Quantum prescriptions are more ontologically distinct than they are operationally distinguishable

Anubhav Chaturvedi1,2 and Debashis Saha1,3

1Institute of Theoretical Physics and Astrophysics, National Quantum Information Centre, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, 80-952 Gdańsk, Poland
2International Centre for Theory of Quantum Technologies (ICTQT), University of Gdansk, 80-308 Gdańsk, Poland
3Center for Theoretical Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Based on an intuitive generalization of the Leibniz principle of `the identity of indiscernibles', we introduce a novel ontological notion of classicality, called bounded ontological distinctness. Formulated as a principle, bounded ontological distinctness equates the distinguishability of a set of operational physical entities to the distinctness of their ontological counterparts. Employing three instances of two-dimensional quantum preparations, we demonstrate the violation of bounded ontological distinctness or excess ontological distinctness of quantum preparations, without invoking any additional assumptions. Moreover, our methodology enables the inference of tight lower bounds on the extent of excess ontological distinctness of quantum preparations. Similarly, we demonstrate excess ontological distinctness of quantum transformations, using three two-dimensional unitary transformations. However, to demonstrate excess ontological distinctness of quantum measurements, an additional assumption such as outcome determinism or bounded ontological distinctness of preparations is required. Moreover, we show that quantum violations of other well-known ontological principles implicate quantum excess ontological distinctness. Finally, to showcase the operational vitality of excess ontological distinctness, we introduce two distinct classes of communication tasks powered by excess ontological distinctness.

For a set of physical entities, their distinguishability quantifies how well we can tell them apart employing a given physical theory. On the other hand, their distinctness quantifies how distinct these entities actually are (in reality). In classical theories, and in general classical thought, when it comes to sets of physical entities, distinguishability is synonymous to distinctness, i.e., what you see is what you get. However, in the work, we demonstrate that this is not the case for quantum physical entities. Quantum theory posits sets of physical entities that must be more distinct than they are distinguishable.

► BibTeX data

► References

[1] M. S. Andersen, J. Dahl, and L. Vandenberghe. Cvxopt: A python package for convex optimization, version 1.1. 6. Available at cvxopt. org, 54, 2013. Online: http:/​/​cvxopt.org/​documentation/​.

[2] M. ApS. The MOSEK optimization toolbox for MATLAB manual. Version 9.0., 2019. Online: http:/​/​docs.mosek.com/​9.0/​toolbox/​index.html.

[3] E. G. Beltrametti and S. Bugajski. A classical extension of quantum mechanics. Journal of Physics A: Mathematical and General, 28(12): 3329–3343, 1995. DOI: 10.1088/​0305-4470/​28/​12/​007.

[4] J. Barrett, E. G. Cavalcanti, R. Lal, and O. J. E. Maroney. No ${\psi}$-epistemic model can fully explain the indistinguishability of quantum states. Phys. Rev. Lett., 112: 250403, 2014. DOI: 10.1103/​PhysRevLett.112.250403.

[5] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner. Bell nonlocality. Rev. Mod. Phys., 86: 419–478, 2014. DOI: 10.1103/​RevModPhys.86.419.

[6] J. S. Bell. On the einstein podolsky rosen paradox. Physics Physique Fizika, 1: 195–200, 1964. DOI: 10.1103/​PhysicsPhysiqueFizika.1.195.

[7] J. S. Bell. On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys., 38(3): 447, 1966. DOI: 10.1103/​RevModPhys.38.447.

[8] D. Bohm. Thought as a System. Routledge, 2004. DOI: 10.4324/​9780203202241.

[9] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004. Online: https:/​/​web.stanford.edu/​ boyd/​cvxbook/​.

[10] A. Cabello. Experimentally testable state-independent quantum contextuality. Phys. Rev. Lett., 101: 210401, 2008. DOI: 10.1103/​PhysRevLett.101.210401.

[11] A. Cabello, M. Gu, O. Gühne, J.-A. Larsson, and K. Wiesner. Thermodynamical cost of some interpretations of quantum theory. Phys. Rev. A, 94: 052127, 2016. DOI: 10.1103/​PhysRevA.94.052127.

[12] L. Catani and M. Leifer. A mathematical framework for operational fine tunings. 2020. Online: https:/​/​arxiv.org/​abs/​2003.10050.

