Communication through coherent control of quantum channels

Alastair A. Abbott1,2, Julian Wechs2, Dominic Horsman3, Mehdi Mhalla3, and Cyril Branciard2

1Département de Physique Appliquée, Université de Genève, 1211 Genève, Switzerland
2Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
3Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, 38000 Grenoble France

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

A completely depolarising quantum channel always outputs a fully mixed state and thus cannot transmit any information. In a recent Letter[3], it was however shown that if a quantum state passes through two such channels in a quantum superposition of different orders---a setup known as the ``quantum switch''---then information can nevertheless be transmitted through the channels. Here, we show that a similar effect can be obtained when one coherently controls between sending a target system through one of two identical depolarising channels. Whereas it is tempting to attribute this effect in the quantum switch to the indefinite causal order between the channels, causal indefiniteness plays no role in this new scenario. This raises questions about its role in the corresponding effect in the quantum switch. We study this new scenario in detail and we see that, when quantum channels are controlled coherently, information about their specific implementation is accessible in the output state of the joint control-target system. This allows two different implementations of what is usually considered to be the same channel to therefore be differentiated. More generally, we find that to completely describe the action of a coherently controlled quantum channel, one needs to specify not only a description of the channel (e.g., in terms of Kraus operators), but an additional ``transformation matrix'' depending on its implementation.

The standard framework in quantum computing is that of quantum circuits, where quantum operations are applied to physical systems in a definite causal order. Recently, it has been found that one can go beyond this paradigm, and connect quantum operations in more exotic ways – e.g., with no well-defined causal order. Such indefinite orders open up new possibilities for quantum computing and quantum communication.
In that context, a particular quantum communication effect has attracted substantial interest. A completely noisy quantum channel cannot transmit any information by itself. However, information transmission is possible if two such channels are applied in a superposition of orders – or more precisely, in an order that is coherently determined by a control qubit, taken to be in a quantum superposition.
In our work, we show that a similar phenomenon occurs in an even simpler situation where a control qubit determines which of the two channels acts on the target system, rather than their order. This raises interesting questions about how this communication advantage is related to indefinite causal order.
Our study of this example leads us to a more general analysis of the concept of a quantum-controlled channel, which turns out to be ill-defined. We show that for a complete account of the situation one needs more information about the channel implementation than is usually considered.

► BibTeX data

► References

[1] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, NY, USA, 2011).
https:/​/​doi.org/​10.1017/​CBO9780511976667

[2] G. Chiribella, G. M. D'Ariano, P. Perinotti, and B. Valiron, Quantum computations without definite causal structure, Phys. Rev. A 88, 022318 (2013), arXiv:0912.0195 [quant-ph].
https:/​/​doi.org/​10.1103/​PhysRevA.88.022318
arXiv:0912.0195

[3] D. Ebler, S. Salek, and G. Chiribella, Enhanced communication with the assistance of indefinite causal order, Phys. Rev. Lett. 120, 120502 (2018), arXiv:1711.10165 [quant-ph].
https:/​/​doi.org/​10.1103/​PhysRevLett.120.120502
arXiv:1711.10165

[4] M. Araújo, A. Feix, F. Costa, and Č. Brukner, Quantum circuits cannot control unknown operations, New J. Phys. 16, 093026 (2014), arXiv:1309.7976 [quant-ph].
https:/​/​doi.org/​10.1088/​1367-2630/​16/​9/​093026
arXiv:1309.7976

[5] N. Friis, V. Dunjko, W. Dür, and H. J. Briegel, Implementing quantum control for unkown subroutines, Phys. Rev. A 89, 030303(R) (2014), arXiv:1401.8128 [quant-ph].
https:/​/​doi.org/​10.1103/​PhysRevA.89.030303
arXiv:1401.8128

[6] T. M. Rambo, J. B. Altepeter, P. Kumar, and G. M. D'Ariano, Functional quantum computing: An optical approach, Phys. Rev. A 93, 052321 (2016), arXiv:1211.1257 [quant-ph].
https:/​/​doi.org/​10.1103/​PhysRevA.93.052321
arXiv:1211.1257

[7] J. Thompson, K. Modi, V. Vedral, and M. Gu, Quantum plug n' play: modular computation in the quantum regime, New J. Phys. 20, 013004 (2018), arXiv:1310.2927 [quant-ph].
https:/​/​doi.org/​10.1088/​1367-2630/​aa99b3
arXiv:1310.2927

