A volumetric framework for quantum computer benchmarks

Robin Blume-Kohout and Kevin C. Young

Quantum Performance Laboratory, Sandia National Laboratories\vspace-.1cm \ Albuquerque, NM 87185 and Livermore, California 94550

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


We propose a very large family of benchmarks for probing the performance of quantum computers. We call them {volumetric benchmarks} (VBs) because they generalize IBM's benchmark for measuring quantum volume [1]. The quantum volume benchmark defines a family of {square} circuits whose depth $d$ and width $w$ are the same. A volumetric benchmark defines a family of {rectangular} quantum circuits, for which $d$ and $w$ are uncoupled to allow the study of time/space performance trade-offs. Each VB defines a mapping from circuit shapes -- $(w,d)$ pairs -- to test suites ${\mathcal{C}}(w,d)$. A test suite is an ensemble of test circuits that share a common structure. The test suite ${\mathcal{C}}$ for a given circuit shape may be a single circuit $C$, a specific list of circuits $\{C_1\ldots C_N\}$ that must all be run, or a large set of possible circuits equipped with a distribution $Pr(C)$. The circuits in a given VB share a structure, which is limited only by designers' creativity. We list some known benchmarks, and other circuit families, that fit into the VB framework: several families of random circuits, periodic circuits, and algorithm-inspired circuits. The last ingredient defining a benchmark is a success criterion that defines when a processor is judged to have ``passed'' a given test circuit. We discuss several options. Benchmark data can be analyzed in many ways to extract many properties, but we propose a simple, universal graphical summary of results that illustrates the Pareto frontier of the $d$ vs $w$ trade-off for the processor being benchmarked.

► BibTeX data

► References

[1] Andrew W Cross, Lev S Bishop, Sarah Sheldon, Paul D Nation, and Jay M Gambetta. Validating quantum computers using randomized model circuits. Phys. Rev. A, 100 (3): 032328, September 2019. ISSN 1050-2947. 10.1103/​PhysRevA.100.032328.

[2] Rami Barends, Julian Kelly, et al. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature, 508 (7497): 500, 2014. 10.1038/​nature13171.

[3] Simon J Devitt. Performing quantum computing experiments in the cloud. Phys. Rev. A, 94 (3): 032329, September 2016. ISSN 1050-2947. 10.1103/​PhysRevA.94.032329.

[4] S Debnath, N M Linke, C Figgatt, K A Landsman, K Wright, and C Monroe. Demonstration of a small programmable quantum computer with atomic qubits. Nature, 536 (7614): 63–66, August 2016. ISSN 0028-0836, 1476-4687. 10.1038/​nature18648.

[5] Norbert M Linke, Dmitri Maslov, Martin Roetteler, Shantanu Debnath, Caroline Figgatt, Kevin A Landsman, Kenneth Wright, and Christopher Monroe. Experimental comparison of two quantum computing architectures. Proceedings of the National Academy of Sciences, 114 (13): 3305–3310, 2017. 10.1073/​pnas.1618020114.

[6] James R Wootton. Benchmarking of quantum processors with random circuits. arXiv:1806.02736, 2018.

[7] Julian Kelly, Rami Barends, et al. State preservation by repetitive error detection in a superconducting quantum circuit. Nature, 519 (7541): 66, 2015. 10.1038/​nature14270.

[8] IonQ press release. [Online], 2018. https:/​/​ionq.co/​news/​december-11-2018 [2019-03-18].

[9] IBM Q ``Tokyo'' Specifications. [Online], 2019a. https:/​/​www.research.ibm.com/​ibm-q/​technology/​devices/​#ibmq-20-tokyo [2019-03-18].

[10] Frank Arute, Kunal Arya, et al. Quantum supremacy using a programmable superconducting processor. Nature, 574 (7779): 505–510, October 2019. ISSN 0028-0836, 1476-4687. 10.1038/​s41586-019-1666-5.

[11] IBM news room. [Online], 2019b. https:/​/​newsroom.ibm.com/​2019-09-18-IBM-Opens-Quantum-Computation-Center-in-New-York-Brings-Worlds-Largest-Fleet-of-Quantum-Computing-Systems-Online-Unveils-New-53-Qubit-Quantum-System-for-Broad-Use [2019-09-18].

[12] Fernando G S L Brandão, Aram W Harrow, and Michał Horodecki. Local random quantum circuits are approximate Polynomial-Designs. Commun. Math. Phys., 346 (2): 397–434, September 2016. ISSN 1432-0916. 10.1007/​s00220-016-2706-8.