[13] A. Cabello, S. Severini, and A. Winter. Graph-theoretic approach to quantum correlations. Phys. Rev. Lett., 112: 040401, 2014. DOI: 10.1103/​PhysRevLett.112.040401.

[14] E. Freda and M. S. Leifer. Bounds on partial preparation noncontextuality. In APS Meeting Abstracts, 2018. Online: https:/​/​ui.adsabs.harvard.edu/​abs/​2018APS..MARV39004F/​abstract.

[15] P. Forrest. The identity of indiscernibles. In E. N. Zalta, editor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, winter 2016 edition, 2016. Online: https:/​/​plato.stanford.edu/​archives/​win2016/​entries/​identity-indiscernible.

[16] D. Frauchiger and R. Renner. Quantum theory cannot consistently describe the use of itself. Nature communications, 9(1): 3711, 2018. DOI: 10.1038/​s41467-018-05739-8.

[17] O. Gühne, M. Kleinmann, A. Cabello, J.-A. Larsson, G. Kirchmair, F. Zähringer, R. Gerritsma, and C. F. Roos. Compatibility and noncontextuality for sequential measurements. Phys. Rev. A, 81: 022121, 2010. DOI: 10.1103/​PhysRevA.81.022121.

[18] B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. Vermeulen, R. N. Schouten, C. Abellán, et al. Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres. Nature, 526(7575): 682, 2015. DOI: 10.1038/​nature15759.

[19] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki. Quantum entanglement. Rev. Mod. Phys., 81: 865–942, 2009. DOI: 10.1103/​RevModPhys.81.865.

[20] N. Harrigan and R. W. Spekkens. Einstein, incompleteness, and the epistemic view of quantum states. Foundations of Physics, 40(2): 125–157, 2010. DOI: 10.1007/​s10701-009-9347-0.

[21] D. K. A tricky integration over the unit sphere. Mathematics Stack Exchange, 2019. Online: https:/​/​math.stackexchange.com/​q/​3247130.

[22] P. Kurzynski and A. Grudka. Graphical representation of generalized quantum measurements, 2006. Online: https:/​/​arxiv.org/​abs/​quant-ph/​0604189.

[23] S. KOCHEN and E. P. SPECKER. The problem of hidden variables in quantum mechanics. Journal of Mathematics and Mechanics, 17(1): 59–87, 1967. DOI: 10.2307/​24902153.

[24] G. Kirchmair, F. Zähringer, R. Gerritsma, M. Kleinmann, O. Gühne, A. Cabello, R. Blatt, and C. F. Roos. State-independent experimental test of quantum contextuality. Nature, 460(7254): 494, 2009. DOI: 10.1038/​nature08172.

[25] M. S. Leifer. Is the quantum state real? an extended review of $\psi$-ontology theorems. Quanta, 3(1): 67–155, 2014. DOI: 10.12743/​quanta.v3i1.22.

[26] M. S. Leifer. No-go theorems. Lecture in Summer School - Solstice of Foundations 2017, ETH Zurich, 2017. Online: https:/​/​video.ethz.ch/​conferences/​2017/​quantum.html.

[27] M. S. Leifer and O. J. E. Maroney. Maximally epistemic interpretations of the quantum state and contextuality. Phys. Rev. Lett., 110: 120401, 2013. DOI: 10.1103/​PhysRevLett.110.120401.

[28] J. Löfberg. Yalmip : A toolbox for modeling and optimization in matlab. In In Proceedings of the CACSD Conference, Taipei, Taiwan, 2004. DOI: 10.1109/​CACSD.2004.1393890.

[29] M. S. Leifer and M. F. Pusey. Is a time symmetric interpretation of quantum theory possible without retrocausality? Proc. R. Soc. A, 473(2202): 20160607, 2017. DOI: 10.1098/​rspa.2016.0607.

[30] P.-S. Lin, D. Rosset, Y. Zhang, J.-D. Bancal, and Y.-C. Liang. Device-independent point estimation from finite data and its application to device-independent property estimation. Phys. Rev. A, 97: 032309, 2018. DOI: 10.1103/​PhysRevA.97.032309.

[31] Y.-C. Liang and Y. Zhang. Bounding the plausibility of physical theories in a device-independent setting via hypothesis testing. Entropy, 21(2): 185, 2019. DOI: 10.3390/​e21020185.

[32] N. D. Mermin. Hidden variables and the two theorems of john bell. Rev. Mod. Phys., 65: 803, 1993. DOI: 10.1103/​RevModPhys.65.803.