[8] N. Gisin, N. Linden, S. Massar, and S. Popescu, Error filtration and entanglement purification for quantum communication, Phys. Rev. A 72, 012338 (2005), arXiv:quant-ph/​0407021.
https:/​/​doi.org/​10.1103/​PhysRevA.72.012338
arXiv:quant-ph/0407021

[9] K. Kraus, States, Effects, and Operations: Fundamental Notions of Quantum Theory (Springer-Verlag, Berlin Heidelberg, 1983).
https:/​/​doi.org/​10.1007/​3-540-12732-1

[10] M. M. Wilde, Quantum Information Theory (Cambridge University Press, 2013) arXiv:1106.1445 [quant-ph].
https:/​/​doi.org/​10.1017/​CBO9781139525343
arXiv:1106.1445

[11] G. Chiribella, G. M. D'Ariano, and P. Perinotti, Transforming quantum operations: Quantum supermaps, EPL 83, 30004 (2008), arXiv:0804.0180 [quant-ph].
https:/​/​doi.org/​10.1209/​0295-5075/​83/​30004
arXiv:0804.0180

[12] O. Oreshkov, F. Costa, and Č. Brukner, Quantum correlations with no causal order, Nat. Commun. 3, 1092 (2012), arXiv:1105.4464 [quant-ph].
https:/​/​doi.org/​10.1038/​ncomms2076
arXiv:1105.4464

[13] M. Araújo, C. Branciard, F. Costa, A. Feix, C. Giarmatzi, and Č. Brukner, Witnessing causal nonseparability, New J. Phys. 17, 102001 (2015), arXiv:1506.03776 [quant-ph].
https:/​/​doi.org/​10.1088/​1367-2630/​17/​10/​102001
arXiv:1506.03776

[14] O. Oreshkov and C. Giarmatzi, Causal and causally separable processes, New J. Phys. 18, 093020 (2016), arXiv:1506.05449 [quant-ph].
https:/​/​doi.org/​10.1088/​1367-2630/​18/​9/​093020
arXiv:1506.05449

[15] J. Wechs, A. A. Abbott, and C. Branciard, On the definition and characterisation of multipartite causal (non)separability, New J. Phys. 21, 013027 (2019), arXiv:1807.10557 [quant-ph].
https:/​/​doi.org/​10.1088/​1367-2630/​aaf352
arXiv:1807.10557

[16] L. M. Procopio, A. Moqanaki, M. Araújo, F. Costa, I. Alonso Calafell, E. G. Dowd, D. R. Hamel, L. A. Rozema, Č. Brukner, and P. Walther, Experimental superposition of orders of quantum gates, Nat. Commun. 6, 7913 (2015), arXiv:1412.4006 [quant-ph].
https:/​/​doi.org/​10.1038/​ncomms8913
arXiv:1412.4006

[17] G. Rubino, L. A. Rozema, A. Feix, M. Araújo, J. M. Zeuner, L. M. Procopio, Č. Brukner, and P. Walther, Experimental verification of an indefinite causal order, Sci. Adv. 3, e1602589 (2017a), arXiv:1608.01683 [quant-ph].
https:/​/​doi.org/​10.1126/​sciadv.1602589
arXiv:1608.01683

[18] G. Rubino, L. A. Rozema, F. Massa, M. Araújo, M. Zych, Č. Brukner, and P. Walther, Experimental entanglement of temporal orders (2017b), arXiv:1712.06884 [quant-ph].
arXiv:1712.06884

[19] K. Goswami, C. Giarmatzi, M. Kewming, F. Costa, C. Branciard, J. Romero, and A. G. White, Indefinite causal order in a quantum switch, Phys. Rev. Lett. 121, 090503 (2018a), arXiv:1803.04302 [quant-ph].
https:/​/​doi.org/​10.1103/​PhysRevLett.121.090503
arXiv:1803.04302

[20] K. Goswami, J. Romero, and A. G. White, Communicating via ignorance: Increasing communication capacity via superposition of order, Phys. Rev. Research 2, 033292 (2018b), arXiv:1807.07383 [quant-ph].
https:/​/​doi.org/​10.1103/​PhysRevResearch.2.033292
arXiv:1807.07383