[13] Joseph Emerson, Robert Alicki, and Karol Życzkowski. Scalable noise estimation with random unitary operators. Journal of Optics B: Quantum and Semiclassical Optics, 7 (10): S347, 2005. 10.1088/​1464-4266/​7/​10/​021.

[14] Joseph Emerson, Marcus Silva, Osama Moussa, Colm Ryan, Martin Laforest, Jonathan Baugh, David G Cory, and Raymond Laflamme. Symmetrized characterization of noisy quantum processes. Science, 317 (5846): 1893–1896, 2007. 10.1126/​science.1145699.

[15] Emanuel Knill, Dietrich Leibfried, et al. Randomized benchmarking of quantum gates. Physical Review A, 77 (1): 012307, 2008. 10.1103/​PhysRevA.77.012307.

[16] Easwar Magesan, Jay M Gambetta, and Joseph Emerson. Scalable and robust randomized benchmarking of quantum processes. Physical Review Letters, 106 (18): 180504, 2011. 10.1103/​PhysRevLett.106.180504.

[17] Easwar Magesan, Jay M Gambetta, and Joseph Emerson. Characterizing quantum gates via randomized benchmarking. Physical Review A, 85 (4): 042311, 2012. 10.1103/​PhysRevA.85.042311.

[18] Robin Blume-Kohout, John King Gamble, Erik Nielsen, Kenneth Rudinger, Jonathan Mizrahi, Kevin Fortier, and Peter Maunz. Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography. Nature Communications, 8: 14485, 2017. 10.1038/​ncomms16226.

[19] Daniel Greenbaum. Introduction to quantum gate set tomography. arXiv:1509.02921, 2015.

[20] Juan P Dehollain, Juha T Muhonen, Robin Blume-Kohout, Kenneth M Rudinger, John King Gamble, Erik Nielsen, Arne Laucht, Stephanie Simmons, Rachpon Kalra, Andrew S Dzurak, and Andrea Morello. Optimization of a solid-state electron spin qubit using gate set tomography. New J. Phys., 18 (10): 103018, October 2016. ISSN 1367-2630. 10.1088/​1367-2630/​18/​10/​103018.

[21] Jack J Dongarra, Piotr Luszczek, and Antoine Petitet. The LINPACK benchmark: past, present and future. Concurrency and Computation: Practice and Experience, 15 (9): 803–820, 2003. 10.1002/​cpe.728.

[22] Joseph Emerson. Benchmarking into the future. IARPA LogiQ Principal Investigators Meeting, 6 September, 2017.

[23] Joseph Emerson. (private communication, 2019).

[24] Alexander Erhard, Joel J Wallman, Lukas Postler, Michael Meth, Roman Stricker, Esteban A Martinez, Philipp Schindler, Thomas Monz, Joseph Emerson, and Rainer Blatt. Characterizing large-scale quantum computers via cycle benchmarking. Nat. Commun., 10 (1): 5347, November 2019. ISSN 2041-1723. 10.1038/​s41467-019-13068-7.

[25] Lev Bishop. Is the `Quantum Volume' a fair metric for future, elaborate, high value quantum computations? Quantum Computing Stack Exchange, 2018. https:/​/​quantumcomputing.stackexchange.com/​a/​4001 [2019-03-21].

[26] Peter W Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings 35th Annual Symposium on Foundations of Computer Science, pages 124–134. IEEE, 1994. 10.1109/​SFCS.1994.365700.

[27] Lov K Grover. Quantum mechanics helps in searching for a needle in a haystack. Physical Review Letters, 79 (2): 325, 1997. 10.1103/​PhysRevLett.79.325.

[28] Richard Cleve and John Watrous. Fast parallel circuits for the quantum Fourier transform. In Proceedings 41st Annual Symposium on Foundations of Computer Science, pages 526–536. IEEE, 2000. 10.1109/​SFCS.2000.892140.

[29] Yasuhiro Sekino and Leonard Susskind. Fast scramblers. Journal of High Energy Physics, 2008 (10): 065, 2008. 10.1088/​1126-6708/​2008/​10/​065.

[30] Scott Aaronson and Lijie Chen. Complexity-Theoretic foundations of quantum supremacy experiments. December 2016.

