Information and disturbance in operational probabilistic theories

Giacomo Mauro D'Ariano, Paolo Perinotti, and Alessandro Tosini

QUIT group, Physics Dept., Pavia University, and INFN Sezione di Pavia, via Bassi 6, 27100 Pavia, Italy

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Any measurement is intended to provide $information$ on a system, namely knowledge about its state. However, we learn from quantum theory that it is generally impossible to extract information without disturbing the state of the system or its correlations with other systems. In this paper we address the issue of the interplay between information and disturbance for a general operational probabilistic theory. The traditional notion of disturbance considers the fate of the system state after the measurement. However, the fact that the system state is left untouched ensures that also correlations are preserved only in the presence of local discriminability. Here we provide the definition of disturbance that is appropriate for a general theory. Moreover, since in a theory without causality information can be gathered also on the effect, we generalise the notion of no-information test. We then prove an equivalent condition for no-information without disturbance---$\textit{atomicity of the identity}$---namely the impossibility of achieving the trivial evolution---the $identity$---as the coarse-graining of a set of non trivial ones. We prove a general theorem showing that information that can be retrieved without disturbance corresponds to perfectly repeatable and discriminating tests. Based on this, we prove a structure theorem for operational probabilistic theories, showing that the set of states of any system decomposes as a direct sum of perfectly discriminable sets, and such decomposition is preserved under system composition. As a consequence, a theory is such that any information can be extracted without disturbance only if all its systems are classical. Finally, we show via concrete examples that no-information without disturbance is independent of both local discriminability and purification.

► BibTeX data

► References

[1] W. Heisenberg. Über den anschaulichen inhalt der quantentheoretischen kinematik und mechanik. Zeitschrift für Physik, 43(3):172–198, Mar 1927. doi:https:/​/​doi.org/​10.1007/​BF01397280.
https:/​/​doi.org/​10.1007/​BF01397280

[2] Paul Busch, Teiko Heinonen, and Pekka Lahti. Heisenberg's uncertainty principle. Physics Reports, 452(6):155 – 176, 2007. doi:https:/​/​doi.org/​10.1016/​j.physrep.2007.05.006.
https:/​/​doi.org/​10.1016/​j.physrep.2007.05.006

[3] Paul Busch, Pekka Lahti, and Reinhard F. Werner. Colloquium: Quantum root-mean-square error and measurement uncertainty relations. Rev. Mod. Phys., 86:1261–1281, Dec 2014. doi:https:/​/​doi.org/​10.1103/​RevModPhys.86.1261.
https:/​/​doi.org/​10.1103/​RevModPhys.86.1261

[4] Christopher A. Fuchs and Asher Peres. Quantum-state disturbance versus information gain: Uncertainty relations for quantum information. Phys. Rev. A, 53:2038–2045, Apr 1996. doi:https:/​/​doi.org/​10.1103/​PhysRevA.53.2038.
https:/​/​doi.org/​10.1103/​PhysRevA.53.2038

[5] Giacomo Mauro D'Ariano. On the heisenberg principle, namely on the information-disturbance trade-off in a quantum measurement. Fortschritte der Physik: Progress of Physics, 51(4-5):318–330, 2003. doi:https:/​/​doi.org/​10.1002/​prop.200310045.
https:/​/​doi.org/​10.1002/​prop.200310045

[6] Masanao Ozawa. Uncertainty relations for noise and disturbance in generalized quantum measurements. Annals of Physics, 311(2):350 – 416, 2004. doi:https:/​/​doi.org/​10.1016/​j.aop.2003.12.012.
https:/​/​doi.org/​10.1016/​j.aop.2003.12.012

[7] Lorenzo Maccone. Information-disturbance tradeoff in quantum measurements. Phys. Rev. A, 73:042307, Apr 2006. doi:https:/​/​doi.org/​10.1103/​PhysRevA.73.042307.
https:/​/​doi.org/​10.1103/​PhysRevA.73.042307

[8] Paul Busch. ``No Information Without Disturbance'': Quantum Limitations of Measurement, pages 229–256. Springer Netherlands, Dordrecht, 2009. doi:https:/​/​doi.org/​10.1007/​978-1-4020-9107-0_13.
https:/​/​doi.org/​10.1007/​978-1-4020-9107-0_13

[9] Giacomo Mauro D'Ariano, Giulio Chiribella, and Paolo Perinotti. Quantum Theory from First Principles: An Informational Approach. Cambridge University Press, 2017. doi:https:/​/​doi.org/​10.1017/​9781107338340.
https:/​/​doi.org/​10.1017/​9781107338340