[21] K. Wei, N. Tischler, S.-R. Zhao, Y.-H. Li, J. M. Arrazola, Y. Liu, W. Zhang, H. Li, L. You, Z. Wang, Y.-A. Chen, B. C. Sanders, Q. Zhang, G. J. Pryde, F. Xu, and J.-W. Pan, Experimental quantum switching for exponentially superior quantum communication complexity, Phys. Rev. Lett. 122, 120504 (2019), arXiv:1810.10238 [quant-ph].
https:/​/​doi.org/​10.1103/​PhysRevLett.122.120504
arXiv:1810.10238

[22] Y. Guo, X.-M. Hu, Z.-B. Hou, H. Cao, J.-M. Cui, B.-H. Liu, Y.-F. Huang, C.-F. Li, G.-C. Guo, and G. Chiribella, Experimental transmission of quantum information using a superposition of causal orders, Phys. Rev. Lett. 124, 030502 (2020), arXiv:1811.07526 [quant-ph].
https:/​/​doi.org/​10.1103/​PhysRevLett.124.030502
arXiv:1811.07526

[23] G. Chiribella, Perfect discrimination of no-signalling channels via quantum superposition of causal structures, Phys. Rev. A 86, 040301 (2012), arXiv:1109.5154 [quant-ph].
https:/​/​doi.org/​10.1103/​PhysRevA.86.040301
arXiv:1109.5154

[24] T. Colnaghi, G. M. D'Ariano, S. Facchini, and P. Perinotti, Quantum computation with programmable connections between gates, Phys. Lett. A 376, 2940 (2012), arXiv:1109.5987 [quant-ph].
https:/​/​doi.org/​10.1016/​j.physleta.2012.08.028
arXiv:1109.5987

[25] M. Araújo, F. Costa, and Č. Brukner, Computational advantage from quantum-controlled ordering of gates, Phys. Rev. Lett. 113, 250402 (2014), arXiv:1401.8127 [quant-ph].
https:/​/​doi.org/​10.1103/​PhysRevLett.113.250402
arXiv:1401.8127

[26] S. Facchini and S. Perdrix, Quantum circuits for the unitary permutation problem, in TAMC 2015: Theory and Applications of Models of Computation, edited by R. Jain, S. Jain, and F. Stephan (Springer International Publishing, Cham, 2015) pp. 324–331, arXiv:1405.5205 [quant-ph].
https:/​/​doi.org/​10.1007/​978-3-319-17142-5_28
arXiv:1405.5205

[27] A. Feix, M. Araújo, and Č. Brukner, Quantum superposition of the order of parties as a communication resource, Phys. Rev. A 92, 052326 (2015), arXiv:1508.07840 [quant-ph].
https:/​/​doi.org/​10.1103/​PhysRevA.92.052326
arXiv:1508.07840

[28] P. A. Guérin, A. Feix, M. Araújo, and Č. Brukner, Exponential communication complexity advantage from quantum superposition of the direction of communication, Phys. Rev. Lett. 117, 100502 (2016), arXiv:1605.07372 [quant-ph].
https:/​/​doi.org/​10.1103/​PhysRevLett.117.100502
arXiv:1605.07372

[29] L. M. Procopio, F. Delgado, M. Enriquez, N. Belabas, and J. A. Levenson, Communication enhancement through quantum coherent control of ${N}$ channels in an indefinite causal-order scenario, Entropy 21, 1012 (2019), arXiv:1902.01807 [quant-ph].
https:/​/​doi.org/​10.3390/​e21101012
arXiv:1902.01807

[30] L. M. Procopio, F. Delgado, M. Enriquez, N. Belabas, and J. A. Levenson, Sending classical information via three noisy channels in superposition of causal orders, Phys. Rev. A 101, 012346 (2020), arXiv:1910.11137 [quant-ph].
https:/​/​doi.org/​10.1103/​PhysRevA.101.012346
arXiv:1910.11137

[31] M. M. Taddei, J. C. ne, D. Martínez, T. García, N. Guerrero, A. A. Abbott, M. Araújo, C. Branciard, E. S. Gómez, S. P. Walborn, L. Aolita, and G. Lima, Experimental computational advantage from superposition of multiple temporal orders of quantum gates (2020), arXiv:2002.07817 [quant-ph].
arXiv:2002.07817