[31] Steven J van Enk and Robin Blume-Kohout. When quantum tomography goes wrong: drift of quantum sources and other errors. New Journal of Physics, 15 (2): 025024, 2013. 10.1088/​1367-2630/​15/​2/​025024.

[32] Kenneth Rudinger, Timothy Proctor, Dylan Langharst, Mohan Sarovar, Kevin Young, and Robin Blume-Kohout. Probing Context-Dependent errors in quantum processors. Phys. Rev. X, 9 (2): 021045, June 2019. 10.1103/​PhysRevX.9.021045.

[33] Kristine Boone, Arnaud Carignan-Dugas, Joel J Wallman, and Joseph Emerson. Randomized benchmarking under different gate sets. Phys. Rev. A, 99 (3): 032329, March 2019. ISSN 1050-2947. 10.1103/​PhysRevA.99.032329.

[34] Timothy J Proctor, Arnaud Carignan-Dugas, Kenneth Rudinger, Erik Nielsen, Robin Blume-Kohout, and Kevin Young. Direct randomized benchmarking for multiqubit devices. Phys. Rev. Lett., 123 (3): 030503, July 2019. ISSN 0031-9007, 1079-7114. 10.1103/​PhysRevLett.123.030503.

[35] Jay M Gambetta, Antonio D Córcoles, et al. Characterization of addressability by simultaneous randomized benchmarking. Physical Review Letters, 109 (24): 240504, 2012. 10.1103/​PhysRevLett.109.240504.

[36] Sergio Boixo, Sergei V Isakov, Vadim N Smelyanskiy, Ryan Babbush, Nan Ding, Zhang Jiang, Michael J Bremner, John M Martinis, and Hartmut Neven. Characterizing quantum supremacy in near-term devices. Nature Physics, 14 (6): 595, 2018. 10.1038/​s41567-018-0124-x.

[37] Charles Neill, Pedran Roushan, et al. A blueprint for demonstrating quantum supremacy with superconducting qubits. Science, 360 (6385): 195–199, 2018. 10.1126/​science.aao4309.

[38] Shelby Kimmel, Guang Hao Low, and Theodore J Yoder. Robust calibration of a universal single-qubit gate set via robust phase estimation. Physical Review A, 92 (6): 062315, 2015. 10.1103/​PhysRevA.92.062315.

[39] Richard Cleve, Artur Ekert, Chiara Macchiavello, and Michele Mosca. Quantum algorithms revisited. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454 (1969): 339–354, 1998. 10.1098/​rspa.1998.0164.

[40] Alberto Peruzzo, Jarrod McClean, et al. A variational eigenvalue solver on a photonic quantum processor. Nature Communications, 5: 4213, 2014. 10.1038/​ncomms5213.

[41] David C McKay, Christopher J Wood, Sarah Sheldon, Jerry M Chow, and Jay M Gambetta. Efficient $Z$ gates for quantum computing. Phys. Rev. A, 96 (2): 022330, August 2017. ISSN 1050-2947. 10.1103/​PhysRevA.96.022330.

[42] M A Rol, L Ciorciaro, F K Malinowski, B M Tarasinski, R E Sagastizabal, C C Bultink, Y Salathe, N Haandbaek, J Sedivy, and L DiCarlo. Time-domain characterization and correction of on-chip distortion of control pulses in a quantum processor. Appl. Phys. Lett., 116 (5): 054001, February 2020. ISSN 0003-6951. 10.1063/​1.5133894.

[43] Adam Bouland, Bill Fefferman, Chinmay Nirkhe, and Umesh Vazirani. On the complexity and verification of quantum random circuit sampling. Nat. Phys., 15 (2): 159–163, February 2019. ISSN 1745-2473, 1745-2481. 10.1038/​s41567-018-0318-2.

[44] Robin Blume-Kohout et al. Idle Tomography. In preparation, 2020.

[45] Seth Lloyd. Universal quantum simulators. Science, 273: 1073–1078, 1996. 10.1126/​science.273.5278.1073.

Cited by

[1] Jernej Rudi Finzgar, Philipp Ross, Leonhard Holscher, Johannes Klepsch, and Andre Luckow, 2022 IEEE International Conference on Quantum Computing and Engineering (QCE) 226 (2022) ISBN:978-1-6654-9113-6.

[2] Kathleen Hamilton, Titus Morris, Raphael Pooser, Kübra Yeter-Aydeniz, Luning Zhao, Nouamane Laanait, Harrison Cooley, Muhun Kang, George Barron, Sophia Economou, Akhil Francis, and Alexander F. Kemper, 2023 IEEE International Conference on Quantum Computing and Engineering (QCE) 703 (2023) ISBN:979-8-3503-4323-6.

