Translating Uncontrolled Systems in Time

David Trillo, Benjamin Dive, and Miguel Navascués

Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Boltzmanngasse 3, Vienna 1090, Austria

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

We show that there exist non-relativistic scattering experiments which, if successful, freeze out, speed up or even reverse the free dynamics of any ensemble of quantum systems present in the scattering region. This ``time translation'' effect is universal, i.e., it is independent of the particular interaction between the scattering particles and the target systems, or the (possibly non-Hermitian) Hamiltonian governing the evolution of the latter. The protocols require careful preparation of the probes which are scattered, and success is heralded by projective measurements of these probes at the conclusion of the experiment. We fully characterize the possible time translations which we can effect on multiple target systems through a scattering protocol of fixed duration. The core results are: a) when the target is a single system, we can translate it backwards in time for an amount proportional to the experimental runtime; b) when $n$ targets are present in the scattering region, we can make a single system evolve $n$ times faster (backwards or forwards), at the cost of keeping the remaining $n-1$ systems stationary in time. For high $n$ our protocols therefore allow one to map, in short experimental time, a system to the state it would have reached with a very long unperturbed evolution in either positive or negative time.

► BibTeX data

► References

[1] Y. Aharonov, J. Anandan, S. Popescu, and L. Vaidman, Phys. Rev. Lett. 64, 2965 (1990).
https:/​/​doi.org/​10.1103/​PhysRevLett.64.2965

[2] I. S. Sardharwalla, T. S. Cubitt, A. W. Harrow, and N. Linden, (2016), arXiv:1602.07963.
arXiv:arXiv:1602.07963

[3] E. L. Hahn, Phys. Rev. 80, 580 (1950).
https:/​/​doi.org/​10.1103/​PhysRev.80.580

[4] W.-J. Kuo and D. A. Lidar, Phys. Rev. A 84, 042329 (2011).
https:/​/​doi.org/​10.1103/​PhysRevA.84.042329

[5] M. T. Quintino, Q. Dong, A. Shimbo, A. Soeda, and M. Murao, Phys. Rev. Lett. 123, 210502 (2019).
https:/​/​doi.org/​10.1103/​PhysRevLett.123.210502

[6] K. Gödel, Rev. Mod. Phys. 21, 447 (1949).
https:/​/​doi.org/​10.1103/​RevModPhys.21.447

[7] K. Thorne, Black Holes and Time Warps: Einstein's Outrageous Legacy, Commonwealth Fund Book Program (W.W. Norton, 1994).

[8] S. Krasnikov, Back-in-Time and Faster-than-Light Travel in General Relativity (Springer AG, 2018).
https:/​/​doi.org/​10.1007/​978-3-319-72754-7

[9] M. Navascués, Phys. Rev. X 8, 031008 (2018).
https:/​/​doi.org/​10.1103/​PhysRevX.8.031008

[10] Y. Atia and D. Aharonov, Nat. Comm. 8, 1572 (2017).
https:/​/​doi.org/​10.1038/​s41467-017-01637-7

[11] C. Arenz, D. I. Bondar, D. Burgarth, C. Cormick, and H. Rabitz, Quantum 4, 271 (2020).
https:/​/​doi.org/​10.22331/​q-2020-05-25-271

[12] G. Chiribella, G. M. D'Ariano, and P. Perinotti, Phys. Rev. Lett. 101, 180504 (2008).
https:/​/​doi.org/​10.1103/​PhysRevLett.101.180504

[13] S. C. Burd, R. Srinivas, J. J. Bollinger, A. C. Wilson, D. J. Wineland, D. Leibfried, D. H. Slichter, and D. T. C. Allcock, Science 364, 1163 (2019).
https:/​/​doi.org/​10.1126/​science.aaw2884

[14] E. Formanek, Journal of Algebra 23, 129 (1972).
https:/​/​doi.org/​10.1016/​0021-8693(72)90050-6

[15] D. Trillo, B. Dive, and M. Navascués, work in progress.

[16] J. Gleick, Time Travel: A History (Pantheon, 2016).