[32] O. Oreshkov, Time-delocalized quantum subsystems and operations: on the existence of processes with indefinite causal structure in quantum mechanics, Quantum 3, 206 (2019), arXiv:1801.07594 [quant-ph].
https:/​/​doi.org/​10.22331/​q-2019-12-02-206
arXiv:1801.07594

[33] N. Paunkovic and M. Vojinovic, Causal orders, quantum circuits and spacetime: distinguishing between definite and superposed causal orders, Quantum 4, 275 (2020), arXiv:1905.09682 [quant-ph].
https:/​/​doi.org/​10.22331/​q-2020-05-28-275
arXiv:1905.09682

[34] B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. O'Brien, A. Gilchrist, and A. G. White, Simplifying quantum logic using higher-dimensional Hilbert spaces, Nat. Phys. 5, 134 (2009), arXiv:0804.0272 [quant-ph].
https:/​/​doi.org/​10.1038/​nphys1150
arXiv:0804.0272

[35] X.-Q. Zhou, T. C. Ralph, P. Kalasuwan, M. Zhang, A. Peruzzo, B. P. Lanyon, and J. L. O'Brien, Adding control to arbitrary unknown quantum operations, Nat. Commun. 2, 413 (2011), arXiv:1006.2670 [quant-ph].
https:/​/​doi.org/​10.1038/​ncomms1392
arXiv:1006.2670

[36] X.-Q. Zhou, P. Kalasuwan, T. C. Ralph, and J. L. O'Brien, Calculating unknown eigenvalues with a quantum algorithm, Nat. Photonics 7, 223 (2013), arXiv:1110.4276 [quant-ph].
https:/​/​doi.org/​10.1038/​nphoton.2012.360
arXiv:1110.4276

[37] N. Friis, A. A. Melnikov, G. Kirchmair, and H. J. Briegel, Coherent controlization using superconducting qubits, Sci. Rep. 5, 18036 (2015), arXiv:1508.00447 [quant-ph].
https:/​/​doi.org/​10.1038/​srep18036
arXiv:1508.00447

[38] V. Dunjko, N. Friis, and H. J. Briegel, Quantum-enhanced deliberation of learning agents using trapped ions, New J. Phys. 17, 023006 (2015), arXiv:1407.2830 [quant-ph].
https:/​/​doi.org/​10.1088/​1367-2630/​17/​2/​023006
arXiv:1407.2830

[39] N. Loizeau and A. Grinbaum, Channel capacity enhancement with indefinite causal order, Phys. Rev. A 101, 012340 (2020), arXiv:1906.08505 [quant-ph].
https:/​/​doi.org/​10.1103/​PhysRevA.101.012340
arXiv:1906.08505

[40] P. A. Guérin, G. Rubino, and Č. Brukner, Communication through quantum-controlled noise, Phys. Rev. A 99, 062317 (2019), arXiv:1812.06848 [quant-ph].
https:/​/​doi.org/​10.1103/​PhysRevA.99.062317
arXiv:1812.06848

[41] H. Kristjánsson, G. Chiribella, S. Salek, D. Ebler, and M. Wilson, Resource theories of communication with quantum superpositions of processes, New J. Phys. 22, 073014 (2020), arXiv:1910.08197 [quant-ph].
https:/​/​doi.org/​10.1088/​1367-2630/​ab8ef7
arXiv:1910.08197

[42] B. Schumacher and M. D. Westmoreland, Sending classical information via noisy quantum channels, Phys. Rev. A 56, 131 (1997).
https:/​/​doi.org/​10.1103/​PhysRevA.56.131

[43] A. S. Holevo, The capacity of the quantum channel with general signal states, IEEE Trans. Inf. Theory 44, 269 (1998), arXiv:quant-ph/​9611023.
https:/​/​doi.org/​10.1109/​18.651037
arXiv:quant-ph/9611023

[44] G. Chiribella and H. Kristjánsson, Quantum Shannon theory with superpositions of trajectories, Proc. R. Soc. A 475, 20180903 (2019), arXiv:1812.05292 [quant-ph].
https:/​/​doi.org/​10.1098/​rspa.2018.0903
arXiv:1812.05292

[45] A. Bisio, M. Dall'Arno, and P. Perinotti, Quantum conditional operations, Phys. Rev. A 94, 022340 (2016), arXiv:1509.01062 [quant-ph].
https:/​/​doi.org/​10.1103/​PhysRevA.94.022340
arXiv:1509.01062