[3] A. Barış Özgüler and Davide Venturelli, "Numerical gate synthesis for quantum heuristics on bosonic quantum processors", Frontiers in Physics 10, 900612 (2022).

[4] Paul D. Nation and Matthew Treinish, "Suppressing Quantum Circuit Errors Due to System Variability", PRX Quantum 4 1, 010327 (2023).

[5] Valentin Gilbert, Stéphane Louise, and Renaud Sirdey, Lecture Notes in Computer Science 10477, 168 (2023) ISBN:978-3-031-36029-9.

[6] Daniel Mills, Seyon Sivarajah, Travis L. Scholten, and Ross Duncan, "Application-Motivated, Holistic Benchmarking of a Full Quantum Computing Stack", Quantum 5, 415 (2021).

[7] Xiaonan Liu, Ming He, Junchao Wang, Haoshan Xie, and Chenyan Zhao, "Automated Quantum Volume Test", Journal of Physics: Conference Series 2221 1, 012029 (2022).

[8] Eduard Alarcón, Sergi Abadal, Fabio Sebastiano, Masoud Babaie, Edoardo Charbon, Peter Haring Bolívar, Maurizio Palesi, Elena Blokhina, Dirk Leipold, Bogdan Staszewski, Artur Garcia-Sáez, and Carmen G. Almudever, 2023 IEEE International Symposium on Circuits and Systems (ISCAS) 1 (2023) ISBN:978-1-6654-5109-3.

[9] Junchao Wang, Guoping Guo, and Zheng Shan, "SoK: Benchmarking the Performance of a Quantum Computer", Entropy 24 10, 1467 (2022).

[10] Benjamin A. Cordier, Nicolas P. D. Sawaya, Gian Giacomo Guerreschi, and Shannon K. McWeeney, "Biology and medicine in the landscape of quantum advantages", Journal of The Royal Society Interface 19 196, 20220541 (2022).

[11] Bryan T. Gard and Adam M. Meier, "Classically efficient quantum scalable Fermi-Hubbard benchmark", Physical Review A 105 4, 042602 (2022).

[12] Kazunobu Maruyoshi, Takuya Okuda, Juan W Pedersen, Ryo Suzuki, Masahito Yamazaki, and Yutaka Yoshida, "Conserved charges in the quantum simulation of integrable spin chains", Journal of Physics A: Mathematical and Theoretical 56 16, 165301 (2023).

[13] S. P. Kulik, "Quantum Computing: Predictions and Challenges", Bulletin of the Lebedev Physics Institute 50 S12, S1330 (2023).

[14] Daniel Hothem, Jordan Hines, Karthik Nataraj, Robin Blume-Kohout, and Timothy Proctor, 2023 IEEE International Conference on Quantum Computing and Engineering (QCE) 709 (2023) ISBN:979-8-3503-4323-6.

[15] M. Morgado and S. Whitlock, "Quantum simulation and computing with Rydberg-interacting qubits", AVS Quantum Science 3 2, 023501 (2021).

[16] Nathan D. Jansen, Matthew Loucks, Scott Gilbert, Corbin Fleming-Dittenber, Julia Egbert, and Katharine L. C. Hunt, "Shannon and von Neumann entropies of multi-qubit Schrödinger's cat states", Physical Chemistry Chemical Physics 24 13, 7666 (2022).

[17] Vedika Saravanan and Samah Mohamed Saeed, 2022 IEEE 40th International Conference on Computer Design (ICCD) 1 (2022) ISBN:978-1-6654-6186-3.

[18] Thomas Lubinski, Sonika Johri, Paul Varosy, Jeremiah Coleman, Luning Zhao, Jason Necaise, Charles H. Baldwin, Karl Mayer, and Timothy Proctor, "Application-Oriented Performance Benchmarks for Quantum Computing", IEEE Transactions on Quantum Engineering 4, 1 (2023).

[19] Michele Amoretti, "An Effective Framework for Full-Stack Benchmarking of Quantum Computers", Quantum Views 5, 52 (2021).

[20] Davide Ferrari and Michele Amoretti, Proceedings of the 19th ACM International Conference on Computing Frontiers 237 (2022) ISBN:9781450393386.