[33] M. D. Mazurek, M. F. Pusey, R. Kunjwal, K. J. Resch, and R. W. Spekkens. An experimental test of noncontextuality without unphysical idealizations. Nature communications, 7: 11780, 2016. DOI: 10.1038/​ncomms11780.

[34] M. Navascués, S. Pironio, and A. Acín. A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations. New Journal of Physics, 10(7): 073013, 2008. DOI: 10.1088/​1367-2630/​10/​7/​073013.

[35] M. Pawłowski, T. Paterek, D. Kaszlikowski, V. Scarani, A. Winter, and M. Żukowski. Information causality as a physical principle. Nature, 461(7267): 1101, 2009. DOI: https:/​/​doi.org/​10.1038/​nature08400.

[36] M. F. Pusey. Robust preparation noncontextuality inequalities in the simplest scenario. Phys. Rev. A, 98: 022112, 2018. DOI: 10.1103/​PhysRevA.98.022112.

[37] M. Piani and J. Watrous. Necessary and sufficient quantum information characterization of einstein-podolsky-rosen steering. Phys. Rev. Lett., 114: 060404, 2015. DOI: 10.1103/​PhysRevLett.114.060404.

[38] R. W. Spekkens, D. H. Buzacott, A. J. Keehn, B. Toner, and G. J. Pryde. Preparation contextuality powers parity-oblivious multiplexing. Phys. Rev. Lett., 102: 010401, 2009. DOI: 10.1103/​PhysRevLett.102.010401.

[39] D. Saha and A. Chaturvedi. Preparation contextuality as an essential feature underlying quantum communication advantage. Phys. Rev. A, 100: 022108, 2019. DOI: 10.1103/​PhysRevA.100.022108.

[40] D. Saha, P. Horodecki, and M. Pawłowski. State independent contextuality advances one-way communication. New Journal of Physics, 21(9): 093057, 2019. DOI: 10.1088/​1367-2630/​ab4149.

[41] R. W. Spekkens. Contextuality for preparations, transformations, and unsharp measurements. Phys. Rev. A, 71: 052108, 2005. DOI: 10.1103/​PhysRevA.71.052108.

[42] R. W. Spekkens. Noncontextuality: How we should define it, why it is natural, and what to do about its failure. Conference Talk - Contextuality: Conceptual Issues, Operational Signatures, and Applications, Perimeter Institute for Theoretical Physics, 2017. Online: http:/​/​pirsa.org/​17070035.

[43] R. W. Spekkens. The ontological identity of empirical indiscernibles: Leibniz's methodological principle and its significance in the work of einstein, 2019. Online: https:/​/​arxiv.org/​abs/​1909.04628.

[44] D. Schmid and R. W. Spekkens. Contextual advantage for state discrimination. Phys. Rev. X, 8: 011015, 2018. DOI: 10.1103/​PhysRevX.8.011015.

[45] M. Sedlák and M. Ziman. Optimal single-shot strategies for discrimination of quantum measurements. Phys. Rev. A, 90: 052312, 2014. DOI: 10.1103/​PhysRevA.90.052312.

[46] A. Tavakoli, E. Z. Cruzeiro, J. B. Brask, N. Gisin, and N. Brunner. Informationally restricted quantum correlations, 2019. Online: https:/​/​arxiv.org/​abs/​1909.05656. DOI:.

[47] W. Wengang, D. Guohua, and L. Mingshan. Minimum-error quantum state discrimination based on semidefinite programming. In 2008 27th Chinese Control Conference, pages 521–524. IEEE, 2008. DOI: 10.1109/​CHICC.2008.4605546.

[48] P. Wittek. Algorithm 950: Ncpol2sdpa—sparse semidefinite programming relaxations for polynomial optimization problems of noncommuting variables. ACM Trans. Math. Softw., 41(3), 2015. DOI: 10.1145/​2699464.

[49] Y. Zhang, S. Glancy, and E. Knill. Asymptotically optimal data analysis for rejecting local realism. Phys. Rev. A, 84: 062118, 2011. DOI: 10.1103/​PhysRevA.84.062118.

Cited by

On Crossref's cited-by service no data on citing works was found (last attempt 2021-03-06 07:49:14). On SAO/NASA ADS no data on citing works was found (last attempt 2021-03-06 07:49:14).