Optimization of the surface code design for Majorana-based qubits

Rui Chao1, Michael E. Beverland2, Nicolas Delfosse2, and Jeongwan Haah2

1University of Southern California, Los Angeles, CA, USA
2Microsoft Quantum and Microsoft Research, Redmond, WA, USA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

The surface code is a prominent topological error-correcting code exhibiting high fault-tolerance accuracy thresholds. Conventional schemes for error correction with the surface code place qubits on a planar grid and assume native CNOT gates between the data qubits with nearest-neighbor ancilla qubits.

Here, we present surface code error-correction schemes using $\textit{only}$ Pauli measurements on single qubits and on pairs of nearest-neighbor qubits. In particular, we provide several qubit layouts that offer favorable trade-offs between qubit overhead, circuit depth and connectivity degree. We also develop minimized measurement sequences for syndrome extraction, enabling reduced logical error rates and improved fault-tolerance thresholds.

Our work applies to topologically protected qubits realized with Majorana zero modes and to similar systems in which multi-qubit Pauli measurements rather than CNOT gates are the native operations.

► BibTeX data

► References

[1] A. Y. Kitaev, Ann. Phys. 303, 2 (2003), quant-ph/​9707021.
https:/​/​doi.org/​10.1016/​S0003-4916(02)00018-0
arXiv:quant-ph/9707021

[2] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, J. Math. Phys. 43, 4452 (2002), quant-ph/​0110143.
https:/​/​doi.org/​10.1063/​1.1499754
arXiv:quant-ph/0110143

[3] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, Phys. Rev. A 86, 032324 (2012), 1208.0928.
https:/​/​doi.org/​10.1103/​PhysRevA.86.032324
arXiv:1208.0928

[4] R. Raussendorf and J. Harrington, Phys. Rev. Lett. 98, 190504 (2007), quant-ph/​0610082.
https:/​/​doi.org/​10.1103/​PhysRevLett.98.190504
arXiv:quant-ph/0610082

[5] A. G. Fowler, A. M. Stephens, and P. Groszkowski, Phys. Rev. A 80, 052312 (2009), 0803.0272.
https:/​/​doi.org/​10.1103/​PhysRevA.80.052312
arXiv:0803.0272

[6] N. Delfosse and G. Zémor, Physical Review Research 2, 033042 (2020), 1703.01517.
https:/​/​doi.org/​10.1103/​PhysRevResearch.2.033042
arXiv:1703.01517

[7] N. Delfosse and N. H. Nickerson, 2017, 1709.06218.
arXiv:1709.06218

[8] T. Karzig, C. Knapp, R. M. Lutchyn, P. Bonderson, M. B. Hastings, C. Nayak, J. Alicea, K. Flensberg, S. Plugge, Y. Oreg, C. M. Marcus, and M. H. Freedman, Phys. Rev. B 95, 235305 (2017), 1610.05289.
https:/​/​doi.org/​10.1103/​PhysRevB.95.235305
arXiv:1610.05289

[9] C. Knapp, M. Beverland, D. I. Pikulin, and T. Karzig, Quantum 2, 88 (2018), 1806.01275.
https:/​/​doi.org/​10.22331/​q-2018-09-03-88
arXiv:1806.01275

[10] Y. Li, Physical Review Letters 117, 120403 (2016), 1512.05089.
https:/​/​doi.org/​10.1103/​PhysRevLett.117.120403
arXiv:1512.05089

[11] S. Plugge, L. Landau, E. Sela, A. Altland, K. Flensberg, and R. Egger, Phys. Rev. B 94, 174514 (2016), 1606.08408.
https:/​/​doi.org/​10.1103/​PhysRevB.94.174514
arXiv:1606.08408

[12] D. Litinski, M. S. Kesselring, J. Eisert, and F. von Oppen, Phys. Rev. X 7, 031048 (2017), 1704.01589.
https:/​/​doi.org/​10.1103/​PhysRevX.7.031048
arXiv:1704.01589

[13] A. G. Fowler, D. S. Wang, and L. C. L. Hollenberg, Quant. Info. Comput. 11, 8 (2011), 1004.0255.
https:/​/​doi.org/​10.26421/​QIC11.1-2
arXiv:1004.0255

[14] M. Newman, L. A. de Castro, and K. R. Brown, Quantum 4, 295 (2020), 1909.11817.
https:/​/​doi.org/​10.22331/​q-2020-07-13-295
arXiv:1909.11817

