Communication through coherent control of quantum channels

Alastair A. Abbott1,2, Julian Wechs2, Dominic Horsman3, Mehdi Mhalla3, and Cyril Branciard2

1Département de Physique Appliquée, Université de Genève, 1211 Genève, Switzerland
2Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
3Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, 38000 Grenoble France

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


A completely depolarising quantum channel always outputs a fully mixed state and thus cannot transmit any information. In a recent Letter[3], it was however shown that if a quantum state passes through two such channels in a quantum superposition of different orders---a setup known as the ``quantum switch''---then information can nevertheless be transmitted through the channels. Here, we show that a similar effect can be obtained when one coherently controls between sending a target system through one of two identical depolarising channels. Whereas it is tempting to attribute this effect in the quantum switch to the indefinite causal order between the channels, causal indefiniteness plays no role in this new scenario. This raises questions about its role in the corresponding effect in the quantum switch. We study this new scenario in detail and we see that, when quantum channels are controlled coherently, information about their specific implementation is accessible in the output state of the joint control-target system. This allows two different implementations of what is usually considered to be the same channel to therefore be differentiated. More generally, we find that to completely describe the action of a coherently controlled quantum channel, one needs to specify not only a description of the channel (e.g., in terms of Kraus operators), but an additional ``transformation matrix'' depending on its implementation.

The standard framework in quantum computing is that of quantum circuits, where quantum operations are applied to physical systems in a definite causal order. Recently, it has been found that one can go beyond this paradigm, and connect quantum operations in more exotic ways – e.g., with no well-defined causal order. Such indefinite orders open up new possibilities for quantum computing and quantum communication.
In that context, a particular quantum communication effect has attracted substantial interest. A completely noisy quantum channel cannot transmit any information by itself. However, information transmission is possible if two such channels are applied in a superposition of orders – or more precisely, in an order that is coherently determined by a control qubit, taken to be in a quantum superposition.
In our work, we show that a similar phenomenon occurs in an even simpler situation where a control qubit determines which of the two channels acts on the target system, rather than their order. This raises interesting questions about how this communication advantage is related to indefinite causal order.
Our study of this example leads us to a more general analysis of the concept of a quantum-controlled channel, which turns out to be ill-defined. We show that for a complete account of the situation one needs more information about the channel implementation than is usually considered.

► BibTeX data

► References

[1] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, NY, USA, 2011).

[2] G. Chiribella, G. M. D'Ariano, P. Perinotti, and B. Valiron, Quantum computations without definite causal structure, Phys. Rev. A 88, 022318 (2013), arXiv:0912.0195 [quant-ph].

[3] D. Ebler, S. Salek, and G. Chiribella, Enhanced communication with the assistance of indefinite causal order, Phys. Rev. Lett. 120, 120502 (2018), arXiv:1711.10165 [quant-ph].

[4] M. Araújo, A. Feix, F. Costa, and Č. Brukner, Quantum circuits cannot control unknown operations, New J. Phys. 16, 093026 (2014), arXiv:1309.7976 [quant-ph].

[5] N. Friis, V. Dunjko, W. Dür, and H. J. Briegel, Implementing quantum control for unkown subroutines, Phys. Rev. A 89, 030303(R) (2014), arXiv:1401.8128 [quant-ph].

[6] T. M. Rambo, J. B. Altepeter, P. Kumar, and G. M. D'Ariano, Functional quantum computing: An optical approach, Phys. Rev. A 93, 052321 (2016), arXiv:1211.1257 [quant-ph].

[7] J. Thompson, K. Modi, V. Vedral, and M. Gu, Quantum plug n' play: modular computation in the quantum regime, New J. Phys. 20, 013004 (2018), arXiv:1310.2927 [quant-ph].

[8] N. Gisin, N. Linden, S. Massar, and S. Popescu, Error filtration and entanglement purification for quantum communication, Phys. Rev. A 72, 012338 (2005), arXiv:quant-ph/​0407021.

[9] K. Kraus, States, Effects, and Operations: Fundamental Notions of Quantum Theory (Springer-Verlag, Berlin Heidelberg, 1983).

[10] M. M. Wilde, Quantum Information Theory (Cambridge University Press, 2013) arXiv:1106.1445 [quant-ph].

[11] G. Chiribella, G. M. D'Ariano, and P. Perinotti, Transforming quantum operations: Quantum supermaps, EPL 83, 30004 (2008), arXiv:0804.0180 [quant-ph].

