Bounding sets of sequential quantum correlations and device-independent randomness certification

Joseph Bowles1, Flavio Baccari1,2, and Alexia Salavrakos1

1ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
2Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


An important problem in quantum information theory is that of bounding sets of correlations that arise from making local measurements on entangled states of arbitrary dimension. Currently, the best-known method to tackle this problem is the NPA hierarchy; an infinite sequence of semidefinite programs that provides increasingly tighter outer approximations to the desired set of correlations. In this work we consider a more general scenario in which one performs sequences of local measurements on an entangled state of arbitrary dimension. We show that a simple adaptation of the original NPA hierarchy provides an analogous hierarchy for this scenario, with comparable resource requirements and convergence properties. We then use the method to tackle some problems in device-independent quantum information. First, we show how one can robustly certify over 2.3 bits of device-independent local randomness from a two-quibt state using a sequence of measurements, going beyond the theoretical maximum of two bits that can be achieved with non-sequential measurements. Finally, we show tight upper bounds to two previously defined tasks in sequential Bell test scenarios.

► BibTeX data

► References

[1] J. S. Bell. On the Einstein-Podolsky-Rosen paradox. Physics, 1: 195, 1964.

[2] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner. Bell nonlocality. Rev. Mod. Phys., 86: 839–840, 2014. 10.1103/​RevModPhys.86.839.

[3] Koon Tong Goh, Jędrzej Kaniewski, Elie Wolfe, Tamás Vértesi, Xingyao Wu, Yu Cai, Yeong-Cherng Liang, and Valerio Scarani. Geometry of the set of quantum correlations. Phys. Rev. A, 97: 022104, Feb 2018. 10.1103/​PhysRevA.97.022104.

[4] Mafalda L. Almeida, Jean-Daniel Bancal, Nicolas Brunner, Antonio Acín, Nicolas Gisin, and Stefano Pironio. Guess your neighbor's input: A multipartite nonlocal game with no quantum advantage. Phys. Rev. Lett., 104: 230404, Jun 2010. 10.1103/​PhysRevLett.104.230404.

[5] William Slofstra. The set of quantum correlations is not closed, 2017. arXiv:1703.08618v2.

[6] M. Navascués, S. Pironio, and A. Acín. Bounding the set of quantum correlations. Phys. Rev. Lett., 98: 010401, 2007. 10.1103/​PhysRevLett.98.010401.

[7] M. Navascués, S. Pironio, and A. Acín. A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations. New Journal of Physics, 10 (7): 073013, 2008. 10.1088/​1367-2630/​10/​7/​073013.

[8] Rodrigo Gallego, Lars Erik Würflinger, Rafael Chaves, Antonio Acín, and Miguel Navascués. Nonlocality in sequential correlation scenarios. New Journal of Physics, 16 (3): 033037, mar 2014. 10.1088/​1367-2630/​16/​3/​033037.

[9] Ralph Silva, Nicolas Gisin, Yelena Guryanova, and Sandu Popescu. Multiple observers can share the nonlocality of half of an entangled pair by using optimal weak measurements. Phys. Rev. Lett., 114: 250401, Jun 2015. 10.1103/​PhysRevLett.114.250401.

[10] Flavien Hirsch, Marco Túlio Quintino, Joseph Bowles, and Nicolas Brunner. Genuine hidden quantum nonlocality. Phys. Rev. Lett., 111: 160402, Oct 2013. 10.1103/​PhysRevLett.111.160402.

[11] Sandu Popescu. Bell's inequalities and density matrices: Revealing ``hidden'' nonlocality. Phys. Rev. Lett., 74: 2619–2622, Apr 1995. 10.1103/​PhysRevLett.74.2619.

[12] N. Gisin. Hidden quantum nonlocality revealed by local filters. Physics Letters A, 210 (3): 151 – 156, 1996. ISSN 0375-9601. https:/​/​​10.1016/​S0375-9601(96)80001-6.