[46] W. F. Stinespring, Positive functions on $C^*$-algebras, Proc. Amer. Math. Soc. 6, 211 (1955).
https:/​/​doi.org/​10.1090/​S0002-9939-1955-0069403-4

[47] J. Åberg, Subspace preservation, subspace locality, and gluing of completely positive maps, Ann. Phys. 313, 326 (2004), arXiv:quant-ph/​0302182.
https:/​/​doi.org/​10.1016/​j.aop.2004.04.013
arXiv:quant-ph/0302182

[48] D. K. L. Oi, Interference of quantum channels, Phys. Rev. Lett. 91, 067902 (2003), arXiv:quant-ph/​0303178.
https:/​/​doi.org/​10.1103/​PhysRevLett.91.067902
arXiv:quant-ph/0303178

[49] M.-D. Choi, Completely positive linear maps on complex matrices, Linear Algebra Appl. 10, 285 (1975).
https:/​/​doi.org/​10.1016/​0024-3795(75)90075-0

[50] J. Watrous, The Theory of Quantum Information (Cambridge University Press, Cambridge, 2018).
https:/​/​doi.org/​10.1017/​9781316848142

[51] S. Salek, D. Ebler, and G. Chiribella, Quantum communication in a superposition of causal orders (2018), arXiv:1809.06655 [quant-ph].
arXiv:1809.06655

[52] G. Chiribella, M. Banik, S. S. Bhattacharya, T. Guha, M. Alimuddin, A. Roy, S. Saha, S. Agrawal, and G. Kar, Indefinite causal order enables perfect quantum communication with zero capacity channel (2018), arXiv:1810.10457 [quant-ph].
arXiv:1810.10457

[53] S. J. Devitt, W. J. Munro, and K. Nemoto, Quantum error correction for beginners, Rep. Prog. Phys. 76, 076001 (2013), arXiv:0905.2794 [quant-ph].
https:/​/​doi.org/​10.1088/​0034-4885/​76/​7/​076001
arXiv:0905.2794

[54] A. Ambainis, M. Mosca, A. Tapp, and R. De Wolf, Private quantum channels, in Proc. 41st Annual Symposium on Foundations of Computer Science (IEEE, 2000) pp. 547–553.
https:/​/​doi.org/​10.1109/​SFCS.2000.892142

[55] Q. Dong, S. Nakayama, A. Soeda, and M. Murao, Controlled quantum operations and combs, and their applications to universal controllization of divisible unitary operations (2019), arXiv:1911.01645 [quant-ph].
arXiv:1911.01645

[56] J. C. A. Barata and M. S. Hussein, The Moore–Penrose pseudoinverse: A tutorial review of the theory, Braz. J. Phys. 42, 146 (2012), arXiv:1110.6882 [math-ph].
https:/​/​doi.org/​10.1007/​s13538-011-0052-z
arXiv:1110.6882

[57] S. Lloyd, Capacity of the noisy quantum channel, Phys. Rev. A 55, 1613 (1997), arXiv:quant-ph/​9604015.
https:/​/​doi.org/​10.1103/​PhysRevA.55.1613
arXiv:quant-ph/9604015

[58] P. W. Shor, The quantum channel capacity and coherent information, in Lecture notes, MSRI Workshop on Quantum Computation (2002).

[59] I. Devetak, The private classical capacity and quantum capacity of a quantum channel, IEEE Trans. Inf. Theory 51, 44 (2005), arXiv:quant-ph/​0304127.
https:/​/​doi.org/​10.1109/​TIT.2004.839515
arXiv:quant-ph/0304127

[60] J. Wechs, H. Dourdent, A. A. Abbott, and C. Branciard, in preparation.

Cited by

[1] Matt Wilson and Giulio Chiribella, "A Diagrammatic Approach to Information Transmission in Generalised Switches", Electronic Proceedings in Theoretical Computer Science 340, 333 (2021).

[2] Jian Wei Cheong, Andri Pradana, and Lock Yue Chew, "Communication advantage of quantum compositions of channels from non-Markovianity", Physical Review A 106 5, 052410 (2022).