[21] Kübra Yeter‐Aydeniz, Bryan T. Gard, Jacek Jakowski, Swarnadeep Majumder, George S. Barron, George Siopsis, Travis S. Humble, and Raphael C. Pooser, "Benchmarking Quantum Chemistry Computations with Variational, Imaginary Time Evolution, and Krylov Space Solver Algorithms", Advanced Quantum Technologies 4 7, 2100012 (2021).

[22] Timothy Proctor, Stefan Seritan, Kenneth Rudinger, Erik Nielsen, Robin Blume-Kohout, and Kevin Young, "Scalable Randomized Benchmarking of Quantum Computers Using Mirror Circuits", Physical Review Letters 129 15, 150502 (2022).

[23] Nils Herrmann, Daanish Arya, Marcus W. Doherty, Angus Mingare, Jason C. Pillay, Florian Preis, and Stefan Prestel, 2023 IEEE International Conference on Quantum Software (QSW) 162 (2023) ISBN:979-8-3503-0479-4.

[24] Daniel Stilck França, Sergii Strelchuk, and Michał Studziński, "Efficient Classical Simulation and Benchmarking of Quantum Processes in the Weyl Basis", Physical Review Letters 126 21, 210502 (2021).

[25] Tirthak Patel and Devesh Tiwari, Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems 443 (2021) ISBN:9781450383172.

[26] Medina Bandic, Luise Prielinger, Jonas Nüßlein, Anabel Ovide, Santiago Rodrigo, Sergi Abadal, Hans van Someren, Gayane Vardoyan, Eduard Alarcon, Carmen G. Almudever, and Sebastian Feld, 2023 IEEE International Conference on Quantum Computing and Engineering (QCE) 790 (2023) ISBN:979-8-3503-4323-6.

[27] Timothy Proctor, Kenneth Rudinger, Kevin Young, Erik Nielsen, and Robin Blume-Kohout, "Measuring the capabilities of quantum computers", Nature Physics 18 1, 75 (2022).

[28] Y.F. Zolotarev, I.A. Luchnikov, J.A. López-Saldívar, A.K. Fedorov, and E.O. Kiktenko, "Continuous Monitoring for Noisy Intermediate-Scale Quantum Processors", Physical Review Applied 19 1, 014027 (2023).

[29] Elijah Pelofske, Andreas Bärtschi, and Stephan Eidenbenz, "Quantum Volume in Practice: What Users Can Expect From NISQ Devices", IEEE Transactions on Quantum Engineering 3, 1 (2022).

[30] Garrelt J. N. Alberts, M. Adriaan Rol, Thorsten Last, Benno W. Broer, Cornelis C. Bultink, Matthijs S. C. Rijlaarsdam, and Amber E. Van Hauwermeiren, "Accelerating quantum computer developments", EPJ Quantum Technology 8 1, 18 (2021).

[31] Andreas J. C. Woitzik, Lukas Hoffmann, Andreas Buchleitner, and Edoardo G. Carnio, "An Energy Estimation Benchmark for Quantum Computing Hardware", Open Systems & Information Dynamics 31 01, 2450006 (2024).

[32] Colin Kai-Uwe Becker, Nikolay Tcholtchev, Ilie-Daniel Gheorghe-Pop, Sebastian Bock, Raphael Seidel, and Manfred Hauswirth, 2022 IEEE 19th International Conference on Software Architecture Companion (ICSA-C) 160 (2022) ISBN:978-1-6654-9493-9.

[33] Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav Anand, Matthias Degroote, Hermanni Heimonen, Jakob S. Kottmann, Tim Menke, Wai-Keong Mok, Sukin Sim, Leong-Chuan Kwek, and Alán Aspuru-Guzik, "Noisy intermediate-scale quantum algorithms", Reviews of Modern Physics 94 1, 015004 (2022).

[34] Erik Nielsen, John King Gamble, Kenneth Rudinger, Travis Scholten, Kevin Young, and Robin Blume-Kohout, "Gate Set Tomography", Quantum 5, 557 (2021).

[35] Medina Bandic, Carmen G. Almudever, and Sebastian Feld, "Interaction graph-based characterization of quantum benchmarks for improving quantum circuit mapping techniques", Quantum Machine Intelligence 5 2, 40 (2023).

[36] Simon Martiel, Thomas Ayral, and Cyril Allouche, "Benchmarking Quantum Coprocessors in an Application-Centric, Hardware-Agnostic, and Scalable Way", IEEE Transactions on Quantum Engineering 2, 1 (2021).