[15] A. G. Fowler, 2013, 1310.0863.
arXiv:1310.0863

[16] N. Delfosse and J.-P. Tillich, in 2014 IEEE Int. Symp. Info. (IEEE, 2014) pp. 1071–1075, 1401.6975.
https:/​/​doi.org/​10.1109/​ISIT.2014.6874997
arXiv:1401.6975

[17] S. Huang and K. R. Brown, Phys. Rev. A 101, 042312 (2020), 1911.11317.
https:/​/​doi.org/​10.1103/​PhysRevA.101.042312
arXiv:1911.11317

[18] S. Huang, M. Newman, and K. R. Brown, Phys. Rev. A 102, 012419 (2020), 2004.04693.
https:/​/​doi.org/​10.1103/​PhysRevA.102.012419
arXiv:2004.04693

[19] J. MacWilliams, Bell Syst. Tech. J. 42, 79 (1963).
https:/​/​doi.org/​10.1002/​j.1538-7305.1963.tb04003.x

[20] S. Bravyi and A. Vargo, Phys. Rev. A 88, 062308 (2013), 1308.6270.
https:/​/​doi.org/​10.1103/​PhysRevA.88.062308
arXiv:1308.6270

Cited by

[1] Craig Gidney, Michael Newman, Austin Fowler, and Michael Broughton, "A Fault-Tolerant Honeycomb Memory", Quantum 5, 605 (2021).

[2] Theerapat Tansuwannont and Debbie Leung, "Achieving Fault Tolerance on Capped Color Codes with Few Ancillas", PRX Quantum 3 3, 030322 (2022).

[3] Xiu-Bo Chen, Li-Yun Zhao, Gang Xu, Xing-Bo Pan, Si-Yi Chen, Zhen-Wen Cheng, and Yi-Xian Yang, "Low-overhead fault-tolerant error correction scheme based on quantum stabilizer codes", Chinese Physics B 31 4, 040305 (2022).

[4] Edward H. Chen, Theodore J. Yoder, Youngseok Kim, Neereja Sundaresan, Srikanth Srinivasan, Muyuan Li, Antonio D. Córcoles, Andrew W. Cross, and Maika Takita, "Calibrated Decoders for Experimental Quantum Error Correction", Physical Review Letters 128 11, 110504 (2022).

[5] Craig Gidney, "Stim: a fast stabilizer circuit simulator", Quantum 5, 497 (2021).

[6] Craig Gidney, Michael Newman, and Matt McEwen, "Benchmarking the Planar Honeycomb Code", Quantum 6, 813 (2022).

[7] Kaavya Sahay and Benjamin J. Brown, "Decoder for the Triangular Color Code by Matching on a Möbius Strip", PRX Quantum 3 1, 010310 (2022).

[8] Michael E. Beverland, Aleksander Kubica, and Krysta M. Svore, "Cost of Universality: A Comparative Study of the Overhead of State Distillation and Code Switching with Color Codes", PRX Quantum 2 2, 020341 (2021).

[9] Jeongwan Haah and Matthew B. Hastings, "Boundaries for the Honeycomb Code", arXiv:2110.09545, Quantum 6, 693 (2022).

[10] Dongxiao Quan, Chensong Liu, Xiaojie Lv, and Changxing Pei, "Implementation of Fault-Tolerant Encoding Circuit Based on Stabilizer Implementation and “Flag” Bits in Steane Code", Entropy 24 8, 1107 (2022).

[11] Aleksander Kubica and Michael Vasmer, "Single-shot quantum error correction with the three-dimensional subsystem toric code", Nature Communications 13 1, 6272 (2022).

[12] Michael Beverland, Vadym Kliuchnikov, and Eddie Schoute, "Surface Code Compilation via Edge-Disjoint Paths", PRX Quantum 3 2, 020342 (2022).

[13] Adam Paetznick, Christina Knapp, Nicolas Delfosse, Bela Bauer, Jeongwan Haah, Matthew B. Hastings, and Marcus P. da Silva, "Performance of planar Floquet codes with Majorana-based qubits", arXiv:2202.11829.

The above citations are from Crossref's cited-by service (last updated successfully 2022-11-30 04:37:24) and SAO/NASA ADS (last updated successfully 2022-11-30 04:37:25). The list may be incomplete as not all publishers provide suitable and complete citation data.