[3] Giulia Rubino, Lee A. Rozema, Daniel Ebler, Hlér Kristjánsson, Sina Salek, Philippe Allard Guérin, Alastair A. Abbott, Cyril Branciard, Časlav Brukner, Giulio Chiribella, and Philip Walther, "Experimental quantum communication enhancement by superposing trajectories", Physical Review Research 3 1, 013093 (2021).

[4] L M Procopio, "Parameter Estimation via Indefinite Causal Structures", Journal of Physics: Conference Series 2448 1, 012007 (2023).

[5] Giulio Chiribella, Matt Wilson, and H. F. Chau, "Quantum and Classical Data Transmission through Completely Depolarizing Channels in a Superposition of Cyclic Orders", Physical Review Letters 127 19, 190502 (2021).

[6] Matt Wilson and Giulio Chiribella, "Causality in Higher Order Process Theories", Electronic Proceedings in Theoretical Computer Science 343, 265 (2021).

[7] Wenbo Shi and Robert Malaney, "Entanglement of Signal Paths via Noisy Superconducting Quantum Devices", Entropy 25 1, 153 (2023).

[8] François Chapeau-Blondeau, "Modeling and Simulation of a Quantum Thermal Noise on the Qubit", Fluctuation and Noise Letters 21 06, 2250060 (2022).

[9] Zixuan Liu, Ming Yang, and Giulio Chiribella, "Quantum communication through devices with indefinite input-output direction", New Journal of Physics 25 4, 043017 (2023).

[10] Teodor Strömberg, Peter Schiansky, Marco Túlio Quintino, Michael Antesberger, Lee A. Rozema, Iris Agresti, Časlav Brukner, and Philip Walther, "Experimental superposition of a quantum evolution with its time reverse", Physical Review Research 6 2, 023071 (2024).

[11] Joshua Foo, Sho Onoe, Robert B. Mann, and Magdalena Zych, "Thermality, causality, and the quantum-controlled Unruh–deWitt detector", Physical Review Research 3 4, 043056 (2021).

[12] Masashi Ban, "Quantum correlations of two qubits indefinitely interacting with dephasing environments", Quantum Information Processing 21 7, 231 (2022).

[13] Matheus Capela, Harshit Verma, Fabio Costa, and Lucas C. Céleri, "Reassessing thermodynamic advantage from indefinite causal order", Physical Review A 107 6, 062208 (2023).

[14] Jorge Miguel-Ramiro, Zheng Shi, Luca Dellantonio, Albie Chan, Christine A. Muschik, and Wolfgang Dür, "Enhancing quantum computation via superposition of quantum gates", Physical Review A 108 6, 062604 (2023).

[15] Laurie Letertre, "Causal nonseparability and its implications for spatiotemporal relations", Studies in History and Philosophy of Science 95, 64 (2022).

[16] Huan-Yu Ku, Hao-Cheng Weng, Yen-An Shih, Po-Chen Kuo, Neill Lambert, Franco Nori, Chih-Sung Chuu, and Yueh-Nan Chen, "Hidden nonmacrorealism: Reviving the Leggett-Garg inequality with stochastic operations", Physical Review Research 3 4, 043083 (2021).

[17] Hlér Kristjánsson, Wenxu Mao, and Giulio Chiribella, "Witnessing latent time correlations with a single quantum particle", Physical Review Research 3 4, 043147 (2021).

[18] Jhen-Dong Lin, Ching-Yu Huang, Neill Lambert, Guang-Yin Chen, Franco Nori, and Yueh-Nan Chen, "Space-time dual quantum Zeno effect: Interferometric engineering of open quantum system dynamics", Physical Review Research 4 3, 033143 (2022).

[19] Simon Milz, Dominic Jurkschat, Felix A. Pollock, and Kavan Modi, "Delayed-choice causal order and nonclassical correlations", Physical Review Research 3 2, 023028 (2021).

[20] Francisco Delgado, "Symmetries of Quantum Fisher Information as Parameter Estimator for Pauli Channels under Indefinite Causal Order", Symmetry 14 9, 1813 (2022).

[21] Arindam Mitra, Himanshu Badhani, and Sibasish Ghosh, "Improvement in quantum communication using quantum switch", Physica Scripta 98 4, 045101 (2023).

[22] Marcello Caleffi, Kyrylo Simonov, and Angela Sara Cacciapuoti, "Beyond Shannon Limits: Quantum Communications Through Quantum Paths", IEEE Journal on Selected Areas in Communications 41 8, 2707 (2023).