[12] O. Oreshkov, F. Costa, and Č. Brukner, Quantum correlations with no causal order, Nat. Commun. 3, 1092 (2012), arXiv:1105.4464 [quant-ph].

[13] M. Araújo, C. Branciard, F. Costa, A. Feix, C. Giarmatzi, and Č. Brukner, Witnessing causal nonseparability, New J. Phys. 17, 102001 (2015), arXiv:1506.03776 [quant-ph].

[14] O. Oreshkov and C. Giarmatzi, Causal and causally separable processes, New J. Phys. 18, 093020 (2016), arXiv:1506.05449 [quant-ph].

[15] J. Wechs, A. A. Abbott, and C. Branciard, On the definition and characterisation of multipartite causal (non)separability, New J. Phys. 21, 013027 (2019), arXiv:1807.10557 [quant-ph].

[16] L. M. Procopio, A. Moqanaki, M. Araújo, F. Costa, I. Alonso Calafell, E. G. Dowd, D. R. Hamel, L. A. Rozema, Č. Brukner, and P. Walther, Experimental superposition of orders of quantum gates, Nat. Commun. 6, 7913 (2015), arXiv:1412.4006 [quant-ph].

[17] G. Rubino, L. A. Rozema, A. Feix, M. Araújo, J. M. Zeuner, L. M. Procopio, Č. Brukner, and P. Walther, Experimental verification of an indefinite causal order, Sci. Adv. 3, e1602589 (2017a), arXiv:1608.01683 [quant-ph].

[18] G. Rubino, L. A. Rozema, F. Massa, M. Araújo, M. Zych, Č. Brukner, and P. Walther, Experimental entanglement of temporal orders (2017b), arXiv:1712.06884 [quant-ph].

[19] K. Goswami, C. Giarmatzi, M. Kewming, F. Costa, C. Branciard, J. Romero, and A. G. White, Indefinite causal order in a quantum switch, Phys. Rev. Lett. 121, 090503 (2018a), arXiv:1803.04302 [quant-ph].

[20] K. Goswami, J. Romero, and A. G. White, Communicating via ignorance: Increasing communication capacity via superposition of order, Phys. Rev. Research 2, 033292 (2018b), arXiv:1807.07383 [quant-ph].

[21] K. Wei, N. Tischler, S.-R. Zhao, Y.-H. Li, J. M. Arrazola, Y. Liu, W. Zhang, H. Li, L. You, Z. Wang, Y.-A. Chen, B. C. Sanders, Q. Zhang, G. J. Pryde, F. Xu, and J.-W. Pan, Experimental quantum switching for exponentially superior quantum communication complexity, Phys. Rev. Lett. 122, 120504 (2019), arXiv:1810.10238 [quant-ph].

[22] Y. Guo, X.-M. Hu, Z.-B. Hou, H. Cao, J.-M. Cui, B.-H. Liu, Y.-F. Huang, C.-F. Li, G.-C. Guo, and G. Chiribella, Experimental transmission of quantum information using a superposition of causal orders, Phys. Rev. Lett. 124, 030502 (2020), arXiv:1811.07526 [quant-ph].

[23] G. Chiribella, Perfect discrimination of no-signalling channels via quantum superposition of causal structures, Phys. Rev. A 86, 040301 (2012), arXiv:1109.5154 [quant-ph].

[24] T. Colnaghi, G. M. D'Ariano, S. Facchini, and P. Perinotti, Quantum computation with programmable connections between gates, Phys. Lett. A 376, 2940 (2012), arXiv:1109.5987 [quant-ph].

[25] M. Araújo, F. Costa, and Č. Brukner, Computational advantage from quantum-controlled ordering of gates, Phys. Rev. Lett. 113, 250402 (2014), arXiv:1401.8127 [quant-ph].

[26] S. Facchini and S. Perdrix, Quantum circuits for the unitary permutation problem, in TAMC 2015: Theory and Applications of Models of Computation, edited by R. Jain, S. Jain, and F. Stephan (Springer International Publishing, Cham, 2015) pp. 324–331, arXiv:1405.5205 [quant-ph].

[27] A. Feix, M. Araújo, and Č. Brukner, Quantum superposition of the order of parties as a communication resource, Phys. Rev. A 92, 052326 (2015), arXiv:1508.07840 [quant-ph].

[28] P. A. Guérin, A. Feix, M. Araújo, and Č. Brukner, Exponential communication complexity advantage from quantum superposition of the direction of communication, Phys. Rev. Lett. 117, 100502 (2016), arXiv:1605.07372 [quant-ph].