[13] F. J. Curchod, M. Johansson, R. Augusiak, M. J. Hoban, P. Wittek, and A. Acín. Unbounded randomness certification using sequences of measurements. Phys. Rev. A, 95: 020102, Feb 2017. 10.1103/​PhysRevA.95.020102.

[14] Matthew F Pusey. Anomalous weak values are proofs of contextuality. Physical review letters, 113 (20): 200401, 2014. 10.1103/​PhysRevLett.113.200401.

[15] Costantino Budroni, Tobias Moroder, Matthias Kleinmann, and Otfried Gühne. Bounding temporal quantum correlations. Physical review letters, 111 (2): 020403, 2013. 10.1103/​PhysRevLett.111.020403.

[16] Elie Wolfe, Alejandro Pozas-Kerstjens, Matan Grinberg, Denis Rosset, Antonio Acín, and Miguel Navascues. Quantum inflation: A general approach to quantum causal compatibility. arXiv preprint arXiv:1909.10519, 2019. URL https:/​/​​abs/​1909.10519.

[17] W. Stinespring. Positive functions on ${C}*$-algebras. Proceedings of the American Mathematical Society, 6 (2): 211–211, Jan 1955. 10.1090/​s0002-9939-1955-0069403-4.

[18] Tobias Moroder, Jean-Daniel Bancal, Yeong-Cherng Liang, Martin Hofmann, and Otfried Gühne. Device-independent entanglement quantification and related applications. Phys. Rev. Lett., 111: 030501, Jul 2013. 10.1103/​PhysRevLett.111.030501.

[19] Miguel Navascués, Yelena Guryanova, Matty J Hoban, and Antonio Acín. Almost quantum correlations. Nature communications, 6 (1): 1–7, 2015. 10.1038/​ncomms7288.

[20] Rudolf Haag and Daniel Kastler. An algebraic approach to quantum field theory. Journal of Mathematical Physics, 5 (7): 848–861, 1964. 10.1063/​1.1704187.

[21] William Slofstra. Tsirelson’s problem and an embedding theorem for groups arising from non-local games. Journal of the American Mathematical Society 33, 2020. 10.1090/​jams/​929.

[22] F. Baccari, D. Cavalcanti, P. Wittek, and A. Acín. Efficient device-independent entanglement detection for multipartite systems. Phys. Rev. X, 7: 021042, Jun 2017. 10.1103/​PhysRevX.7.021042.

[23] Roger Colbeck. Quantum and relativistic protocols for secure multi-party computation. arXiv preprint arXiv:0911.3814, 2009. URL https:/​/​​abs/​0911.3814.

[24] Roger Colbeck and Adrian Kent. Private randomness expansion with untrusted devices. Journal of Physics A: Mathematical and Theoretical, 44 (9): 095305, 2011. 10.1088/​1751-8113/​44/​9/​095305.

[25] Renato Renner. Security of quantum key distribution. International Journal of Quantum Information, 6 (01): 1–127, 2008. 10.1142/​S0219749908003256.

[26] Olmo Nieto-Silleras, Stefano Pironio, and Jonathan Silman. Using complete measurement statistics for optimal device-independent randomness evaluation. New Journal of Physics, 16 (1): 013035, 2014. 10.1088/​1367-2630/​16/​1/​013035.

[27] Olmo Nieto-Silleras, Cédric Bamps, Jonathan Silman, and Stefano Pironio. Device-independent randomness generation from several bell estimators. New journal of physics, 20 (2): 023049, 2018. 10.1088/​1367-2630/​aaaa06.

[28] Stefano Pironio, Antonio Acín, Serge Massar, A Boyer de La Giroday, Dzmitry N Matsukevich, Peter Maunz, Steven Olmschenk, David Hayes, Le Luo, T Andrew Manning, et al. Random numbers certified by bell’s theorem. Nature, 464 (7291): 1021, 2010. 10.1038/​nature09008.