[23] Yujie Zhang, Xinan Chen, and Eric Chitambar, "Building Multiple Access Channels with a Single Particle", Quantum 6, 653 (2022).

[24] Gaoyan Zhu, Yuanbo Chen, Yoshihiko Hasegawa, and Peng Xue, "Charging Quantum Batteries via Indefinite Causal Order: Theory and Experiment", Physical Review Letters 131 24, 240401 (2023).

[25] Feng-Jui Chan, Yi-Te Huang, Jhen-Dong Lin, Huan-Yu Ku, Jui-Sheng Chen, Hong-Bin Chen, and Yueh-Nan Chen, "Maxwell's two-demon engine under pure dephasing noise", Physical Review A 106 5, 052201 (2022).

[26] Giulio Chiribella, Manik Banik, Some Sankar Bhattacharya, Tamal Guha, Mir Alimuddin, Arup Roy, Sutapa Saha, Sristy Agrawal, and Guruprasad Kar, "Indefinite causal order enables perfect quantum communication with zero capacity channels", New Journal of Physics 23 3, 033039 (2021).

[27] Nick Ormrod, Augustin Vanrietvelde, and Jonathan Barrett, "Causal structure in the presence of sectorial constraints, with application to the quantum switch", Quantum 7, 1028 (2023).

[28] Martin J. Renner and Časlav Brukner, "Computational Advantage from a Quantum Superposition of Qubit Gate Orders", Physical Review Letters 128 23, 230503 (2022).

[29] Seid Koudia, Angela Sara Cacciapuoti, Kyrylo Simonov, and Marcello Caleffi, "How Deep the Theory of Quantum Communications Goes: Superadditivity, Superactivation and Causal Activation", IEEE Communications Surveys & Tutorials 24 4, 1926 (2022).

[30] Jian Wei Cheong, Andri Pradana, and Lock Yue Chew, "Effects of non-Markovianity on daemonic ergotropy in the quantum switch", Physical Review A 108 1, 012201 (2023).

[31] Daryus Chandra, Marcello Caleffi, and Angela Sara Cacciapuoti, "The Entanglement-Assisted Communication Capacity Over Quantum Trajectories", IEEE Transactions on Wireless Communications 21 6, 3632 (2022).

[32] Xiangjing Liu, Daniel Ebler, and Oscar Dahlsten, "Thermodynamics of Quantum Switch Information Capacity Activation", Physical Review Letters 129 23, 230604 (2022).

[33] Sk Sazim, Michal Sedlak, Kratveer Singh, and Arun Kumar Pati, "Classical communication with indefinite causal order for N completely depolarizing channels", Physical Review A 103 6, 062610 (2021).

[34] Augustin Vanrietvelde, Hlér Kristjánsson, and Jonathan Barrett, "Routed quantum circuits", Quantum 5, 503 (2021).

[35] Martin J. Renner and Časlav Brukner, "Reassessing the computational advantage of quantum-controlled ordering of gates", Physical Review Research 3 4, 043012 (2021).

[36] L. O. Castaños-Cervantes, Lorenzo M. Procopio, and Marco Enríquez, "Coherent control of two Jaynes–Cummings cavities", Scientific Reports 14 1, 3790 (2024).

[37] Zai Zuo, Michael Hanks, and M. S. Kim, "Coherent control of the causal order of entanglement distillation", Physical Review A 108 6, 062601 (2023).

[38] François Chapeau-Blondeau, "Noisy quantum metrology with the assistance of indefinite causal order", Physical Review A 103 3, 032615 (2021).

[39] Lorenzo M. Procopio, Francisco Delgado, Marco Enríquez, and Nadia Belabas, "Multifold behavior of the information transmission by the quantum 3-switch", Quantum Information Processing 20 6, 219 (2021).

[40] Huan-Yu Ku, Kuan-Yi Lee, Po-Rong Lai, Jhen-Dong Lin, and Yueh-Nan Chen, "Coherent activation of a steerability-breaking channel", Physical Review A 107 4, 042415 (2023).

[41] Jorge Miguel-Ramiro, Zheng Shi, Luca Dellantonio, Albie Chan, Christine A. Muschik, and Wolfgang Dür, "Superposed Quantum Error Mitigation", Physical Review Letters 131 23, 230601 (2023).