[29] L. M. Procopio, F. Delgado, M. Enriquez, N. Belabas, and J. A. Levenson, Communication enhancement through quantum coherent control of ${N}$ channels in an indefinite causal-order scenario, Entropy 21, 1012 (2019), arXiv:1902.01807 [quant-ph].

[30] L. M. Procopio, F. Delgado, M. Enriquez, N. Belabas, and J. A. Levenson, Sending classical information via three noisy channels in superposition of causal orders, Phys. Rev. A 101, 012346 (2020), arXiv:1910.11137 [quant-ph].

[31] M. M. Taddei, J. C. ne, D. Martínez, T. García, N. Guerrero, A. A. Abbott, M. Araújo, C. Branciard, E. S. Gómez, S. P. Walborn, L. Aolita, and G. Lima, Experimental computational advantage from superposition of multiple temporal orders of quantum gates (2020), arXiv:2002.07817 [quant-ph].

[32] O. Oreshkov, Time-delocalized quantum subsystems and operations: on the existence of processes with indefinite causal structure in quantum mechanics, Quantum 3, 206 (2019), arXiv:1801.07594 [quant-ph].

[33] N. Paunkovic and M. Vojinovic, Causal orders, quantum circuits and spacetime: distinguishing between definite and superposed causal orders, Quantum 4, 275 (2020), arXiv:1905.09682 [quant-ph].

[34] B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. O'Brien, A. Gilchrist, and A. G. White, Simplifying quantum logic using higher-dimensional Hilbert spaces, Nat. Phys. 5, 134 (2009), arXiv:0804.0272 [quant-ph].

[35] X.-Q. Zhou, T. C. Ralph, P. Kalasuwan, M. Zhang, A. Peruzzo, B. P. Lanyon, and J. L. O'Brien, Adding control to arbitrary unknown quantum operations, Nat. Commun. 2, 413 (2011), arXiv:1006.2670 [quant-ph].

[36] X.-Q. Zhou, P. Kalasuwan, T. C. Ralph, and J. L. O'Brien, Calculating unknown eigenvalues with a quantum algorithm, Nat. Photonics 7, 223 (2013), arXiv:1110.4276 [quant-ph].

[37] N. Friis, A. A. Melnikov, G. Kirchmair, and H. J. Briegel, Coherent controlization using superconducting qubits, Sci. Rep. 5, 18036 (2015), arXiv:1508.00447 [quant-ph].

[38] V. Dunjko, N. Friis, and H. J. Briegel, Quantum-enhanced deliberation of learning agents using trapped ions, New J. Phys. 17, 023006 (2015), arXiv:1407.2830 [quant-ph].

[39] N. Loizeau and A. Grinbaum, Channel capacity enhancement with indefinite causal order, Phys. Rev. A 101, 012340 (2020), arXiv:1906.08505 [quant-ph].

[40] P. A. Guérin, G. Rubino, and Č. Brukner, Communication through quantum-controlled noise, Phys. Rev. A 99, 062317 (2019), arXiv:1812.06848 [quant-ph].

[41] H. Kristjánsson, G. Chiribella, S. Salek, D. Ebler, and M. Wilson, Resource theories of communication with quantum superpositions of processes, New J. Phys. 22, 073014 (2020), arXiv:1910.08197 [quant-ph].

[42] B. Schumacher and M. D. Westmoreland, Sending classical information via noisy quantum channels, Phys. Rev. A 56, 131 (1997).

[43] A. S. Holevo, The capacity of the quantum channel with general signal states, IEEE Trans. Inf. Theory 44, 269 (1998), arXiv:quant-ph/​9611023.

[44] G. Chiribella and H. Kristjánsson, Quantum Shannon theory with superpositions of trajectories, Proc. R. Soc. A 475, 20180903 (2019), arXiv:1812.05292 [quant-ph].

[45] A. Bisio, M. Dall'Arno, and P. Perinotti, Quantum conditional operations, Phys. Rev. A 94, 022340 (2016), arXiv:1509.01062 [quant-ph].

[46] W. F. Stinespring, Positive functions on $C^*$-algebras, Proc. Amer. Math. Soc. 6, 211 (1955).

[47] J. Åberg, Subspace preservation, subspace locality, and gluing of completely positive maps, Ann. Phys. 313, 326 (2004), arXiv:quant-ph/​0302182.

[48] D. K. L. Oi, Interference of quantum channels, Phys. Rev. Lett. 91, 067902 (2003), arXiv:quant-ph/​0303178.