[10] Giulio Chiribella, Giacomo Mauro D'Ariano, and Paolo Perinotti. Probabilistic theories with purification. Phys. Rev. A, 81:062348, Jun 2010. doi:https:/​/​doi.org/​10.1103/​PhysRevA.81.062348.
https:/​/​doi.org/​10.1103/​PhysRevA.81.062348

[11] Giulio Chiribella, Giacomo Mauro D'Ariano, and Paolo Perinotti. Quantum from Principles, pages 171–221. Springer Netherlands, Dordrecht, 2016. doi:https:/​/​doi.org/​10.1007/​978-94-017-7303-4_6.
https:/​/​doi.org/​10.1007/​978-94-017-7303-4_6

[12] Jonathan Barrett. Information processing in generalized probabilistic theories. Physical Review A, 75(3):032304, 2007. doi:https:/​/​doi.org/​10.1103/​PhysRevA.75.032304.
https:/​/​doi.org/​10.1103/​PhysRevA.75.032304

[13] Gen Kimura, Koji Nuida, and Hideki Imai. Distinguishability measures and entropies for general probabilistic theories. Reports on Mathematical Physics, 66(2):175 – 206, 2010. doi:https:/​/​doi.org/​10.1016/​S0034-4877(10)00025-X.
https:/​/​doi.org/​10.1016/​S0034-4877(10)00025-X

[14] Howard Barnum and Alexander Wilce. Information processing in convex operational theories. Electronic Notes in Theoretical Computer Science, 270(1):3 – 15, 2011. Proceedings of the Joint 5th International Workshop on Quantum Physics and Logic and 4th Workshop on Developments in Computational Models (QPL/​DCM 2008). doi:https:/​/​doi.org/​10.1016/​j.entcs.2011.01.002.
https:/​/​doi.org/​10.1016/​j.entcs.2011.01.002

[15] Teiko Heinosaari, Leevi Leppäjärvi, and Martin Plávala. No-free-information principle in general probabilistic theories. Quantum, 3:157, July 2019. doi:https:/​/​doi.org/​10.22331/​q-2019-07-08-157.
https:/​/​doi.org/​10.22331/​q-2019-07-08-157

[16] Sergey B. Bravyi and Alexei Yu. Kitaev. Fermionic quantum computation. Annals of Physics, 298(1):210 – 226, 2002. doi:https:/​/​doi.org/​10.1006/​aphy.2002.6254.
https:/​/​doi.org/​10.1006/​aphy.2002.6254

[17] Giacomo Mauro D'Ariano, Franco Manessi, Paolo Perinotti, and Alessandro Tosini. The feynman problem and fermionic entanglement: Fermionic theory versus qubit theory. International Journal of Modern Physics A, 29(17):1430025, 2014. doi:https:/​/​doi.org/​10.1142/​S0217751X14300257.
https:/​/​doi.org/​10.1142/​S0217751X14300257

[18] G. M. D'Ariano, F. Manessi, P. Perinotti, and A. Tosini. Fermionic computation is non-local tomographic and violates monogamy of entanglement. EPL (Europhysics Letters), 107(2):20009, jul 2014. doi:https:/​/​doi.org/​10.1209/​0295-5075/​107/​20009.
https:/​/​doi.org/​10.1209/​0295-5075/​107/​20009

[19] Corsin Pfister and Stephanie Wehner. An information-theoretic principle implies that any discrete physical theory is classical. Nature Communications, 4:1851 EP –, 05 2013. doi:https:/​/​doi.org/​10.1038/​ncomms2821.
https:/​/​doi.org/​10.1038/​ncomms2821

[20] Ryuji Takagi and Bartosz Regula. General resource theories in quantum mechanics and beyond: Operational characterization via discrimination tasks. Phys. Rev. X, 9:031053, Sep 2019. doi:https:/​/​doi.org/​10.1103/​PhysRevX.9.031053.
https:/​/​doi.org/​10.1103/​PhysRevX.9.031053

[21] Bob Coecke, Tobias Fritz, and Robert W. Spekkens. A mathematical theory of resources. Information and Computation, 250:59 – 86, 2016. Quantum Physics and Logic. doi:https:/​/​doi.org/​10.1016/​j.ic.2016.02.008.
https:/​/​doi.org/​10.1016/​j.ic.2016.02.008

[22] G M D'Ariano, F Manessi, and P Perinotti. Determinism without causality. Physica Scripta, T163:014013, dec 2014. doi:https:/​/​doi.org/​10.1088/​0031-8949/​2014/​t163/​014013.
https:/​/​doi.org/​10.1088/​0031-8949/​2014/​t163/​014013

[23] Lucien Hardy and William K Wootters. Limited holism and real-vector-space quantum theory. Foundations of Physics, 42(3):454–473, 2012. doi:https:/​/​doi.org/​10.1007/​s10701-011-9616-6.
https:/​/​doi.org/​10.1007/​s10701-011-9616-6

