Schaller, Tobias Brandes, and Massimiliano Esposito, ``Quantum and Information Thermodynamics: A Unifying Framework Based on Repeated Interactions'' Physical Review X 7 (2017).
https://doi.org/10.1103/physrevx.7.021003
[31] Marco Pezzutto, Mauro Paternostro, and Yasser Omar, ``An out-of-equilibrium non-Markovian quantum heat engine'' Quantum Science and Technology 4, 025002 (2019).
https://doi.org/10.1088/2058-9565/aaf5b4
[32] Stefano Cusumano, Vasco Cavina, Maximilian Keck, Antonella De Pasquale, and Vittorio Giovannetti, ``Entropy production and asymptotic factorization via thermalization: A collisional model approach'' Physical Review A 98 (2018).
https://doi.org/10.1103/physreva.98.032119
[33] Franklin L.S. Rodrigues, Gabriele De Chiara, Mauro Paternostro, and Gabriel T. Landi, ``Thermodynamics of Weakly Coherent Collisional Models'' Physical Review Letters 123 (2019).
https://doi.org/10.1103/physrevlett.123.140601
[34] D. Janzing, P. Wocjan, R. Zeier, R. Geiss, and Th. Beth, ``Thermodynamic Cost of Reliability and Low Temperatures: Tightening Landauer's Principle and the Second Law'' International Journal of Theoretical Physics 39, 2717–2753 (2000).
https://doi.org/10.1023/A:1026422630734
[35] R. Streater ``Statistical Dynamics: A Stochastic Approach to nonequilibrium Thermodynamics'' Imperial College Press, London, UK (1995).
https://doi.org/10.1007/BF02174220
[36] Ernst Ruchand Alden Mead ``The principle of increasing mixing character and some of its consequences'' Theoretica chimica acta 41, 95–117 (1976).
https://doi.org/10.1007/BF01178071
[37] Michał Horodeckiand Jonathan Oppenheim ``Fundamental limitations for quantum and nanoscale thermodynamics'' Nature Communications 4 (2013).
https://doi.org/10.1038/ncomms3059
[38] Mischa P. Woods, Nelly Huei Ying Ng, and Stephanie Wehner, ``The maximum efficiency of nano heat engines depends on more than temperature'' Quantum 3, 177 (2019).
https://doi.org/10.22331/q-2019-08-19-177
arXiv:1506.02322
[39] Nelly Huei Ying Ng, Mischa Prebin Woods, and Stephanie Wehner, ``Surpassing the Carnot efficiency by extracting imperfect work'' New Journal of Physics 19, 113005 (2017).
https://doi.org/10.1088/1367-2630/aa8ced
[40] H. T. Quan, Yu-xi Liu, C. P. Sun, and Franco Nori, ``Quantum thermodynamic cycles and quantum heat engines'' Phys. Rev. E 76, 031105 (2007).
https://doi.org/10.1103/PhysRevE.76.031105
[41] Alexandre Roulet, Stefan Nimmrichter, Juan Miguel Arrazola, Stella Seah, and Valerio Scarani, ``Autonomous rotor heat engine'' Phys. Rev. E 95, 062131 (2017).
https://doi.org/10.1103/PhysRevE.95.062131
arXiv:1609.06011
[42] Álvaro M. Alhambra, Lluis Masanes, Jonathan Oppenheim, and Christopher Perry, ``Fluctuating Work: From Quantum Thermodynamical Identities to a Second Law Equality'' Phys. Rev. X 6, 041017 (2016).
https://doi.org/10.1103/PhysRevX.6.041017
[43] Johan Åberg ``Fully Quantum Fluctuation Theorems'' Phys. Rev. X 8, 011019 (2018).
https://doi.org/10.1103/PhysRevX.8.011019
[44] Patryk Lipka-Bartosik, Paweł Mazurek, and Michał Horodecki, ``Second law of thermodynamics for batteries with vacuum state'' arXiv:1905.12072 (2019).
arXiv:1905.12072
[45] W. Puszand S. L. Woronowicz ``Passive states and KMS states for general quantum systems'' Comm. Math. Phys. 58, 273–290 (1978).
https://doi.org/10.1007/BF01614224
https://projecteuclid.org:443/euclid.cmp/1103901491
[46] A. E Allahverdyan, R Balian, and Th. M Nieuwenhuizen, ``Maximal work extraction from finite quantum systems'' Europhysics Letters (EPL) 67, 565–571 (2004).
https://doi.org/10.1209/epl/i2004-10101-2
[47] Robert Alickiand Mark Fannes ``Entanglement boost for extractable work from ensembles of quantum batteries'' Physical Review E 87 (2013).
https://doi.org/10.1103/physreve.87.042123
[48] Peter Talkner, Eric Lutz, and Peter Hänggi, ``Fluctuation theorems: Work is not an observable'' Phys. Rev. E 75, 050102 (2007).
https://doi.org/10.1103/PhysRevE.75.050102
[49] Peter Talknerand Peter Hänggi ``Aspects of quantum work'' Phys. Rev. E 93, 022131 (2016).