[49] M.-D. Choi, Completely positive linear maps on complex matrices, Linear Algebra Appl. 10, 285 (1975).

[50] J. Watrous, The Theory of Quantum Information (Cambridge University Press, Cambridge, 2018).

[51] S. Salek, D. Ebler, and G. Chiribella, Quantum communication in a superposition of causal orders (2018), arXiv:1809.06655 [quant-ph].

[52] G. Chiribella, M. Banik, S. S. Bhattacharya, T. Guha, M. Alimuddin, A. Roy, S. Saha, S. Agrawal, and G. Kar, Indefinite causal order enables perfect quantum communication with zero capacity channel (2018), arXiv:1810.10457 [quant-ph].

[53] S. J. Devitt, W. J. Munro, and K. Nemoto, Quantum error correction for beginners, Rep. Prog. Phys. 76, 076001 (2013), arXiv:0905.2794 [quant-ph].

[54] A. Ambainis, M. Mosca, A. Tapp, and R. De Wolf, Private quantum channels, in Proc. 41st Annual Symposium on Foundations of Computer Science (IEEE, 2000) pp. 547–553.

[55] Q. Dong, S. Nakayama, A. Soeda, and M. Murao, Controlled quantum operations and combs, and their applications to universal controllization of divisible unitary operations (2019), arXiv:1911.01645 [quant-ph].

[56] J. C. A. Barata and M. S. Hussein, The Moore–Penrose pseudoinverse: A tutorial review of the theory, Braz. J. Phys. 42, 146 (2012), arXiv:1110.6882 [math-ph].

[57] S. Lloyd, Capacity of the noisy quantum channel, Phys. Rev. A 55, 1613 (1997), arXiv:quant-ph/​9604015.

[58] P. W. Shor, The quantum channel capacity and coherent information, in Lecture notes, MSRI Workshop on Quantum Computation (2002).

[59] I. Devetak, The private classical capacity and quantum capacity of a quantum channel, IEEE Trans. Inf. Theory 51, 44 (2005), arXiv:quant-ph/​0304127.

[60] J. Wechs, H. Dourdent, A. A. Abbott, and C. Branciard, in preparation.

Cited by

[1] Giulio Chiribella and Hlér Kristjánsson, "Quantum Shannon theory with superpositions of trajectories", Proceedings of the Royal Society of London Series A 475 2225, 20180903 (2019).

[2] K. Goswami, Y. Cao, G. A. Paz-Silva, J. Romero, and A. G. White, "Communicating via ignorance: Increasing communication capacity via superposition of order", arXiv:1807.07383.

[3] Giulio Chiribella, Manik Banik, Some Sankar Bhattacharya, Tamal Guha, Mir Alimuddin, Arup Roy, Sutapa Saha, Sristy Agrawal, and Guruprasad Kar, "Indefinite causal order enables perfect quantum communication with zero capacity channel", arXiv:1810.10457.

[4] Lorenzo M. Procopio, Francisco Delgado, Marco Enríquez, Nadia Belabas, and Juan Ariel Levenson, "Communication Enhancement through Quantum Coherent Control of N Channels in an Indefinite Causal-Order Scenario", Entropy 21 10, 1012 (2019).

[5] Philippe Allard Guérin, Giulia Rubino, and Časlav Brukner, "Communication through quantum-controlled noise", Physical Review A 99 6, 062317 (2019).

[6] Yu Guo, Xiao-Min Hu, Zhi-Bo Hou, Huan Cao, Jin-Ming Cui, Bi-Heng Liu, Yun-Feng Huang, Chuan-Feng Li, Guang-Can Guo, and Giulio Chiribella, "Experimental Transmission of Quantum Information Using a Superposition of Causal Orders", Physical Review Letters 124 3, 030502 (2020).

[7] Philippe Allard Guérin, Giulia Rubino, and Časlav Brukner, "Communication through quantum-controlled noise", arXiv:1812.06848.

[8] John Burniston, Michael Grabowecky, Carlo Maria Scandolo, Giulio Chiribella, and Gilad Gour, "Necessary and Sufficient Conditions on Measurements of Quantum Channels", arXiv:1904.09161.

[9] Márcio M. Taddei, Jaime Cariñe, Daniel Martínez, Tania García, Nayda Guerrero, Alastair A. Abbott, Mateus Araújo, Cyril Branciard, Esteban S. Gómez, Stephen P. Walborn, Leandro Aolita, and Gustavo Lima, "Experimental computational advantage from superposition of multiple temporal orders of quantum gates", arXiv:2002.07817.