[29] Jean-Daniel Bancal, Lana Sheridan, and Valerio Scarani. More randomness from the same data. New Journal of Physics, 16 (3): 033011, 2014. 10.1088/​1367-2630/​16/​3/​033011.

[30] Antonio Acín, Stefano Pironio, Tamás Vértesi, and Peter Wittek. Optimal randomness certification from one entangled bit. Physical Review A, 93 (4): 040102, 2016. 10.1103/​PhysRevA.93.040102.

[31] Giacomo Mauro D'Ariano, Paoloplacido Lo Presti, and Paolo Perinotti. Classical randomness in quantum measurements. Journal of Physics A: Mathematical and General, 38 (26): 5979, 2005. 10.1088/​0305-4470/​38/​26/​010.

[32] Cédric Bamps and Stefano Pironio. Sum-of-squares decompositions for a family of clauser-horne-shimony-holt-like inequalities and their application to self-testing. Physical Review A, 91 (5): 052111, 2015. 10.1103/​PhysRevA.91.052111.

[33] Miguel Navascués and Tamás Vértesi. Bounding the set of finite dimensional quantum correlations. Phys. Rev. Lett., 115: 020501, Jul 2015. 10.1103/​PhysRevLett.115.020501.

[34] Miguel Navascués, Gonzalo de la Torre, and Tamás Vértesi. Characterization of quantum correlations with local dimension constraints and its device-independent applications. Phys. Rev. X, 4: 011011, Jan 2014. 10.1103/​PhysRevX.4.011011.

[35] Ivan Šupić and Joseph Bowles. Self-testing of quantum systems: a review. Quantum, 4: 337, September 2020. ISSN 2521-327X. 10.22331/​q-2020-09-30-337.

Cited by

[1] Xin-Miao Yu, Shu-Yuan Yang, and Kan He, "Sharing entanglement of the Werner state by arbitrarily many independent observers", Acta Physica Sinica 72 7, 070301 (2023).

[2] Xinjian Liu, Yukun Wang, Yunguang Han, and Xia Wu, "Quantifying the intrinsic randomness in sequential measurements", New Journal of Physics 26 1, 013026 (2024).

[3] Andreas Ketterer, Satoya Imai, Nikolai Wyderka, and Otfried Gühne, "Statistically significant tests of multiparticle quantum correlations based on randomized measurements", Physical Review A 106 1, L010402 (2022).

[4] Ravishankar Ramanathan, Michał Banacki, Ricard Ravell Rodríguez, and Paweł Horodecki, "Single trusted qubit is necessary and sufficient for quantum realization of extremal no-signaling correlations", npj Quantum Information 8 1, 119 (2022).

[5] Tamás Kriváchy, Yu Cai, Joseph Bowles, Daniel Cavalcanti, and Nicolas Brunner, "High-speed batch processing of semidefinite programs with feedforward neural networks", New Journal of Physics 23 10, 103034 (2021).

[6] Ya Xiao, Yan Xin Rong, Shuo Wang, Xin Hong Han, Jin Shi Xu, and Yong Jian Gu, "Experimental sharing of Bell nonlocality with projective measurements", New Journal of Physics 26 5, 053019 (2024).

[7] Yeong-Cherng Liang, "Characterizing quantum correlations one step at a time", Quantum Views 4, 48 (2020).

[8] Giulio Foletto, Matteo Padovan, Marco Avesani, Hamid Tebyanian, Paolo Villoresi, and Giuseppe Vallone, "Experimental test of sequential weak measurements for certified quantum randomness extraction", Physical Review A 103 6, 062206 (2021).

[9] Anna Steffinlongo and Armin Tavakoli, "Projective Measurements Are Sufficient for Recycling Nonlocality", Physical Review Letters 129 23, 230402 (2022).

[10] Shin-Liang Chen and Jens Eisert, "Semi-Device-Independently Characterizing Quantum Temporal Correlations", Physical Review Letters 132 22, 220201 (2024).