https://doi.org/10.1103/PhysRevE.93.022131
[50] Martí Perarnau-Llobet, Elisa Bäumer, Karen V. Hovhannisyan, Marcus Huber, and Antonio Acin, ``No-Go Theorem for the Characterization of Work Fluctuations in Coherent Quantum Systems'' Phys. Rev. Lett. 118, 070601 (2017).
https://doi.org/10.1103/PhysRevLett.118.070601
[51] Johan Åberg ``Truly work-like work extraction via a single-shot analysis'' Nature Communications 4, 1925 (2013).
https://doi.org/10.1038/ncomms2712
[52] Masahito Hayashiand Hiroyasu Tajima ``Measurement-based formulation of quantum heat engines'' Phys. Rev. A 95, 032132 (2017).
https://doi.org/10.1103/PhysRevA.95.032132
[53] R. Sampaio, S. Suomela, T. Ala-Nissila, J. Anders, and T. G. Philbin, ``Quantum work in the Bohmian framework'' Phys. Rev. A 97, 012131 (2018).
https://doi.org/10.1103/PhysRevA.97.012131
[54] Lluís Masanesand Jonathan Oppenheim ``A general derivation and quantification of the third law of thermodynamics'' Nature Communications 8, 14538 (2017).
https://doi.org/10.1038/ncomms14538
[55] A. E Allahverdyan, R Balian, and Th. M Nieuwenhuizen, ``Maximal work extraction from finite quantum systems'' Europhysics Letters (EPL) 67, 565–571 (2004).
https://doi.org/10.1209/epl/i2004-10101-2
[56] Álvaro M. Alhambra, Lluis Masanes, Jonathan Oppenheim, and Christopher Perry, ``Fluctuating Work: From Quantum Thermodynamical Identities to a Second Law Equality'' Phys. Rev. X 6, 041017 (2016).
https://doi.org/10.1103/PhysRevX.6.041017
[57] Piotr Ć wikliński, Michał Studziński, Michał Horodecki, and Jonathan Oppenheim, ``Limitations on the Evolution of Quantum Coherences: Towards Fully Quantum Second Laws of Thermodynamics'' Phys. Rev. Lett. 115, 210403 (2015).
https://doi.org/10.1103/PhysRevLett.115.210403
[58] F. L. Curzonand B. Ahlborn ``Efficiency of a Carnot engine at maximum power output'' American Journal of Physics 43, 22–24 (1975).
https://doi.org/10.1119/1.10023
[59] Matteo Lostaglio, Álvaro M. Alhambra, and Christopher Perry, ``Elementary Thermal Operations'' Quantum 2, 52 (2018).
https://doi.org/10.22331/q-2018-02-08-52
Cited by
[1] Meng Xu, J T Stockburger, G Kurizki, and J Ankerhold, "Minimal quantum thermal machine in a bandgap environment: non-Markovian features and anti-Zeno advantage", New Journal of Physics 24 3, 035003 (2022).
[2] Krzysztof Ptaszyński, "Non-Markovian thermal operations boosting the performance of quantum heat engines", Physical Review E 106 1, 014114 (2022).
[3] Marcin Łobejko, "Work and Fluctuations: Coherent vs. Incoherent Ergotropy Extraction", Quantum 6, 762 (2022).
[4] Roie Dann and Ronnie Kosloff, "Unification of the first law of quantum thermodynamics", New Journal of Physics 25 4, 043019 (2023).
[5] Patryk Lipka-Bartosik and Paul Skrzypczyk, "All States are Universal Catalysts in Quantum Thermodynamics", Physical Review X 11 1, 011061 (2021).
[6] Raffaele Salvia, Martí Perarnau-Llobet, Géraldine Haack, Nicolas Brunner, and Stefan Nimmrichter, "Quantum advantage in charging cavity and spin batteries by repeated interactions", Physical Review Research 5 1, 013155 (2023).
[7] Marcin Łobejko, "The tight Second Law inequality for coherent quantum systems and finite-size heat baths", Nature Communications 12 1, 918 (2021).
[8] Nir Shvalb, Mark Frenkel, Shraga Shoval, and Edward Bormashenko, "Ramsey theory and thermodynamics", Heliyon 9 2, e13561 (2023).
[9] Patryk Lipka-Bartosik, Paweł Mazurek, and Michał Horodecki, "Second law of thermodynamics for batteries with vacuum state", Quantum 5, 408 (2021).
[10] Tanmoy Biswas, Marcin Łobejko, Paweł Mazurek, Konrad Jałowiecki, and Michał Horodecki, "Extraction of ergotropy: free energy bound and application to open cycle engines", Quantum 6, 841 (2022).
The above citations are from Crossref's cited-by service (last updated successfully 2023-06-08 06:48:39) and SAO/NASA ADS (last updated successfully 2023-06-08 06:48:40). The list may be incomplete as not all publishers provide suitable and complete citation data.
This Paper is published in Quantum under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Copyright remains with the original copyright holders such as the authors or their institutions.