[10] Lorenzo M. Procopio, Francisco Delgado, Marco Enríquez, Nadia Belabas, and Juan Ariel Levenson, "Sending classical information via three noisy channels in superposition of causal orders", Physical Review A 101 1, 012346 (2020).

[11] Nicolas Loizeau and Alexei Grinbaum, "Channel capacity enhancement with indefinite causal order", Physical Review A 101 1, 012340 (2020).

[12] Qingxiuxiong Dong, Shojun Nakayama, Akihito Soeda, and Mio Murao, "Controlled quantum operations and combs, and their applications to universal controllization of divisible unitary operations", arXiv:1911.01645.

[13] Joshua Foo, Sho Onoe, and Magdalena Zych, "Unruh-deWitt detectors in quantum superpositions of trajectories", Physical Review D 102 8, 085013 (2020).

[14] K. Goswami, Y. Cao, G. A. Paz-Silva, J. Romero, and A. G. White, "Increasing communication capacity via superposition of order", Physical Review Research 2 3, 033292 (2020).

[15] Giulia Rubino, Lee A. Rozema, Daniel Ebler, Hlér Kristjánsson, Sina Salek, Philippe Allard Guérin, Alastair A. Abbott, Cyril Branciard, Časlav Brukner, Giulio Chiribella, and Philip Walther, "Experimental Quantum Communication Enhancement by Superposing Trajectories", arXiv:2007.05005.

[16] Hlér Kristjánsson, Wenxu Mao, and Giulio Chiribella, "Single-particle communication through correlated noise", arXiv:2004.06090.

[17] Manish K. Gupta and Ujjwal Sen, "Transmitting quantum information by superposing causal order of mutually unbiased measurements", arXiv:1909.13125.

[18] Marcello Caleffi and Angela Sara Cacciapuoti, "Quantum Switch for the Quantum Internet: Noiseless Communications through Noisy Channels", arXiv:1907.07432.

[19] Mark M. Wilde, "Coherent Quantum Channel Discrimination", arXiv:2001.02668.

[20] Sk Sazim, Kratveer Singh, and Arun Kumar Pati, "Classical Communications with Indefinite Causal Order for $N$ completely depolarizing channels", arXiv:2004.14339.

[21] Giulio Chiribella, Matthew Wilson, and H. F. Chau, "Quantum and Classical Data Transmission Through Completely Depolarising Channels in a Superposition of Cyclic Orders", arXiv:2005.00618.

[22] Angela Sara Cacciapuoti and Marcello Caleffi, "Capacity Bounds for Quantum Communications through Quantum Trajectories", arXiv:1912.08575.

[23] Giulio Chiribella and Zixuan Liu, "The quantum time flip", arXiv:2012.03859.

[24] Nicola Pinzani and Stefano Gogioso, "Giving Operational Meaning to the Superposition of Causal Orders", arXiv:2003.13306.

[25] K. Goswami and J. Romero, "Experiments on quantum causality", AVS Quantum Science 2 3, 037101 (2020).

[26] Masashi Ban, "Relaxation process of a two-level system in a coherent superposition of two environments", Quantum Information Processing 19 10, 351 (2020).

[27] Masashi Ban, "Two-qubit correlation in two independent environments with indefiniteness", Physics Letters A 385, 126936 (2021).

[28] Masashi Ban, "Decoherence of a two-level system in a coherent superposition of two dephasing environments", Quantum Information Processing 19 11, 409 (2020).

[29] Koji Azuma, Stefan Bäuml, Tim Coopmans, David Elkouss, and Boxi Li, "Tools for quantum network design", arXiv:2012.06764.

[30] Tamal Guha, Mir Alimuddin, and Preeti Parashar, "Thermodynamic advancement in the causally inseparable occurrence of thermal maps", Physical Review A 102 3, 032215 (2020).

[31] Alexandre Clément and Simon Perdrix, "PBS-Calculus: A Graphical Language for Coherent Control of Quantum Computations", arXiv:2002.09387.

[32] Yujie Zhang, Xinan Chen, and Eric Chitambar, "Building Multiple Access Channels with a Single Particle", arXiv:2006.12475.

[33] Some Sankar Bhattacharya, Ananda G. Maity, Tamal Guha, Giulio Chiribella, and Manik Banik, "Random-Receiver Quantum Communication", arXiv:2012.15459.

The above citations are from SAO/NASA ADS (last updated successfully 2021-01-18 22:52:21). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2021-01-18 22:52:20).