[37] Cristina Cirstoiu, Silas Dilkes, Daniel Mills, Seyon Sivarajah, and Ross Duncan, "Volumetric Benchmarking of Error Mitigation with Qermit", Quantum 7, 1059 (2023).

[38] Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Simmons, Alec Edgington, and Ross Duncan, "t|ket⟩: a retargetable compiler for NISQ devices", Quantum Science and Technology 6 1, 014003 (2021).

[39] Peter J. Karalekas, Nikolas A. Tezak, Eric C. Peterson, Colm A. Ryan, Marcus P. da Silva, and Robert S. Smith, "A quantum-classical cloud platform optimized for variational hybrid algorithms", Quantum Science and Technology 5 2, 024003 (2020).

[40] Erik Gustafson, Patrick Dreher, Zheyue Hang, and Yannick Meurice, "Indexed improvements for real-time trotter evolution of a (1 + 1) field theory using NISQ quantum computers", Quantum Science and Technology 6 4, 045020 (2021).

[41] Erik Nielsen, Kenneth Rudinger, Timothy Proctor, Antonio Russo, Kevin Young, and Robin Blume-Kohout, "Probing quantum processor performance with pyGSTi", Quantum Science and Technology 5 4, 044002 (2020).

[42] Alba Cervera-Lierta, José Ignacio Latorre, and Dardo Goyeneche, "Quantum circuits for maximally entangled states", Physical Review A 100 2, 022342 (2019).

[43] A. D. Corcoles, A. Kandala, A. Javadi-Abhari, D. T. McClure, A. W. Cross, K. Temme, P. D. Nation, M. Steffen, and J. M. Gambetta, "Challenges and Opportunities of Near-Term Quantum Computing Systems", arXiv:1910.02894, (2019).

[44] Benjamin A. Cordier, Nicolas P. D. Sawaya, Gian G. Guerreschi, and Shannon K. McWeeney, "Biology and medicine in the landscape of quantum advantages", arXiv:2112.00760, (2021).

[45] Elijah Pelofske, Andreas Bärtschi, and Stephan Eidenbenz, "Quantum Volume in Practice: What Users Can Expect from NISQ Devices", arXiv:2203.03816, (2022).

[46] Karl Mayer, Alex Hall, Thomas Gatterman, Si Khadir Halit, Kenny Lee, Justin Bohnet, Dan Gresh, Aaron Hankin, Kevin Gilmore, Justin Gerber, and John Gaebler, "Theory of mirror benchmarking and demonstration on a quantum computer", arXiv:2108.10431, (2021).

[47] Florian J. Kiwit, Maximilian A. Wolf, Marwa Marso, Philipp Ross, Jeanette M. Lorenz, Carlos A. Riofrío, and Andre Luckow, "Benchmarking Quantum Generative Learning: A Study on Scalability and Noise Resilience using QUARK", arXiv:2403.18662, (2024).

[48] Timothy Proctor, Kenneth Rudinger, Kevin Young, Erik Nielsen, and Robin Blume-Kohout, "Measuring the Capabilities of Quantum Computers", arXiv:2008.11294, (2020).

[49] Arnaud Carignan-Dugas, Dar Dahlen, Ian Hincks, Egor Ospadov, Stefanie J. Beale, Samuele Ferracin, Joshua Skanes-Norman, Joseph Emerson, and Joel J. Wallman, "The Error Reconstruction and Compiled Calibration of Quantum Computing Cycles", arXiv:2303.17714, (2023).

[50] Julien Gacon, "Scalable Quantum Algorithms for Noisy Quantum Computers", arXiv:2403.00940, (2024).

[51] Tom Weber, Kerstin Borras, Karl Jansen, Dirk Krücker, and Matthias Riebisch, "Volumetric Benchmarking of Quantum Computing Noise Models", arXiv:2306.08427, (2023).

[52] Salonik Resch and Ulya R. Karpuzcu, "Benchmarking Quantum Computers and the Impact of Quantum Noise", arXiv:1912.00546, (2019).

[53] Travis L. Scholten, Yi-Kai Liu, Kevin Young, and Robin Blume-Kohout, "Classifying single-qubit noise using machine learning", arXiv:1908.11762, (2019).

The above citations are from Crossref's cited-by service (last updated successfully 2024-04-12 02:24:49) and SAO/NASA ADS (last updated successfully 2024-04-12 02:24:49). The list may be incomplete as not all publishers provide suitable and complete citation data.