Translating Uncontrolled Systems in Time

David Trillo, Benjamin Dive, and Miguel Navascués

Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Boltzmanngasse 3, Vienna 1090, Austria

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

We show that there exist non-relativistic scattering experiments which, if successful, freeze out, speed up or even reverse the free dynamics of any ensemble of quantum systems present in the scattering region. This ``time translation'' effect is universal, i.e., it is independent of the particular interaction between the scattering particles and the target systems, or the (possibly non-Hermitian) Hamiltonian governing the evolution of the latter. The protocols require careful preparation of the probes which are scattered, and success is heralded by projective measurements of these probes at the conclusion of the experiment. We fully characterize the possible time translations which we can effect on multiple target systems through a scattering protocol of fixed duration. The core results are: a) when the target is a single system, we can translate it backwards in time for an amount proportional to the experimental runtime; b) when $n$ targets are present in the scattering region, we can make a single system evolve $n$ times faster (backwards or forwards), at the cost of keeping the remaining $n-1$ systems stationary in time. For high $n$ our protocols therefore allow one to map, in short experimental time, a system to the state it would have reached with a very long unperturbed evolution in either positive or negative time.

► BibTeX data

► References

[1] Y. Aharonov, J. Anandan, S. Popescu, and L. Vaidman, Phys. Rev. Lett. 64, 2965 (1990).
https:/​/​doi.org/​10.1103/​PhysRevLett.64.2965

[2] I. S. Sardharwalla, T. S. Cubitt, A. W. Harrow, and N. Linden, (2016), arXiv:1602.07963.
arXiv:arXiv:1602.07963

[3] E. L. Hahn, Phys. Rev. 80, 580 (1950).
https:/​/​doi.org/​10.1103/​PhysRev.80.580

[4] W.-J. Kuo and D. A. Lidar, Phys. Rev. A 84, 042329 (2011).
https:/​/​doi.org/​10.1103/​PhysRevA.84.042329

[5] M. T. Quintino, Q. Dong, A. Shimbo, A. Soeda, and M. Murao, Phys. Rev. Lett. 123, 210502 (2019).
https:/​/​doi.org/​10.1103/​PhysRevLett.123.210502

[6] K. Gödel, Rev. Mod. Phys. 21, 447 (1949).
https:/​/​doi.org/​10.1103/​RevModPhys.21.447

[7] K. Thorne, Black Holes and Time Warps: Einstein's Outrageous Legacy, Commonwealth Fund Book Program (W.W. Norton, 1994).

[8] S. Krasnikov, Back-in-Time and Faster-than-Light Travel in General Relativity (Springer AG, 2018).
https:/​/​doi.org/​10.1007/​978-3-319-72754-7

[9] M. Navascués, Phys. Rev. X 8, 031008 (2018).
https:/​/​doi.org/​10.1103/​PhysRevX.8.031008

[10] Y. Atia and D. Aharonov, Nat. Comm. 8, 1572 (2017).
https:/​/​doi.org/​10.1038/​s41467-017-01637-7

[11] C. Arenz, D. I. Bondar, D. Burgarth, C. Cormick, and H. Rabitz, Quantum 4, 271 (2020).
https:/​/​doi.org/​10.22331/​q-2020-05-25-271

[12] G. Chiribella, G. M. D'Ariano, and P. Perinotti, Phys. Rev. Lett. 101, 180504 (2008).
https:/​/​doi.org/​10.1103/​PhysRevLett.101.180504

[13] S. C. Burd, R. Srinivas, J. J. Bollinger, A. C. Wilson, D. J. Wineland, D. Leibfried, D. H. Slichter, and D. T. C. Allcock, Science 364, 1163 (2019).
https:/​/​doi.org/​10.1126/​science.aaw2884

[14] E. Formanek, Journal of Algebra 23, 129 (1972).
https:/​/​doi.org/​10.1016/​0021-8693(72)90050-6

[15] D. Trillo, B. Dive, and M. Navascués, work in progress.

[16] J. Gleick, Time Travel: A History (Pantheon, 2016).

[17] A. Knapp, Representation theory of semisimple groups (Princeton University Press, 1986).
https:/​/​doi.org/​10.1515/​9781400883974

[18] R. Orús, Annals of Physics 349, 117–158 (2014).
https:/​/​doi.org/​10.1016/​j.aop.2014.06.013

[19] R. Werner, in Encyclopedia of Mathematical Physics, edited by J.-P. Françoise, G. L. Naber, and T. S. Tsun (Academic Press, Oxford, 2006) pp. 334 – 340.
https:/​/​doi.org/​10.1016/​B0-12-512666-2/​00379-5

[20] M. Navascues and T. Vertesi, Quantum 2, 50 (2018).
https:/​/​doi.org/​10.22331/​q-2018-01-31-50

Cited by

[1] Marco Túlio Quintino, Qingxiuxiong Dong, Atsushi Shimbo, Akihito Soeda, and Mio Murao, "Reversing Unknown Quantum Transformations: Universal Quantum Circuit for Inverting General Unitary Operations", Physical Review Letters 123 21, 210502 (2019).

[2] Marco Túlio Quintino, Qingxiuxiong Dong, Atsushi Shimbo, Akihito Soeda, and Mio Murao, "Probabilistic exact universal quantum circuits for transforming unitary operations", Physical Review A 100 6, 062339 (2019).

[3] Felix Huber, "Positive maps and trace polynomials from the symmetric group", arXiv:2002.12887.

[4] Zheng-Da Li, Xu-Fei Yin, Zizhu Wang, Li-Zheng Liu, Rui Zhang, Yu-Zhe Zhang, Xiao Jiang, Jun Zhang, Li Li, Nai-Le Liu, Xiao-Bo Zhu, Feihu Xu, Yu-Ao Chen, and Jian-Wei Pan, "Photonic realization of quantum resetting", Optica 7 7, 766 (2020).

[5] Claudio Procesi, "A note on the Weingarten function", arXiv:2008.11129.

[6] Claudio Procesi, "Tensor fundamental theorems of invariant theory", arXiv:2011.10820.

[7] Qin Feng, Tianfeng Feng, Yuling Tian, Maolin Luo, and Xiaoqi Zhou, "Experimentally undoing an unknown single-qubit unitary", Physical Review A 102 1, 012602 (2020).

The above citations are from SAO/NASA ADS (last updated successfully 2021-01-18 21:42:41). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2021-01-18 21:42:40).