[24] G. Chiribella, G. M. D'Ariano, and P. Perinotti. Informational derivation of quantum theory. Phys. Rev. A, 84(012311):012311–012350, 2011. doi:https:/​/​doi.org/​10.1103/​PhysRevA.84.012311.
https:/​/​doi.org/​10.1103/​PhysRevA.84.012311

[25] Giacomo Mauro D'Ariano, Marco Erba, and Paolo Perinotti. Classical theories with entanglement. Phys. Rev. A, 101:042118, Apr 2020. doi:https:/​/​doi.org/​10.1103/​PhysRevA.101.042118.
https:/​/​doi.org/​10.1103/​PhysRevA.101.042118

[26] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, 2010. doi:https:/​/​doi.org/​10.1017/​CBO9780511976667.
https:/​/​doi.org/​10.1017/​CBO9780511976667

[27] Jonathan Barrett. Information processing in generalized probabilistic theories. Phys. Rev. A, 75:032304, Mar 2007. doi:https:/​/​doi.org/​10.1103/​PhysRevA.75.032304.
https:/​/​doi.org/​10.1103/​PhysRevA.75.032304

[28] Jonathan Barrett, Noah Linden, Serge Massar, Stefano Pironio, Sandu Popescu, and David Roberts. Nonlocal correlations as an information-theoretic resource. Phys. Rev. A, 71:022101, Feb 2005. doi:https:/​/​doi.org/​10.1103/​PhysRevA.71.022101.
https:/​/​doi.org/​10.1103/​PhysRevA.71.022101

[29] Giacomo Mauro D'Ariano and Alessandro Tosini. Testing axioms for quantum theory on probabilistic toy-theories. Quantum Information Processing, 9(2):95–141, 2010. doi:https:/​/​doi.org/​10.1007/​s11128-010-0172-3.
https:/​/​doi.org/​10.1007/​s11128-010-0172-3

[30] Anthony J Short and Jonathan Barrett. Strong nonlocality: a trade-off between states and measurements. New Journal of Physics, 12(3):033034, mar 2010. doi:https:/​/​doi.org/​10.1088/​1367-2630/​12/​3/​033034.
https:/​/​doi.org/​10.1088/​1367-2630/​12/​3/​033034

[31] Michele Dall'Arno, Sarah Brandsen, Alessandro Tosini, Francesco Buscemi, and Vlatko Vedral. No-hypersignaling principle. Phys. Rev. Lett., 119:020401, Jul 2017. doi:https:/​/​doi.org/​10.1103/​PhysRevLett.119.020401.
https:/​/​doi.org/​10.1103/​PhysRevLett.119.020401

[32] Sandu Popescu and Daniel Rohrlich. Quantum nonlocality as an axiom. Foundations of Physics, 24(3):379–385, 1994. https:/​/​doi.org/​10.1007/​BF02058098.
https:/​/​doi.org/​10.1007/​BF02058098

[33] David Gross, Markus Müller, Roger Colbeck, and Oscar C. O. Dahlsten. All reversible dynamics in maximally nonlocal theories are trivial. Phys. Rev. Lett., 104:080402, Feb 2010. doi:https:/​/​doi.org/​10.1103/​PhysRevLett.104.080402.
https:/​/​doi.org/​10.1103/​PhysRevLett.104.080402

[34] Sabri W Al-Safi and Anthony J Short. Reversible dynamics in strongly non-local boxworld systems. Journal of Physics A: Mathematical and Theoretical, 47(32):325303, jul 2014. doi:https:/​/​doi.org/​10.1088/​1751-8113/​47/​32/​325303.
https:/​/​doi.org/​10.1088/​1751-8113/​47/​32/​325303

[35] Giacomo Mauro D'Ariano, Marco Erba, and Paolo Perinotti. Classicality without local discriminability: Decoupling entanglement and complementarity. Phys. Rev. A, 102:052216, Nov 2020. doi:https:/​/​doi.org/​10.1103/​PhysRevA.102.052216.
https:/​/​doi.org/​10.1103/​PhysRevA.102.052216

Cited by

[1] Kartik Patekar and Holger F. Hofmann, "The role of system-meter entanglement in controlling the resolution and decoherence of quantum measurements", arXiv:1905.09978.

[2] Giacomo Mauro D'Ariano, Marco Erba, and Paolo Perinotti, "Classical theories with entanglement", Physical Review A 101 4, 042118 (2020).

[3] Giacomo Mauro D'Ariano, Marco Erba, and Paolo Perinotti, "Classicality without local discriminability: decoupling entanglement and complementarity", arXiv:2008.04011.

The above citations are from SAO/NASA ADS (last updated successfully 2020-11-25 14:59:00). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2020-11-25 14:58:58).