[11] Miguel Navascués, Elie Wolfe, Denis Rosset, and Alejandro Pozas-Kerstjens, "Genuine Network Multipartite Entanglement", Physical Review Letters 125 24, 240505 (2020).

[12] Peter Brown, Hamza Fawzi, and Omar Fawzi, "Computing conditional entropies for quantum correlations", Nature Communications 12 1, 575 (2021).

[13] Elie Wolfe, Alejandro Pozas-Kerstjens, Matan Grinberg, Denis Rosset, Antonio Acín, and Miguel Navascués, "Quantum Inflation: A General Approach to Quantum Causal Compatibility", Physical Review X 11 2, 021043 (2021).

[14] Jie Zhu, Meng-Jun Hu, Chuan-Feng Li, Guang-Can Guo, and Yong-Sheng Zhang, "Einstein-Podolsky-Rosen steering in two-sided sequential measurements with one entangled pair", Physical Review A 105 3, 032211 (2022).

[15] Armin Tavakoli, Alejandro Pozas-Kerstjens, Ming-Xing Luo, and Marc-Olivier Renou, "Bell nonlocality in networks", Reports on Progress in Physics 85 5, 056001 (2022).

[16] Ya-Li Mao, Zheng-Da Li, Anna Steffinlongo, Bixiang Guo, Biyao Liu, Shufeng Xu, Nicolas Gisin, Armin Tavakoli, and Jingyun Fan, "Recycling nonlocality in quantum star networks", Physical Review Research 5 1, 013104 (2023).

[17] Shuming Cheng, Lijun Liu, Travis J. Baker, and Michael J. W. Hall, "Recycling qubits for the generation of Bell nonlocality between independent sequential observers", Physical Review A 105 2, 022411 (2022).

[18] Kishor Bharti, Maharshi Ray, Zhen-Peng Xu, Masahito Hayashi, Leong-Chuan Kwek, and Adán Cabello, "Graph-Theoretic Approach for Self-Testing in Bell Scenarios", PRX Quantum 3 3, 030344 (2022).

[19] Lucas B. Vieira and Costantino Budroni, "Temporal correlations in the simplest measurement sequences", Quantum 6, 623 (2022).

[20] Youwang Xiao, XinHui Li, Jing Wang, Ming Li, and Shao-Ming Fei, "Device-independent randomness based on a tight upper bound of the maximal quantum value of chained inequality", Physical Review A 107 5, 052415 (2023).

[21] Shuming Cheng, Lijun Liu, Travis J. Baker, and Michael J. W. Hall, "Limitations on sharing Bell nonlocality between sequential pairs of observers", Physical Review A 104 6, L060201 (2021).

[22] Xianzhi Huang, Liyao Zhan, Liang Li, Suhui Bao, Zipeng Tao, and Jiayu Ying, "Quantum Correlation Resource Recycling via Sequential Measurements: Theoretical Models and Optical Experiments", Photonics 10 12, 1314 (2023).

[23] Peter J. Brown and Roger Colbeck, "Arbitrarily Many Independent Observers can Share the Nonlocality of a Single Maximally Entangled Qubit Pair", Physical Review Letters 125 9, 090401 (2020).

[24] Cornelia Spee, "Signaling between time steps does not allow for nonlocality beyond hidden nonlocality", Journal of Physics A Mathematical General 54 45, 455303 (2021).

[25] Matteo Padovan, Giulio Foletto, Lorenzo Coccia, Marco Avesani, Paolo Villoresi, and Giuseppe Vallone, "Geometry of sequential quantum correlations and robust randomness certification", arXiv:2309.12286, (2023).

The above citations are from Crossref's cited-by service (last updated successfully 2024-06-22 13:26:06) and SAO/NASA ADS (last updated successfully 2024-06-22 13:26:07). The list may be incomplete as not all publishers provide suitable and complete citation data.

1 thought on “Bounding sets of sequential quantum correlations and device-independent randomness certification

  1. Pingback: Perspective in Quantum Views by Yeong-Cherng Liang "Characterizing quantum correlations one step at a time"