[17] A. Knapp, Representation theory of semisimple groups (Princeton University Press, 1986).
https:/​/​doi.org/​10.1515/​9781400883974

[18] R. Orús, Annals of Physics 349, 117–158 (2014).
https:/​/​doi.org/​10.1016/​j.aop.2014.06.013

[19] R. Werner, in Encyclopedia of Mathematical Physics, edited by J.-P. Françoise, G. L. Naber, and T. S. Tsun (Academic Press, Oxford, 2006) pp. 334 – 340.
https:/​/​doi.org/​10.1016/​B0-12-512666-2/​00379-5

[20] M. Navascues and T. Vertesi, Quantum 2, 50 (2018).
https:/​/​doi.org/​10.22331/​q-2018-01-31-50

Cited by

[1] Felix Huber, "Positive maps and trace polynomials from the symmetric group", Journal of Mathematical Physics 62 2, 022203 (2021).

[2] P. Schiansky, T. Strömberg, D. Trillo, V. Saggio, B. Dive, M. Navascués, and P. Walther, "Demonstration of universal time-reversal for qubit processes", Optica 10 2, 200 (2023).

[3] Satoshi Yoshida, Akihito Soeda, and Mio Murao, "Reversing Unknown Qubit-Unitary Operation, Deterministically and Exactly", Physical Review Letters 131 12, 120602 (2023).

[4] Marco Túlio Quintino and Daniel Ebler, "Deterministic transformations between unitary operations: Exponential advantage with adaptive quantum circuits and the power of indefinite causality", Quantum 6, 679 (2022).

[5] D. Trillo, B. Dive, and M. Navascués, "Universal Quantum Rewinding Protocol with an Arbitrarily High Probability of Success", Physical Review Letters 130 11, 110201 (2023).

[6] Daniel Ebler, Michał Horodecki, Marcin Marciniak, Tomasz Młynik, Marco Túlio Quintino, and Michał Studziński, "Optimal Universal Quantum Circuits for Unitary Complex Conjugation", IEEE Transactions on Information Theory 69 8, 5069 (2023).

[7] Marco Túlio Quintino, Qingxiuxiong Dong, Atsushi Shimbo, Akihito Soeda, and Mio Murao, "Reversing Unknown Quantum Transformations: Universal Quantum Circuit for Inverting General Unitary Operations", Physical Review Letters 123 21, 210502 (2019).

[8] Teodor Strömberg, Peter Schiansky, Marco Túlio Quintino, Michael Antesberger, Lee Rozema, Iris Agresti, Časlav Brukner, and Philip Walther, "Experimental superposition of time directions", arXiv:2211.01283, (2022).

[9] Marco Túlio Quintino, Qingxiuxiong Dong, Atsushi Shimbo, Akihito Soeda, and Mio Murao, "Probabilistic exact universal quantum circuits for transforming unitary operations", Physical Review A 100 6, 062339 (2019).

[10] Marco Túlio Quintino and Daniel Ebler, "Deterministic transformations between unitary operations: Exponential advantage with adaptive quantum circuits and the power of indefinite causality", arXiv:2109.08202, (2021).

[11] Daniel Ebler, Michał Horodecki, Marcin Marciniak, Tomasz Młynik, Marco Túlio Quintino, and Michał Studziński, "Optimal universal quantum circuits for unitary complex conjugation", arXiv:2206.00107, (2022).

[12] Zheng-Da Li, Xu-Fei Yin, Zizhu Wang, Li-Zheng Liu, Rui Zhang, Yu-Zhe Zhang, Xiao Jiang, Jun Zhang, Li Li, Nai-Le Liu, Xiao-Bo Zhu, Feihu Xu, Yu-Ao Chen, and Jian-Wei Pan, "Photonic realization of quantum resetting", Optica 7 7, 766 (2020).

[13] Qin Feng, Tianfeng Feng, Yuling Tian, Maolin Luo, and Xiaoqi Zhou, "Experimentally undoing an unknown single-qubit unitary", Physical Review A 102 1, 012602 (2020).

[14] Claudio Procesi, "Tensor fundamental theorems of invariant theory", arXiv:2011.10820, (2020).

[15] Claudio Procesi, "A construction of swap or switch polynomials", arXiv:2102.10657, (2021).

[16] Claudio Procesi, "A note on the Weingarten function", arXiv:2008.11129, (2020).

The above citations are from Crossref's cited-by service (last updated successfully 2024-03-19 06:22:48) and SAO/NASA ADS (last updated successfully 2024-03-19 06:22:49). The list may be incomplete as not all publishers provide suitable and complete citation data.