[42] Sebastian Horvat, Xiaoqin Gao, and Borivoje Dakić, "Universal quantum computation via quantum controlled classical operations", Journal of Physics A: Mathematical and Theoretical 55 7, 075301 (2022).

[43] Francisco Delgado, "Parametric Symmetries in Architectures Involving Indefinite Causal Order and Path Superposition for Quantum Parameter Estimation of Pauli Channels", Symmetry 15 5, 1097 (2023).

[44] Koji Azuma, Stefan Bäuml, Tim Coopmans, David Elkouss, and Boxi Li, "Tools for quantum network design", AVS Quantum Science 3 1, 014101 (2021).

[45] Debarshi Das and Somshubhro Bandyopadhyay, "Quantum communication using a quantum switch of quantum switches", Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 478 2266, 20220231 (2022).

[46] Some Sankar Bhattacharya, Ananda G. Maity, Tamal Guha, Giulio Chiribella, and Manik Banik, "Random-Receiver Quantum Communication", PRX Quantum 2 2, 020350 (2021).

[47] Jhen-Dong Lin and Yueh-Nan Chen, "Boosting entanglement growth of many-body localization by superpositions of disorder", Physical Review A 108 2, 022203 (2023).

[48] Kuan-Yi Lee, Jhen-Dong Lin, Adam Miranowicz, Franco Nori, Huan-Yu Ku, and Yueh-Nan Chen, "Steering-enhanced quantum metrology using superpositions of noisy phase shifts", Physical Review Research 5 1, 013103 (2023).

[49] Abdelkader El Makouri, Abdallah Slaoui, and Rachid Ahl Laamara, "Monitored nonadiabatic and coherent-controlled quantum unital Otto heat engines: First four cumulants", Physical Review E 108 4, 044114 (2023).

[50] François Chapeau-Blondeau, "Quantum parameter estimation on coherently superposed noisy channels", Physical Review A 104 3, 032214 (2021).

[51] Otavio A. D. Molitor and Łukasz Rudnicki, "Quantum Switch as a Thermodynamic Resource in the Context of Passive States", Entropy 26 2, 153 (2024).

[52] Márcio M. Taddei, Jaime Cariñe, Daniel Martínez, Tania García, Nayda Guerrero, Alastair A. Abbott, Mateus Araújo, Cyril Branciard, Esteban S. Gómez, Stephen P. Walborn, Leandro Aolita, and Gustavo Lima, "Computational Advantage from the Quantum Superposition of Multiple Temporal Orders of Photonic Gates", PRX Quantum 2 1, 010320 (2021).

[53] Arthur O. T. Pang, Noah Lupu-Gladstein, Hugo Ferretti, Y. Batuhan Yilmaz, Aharon Brodutch, and Aephraim M. Steinberg, "Experimental Communication Through Superposition of Quantum Channels", Quantum 7, 1125 (2023).

[54] Giulio Chiribella and Zixuan Liu, "Quantum operations with indefinite time direction", Communications Physics 5 1, 190 (2022).

[55] Julian Wechs, Hippolyte Dourdent, Alastair A. Abbott, and Cyril Branciard, "Quantum Circuits with Classical Versus Quantum Control of Causal Order", PRX Quantum 2 3, 030335 (2021).

[56] Meena Raveesh, Armand Dominguez, Mark Linne, Joakim Bood, and Ali Hosseinnia, "Interferometric quantum control (IQC) by fs/ns rotational coherent anti-Stokes Raman spectroscopy (RCARS)", Optics Express 31 23, 38064 (2023).

[57] Tamal Guha, Saptarshi Roy, and Giulio Chiribella, "Quantum networks boosted by entanglement with a control system", Physical Review Research 5 3, 033214 (2023).

[58] Yu Guo, Zixuan Liu, Hao Tang, Xiao-Min Hu, Bi-Heng Liu, Yun-Feng Huang, Chuan-Feng Li, Guang-Can Guo, and Giulio Chiribella, "Experimental Demonstration of Input-Output Indefiniteness in a Single Quantum Device", Physical Review Letters 132 16, 160201 (2024).

[59] Yu Guo, Xiao-Min Hu, Zhi-Bo Hou, Huan Cao, Jin-Ming Cui, Bi-Heng Liu, Yun-Feng Huang, Chuan-Feng Li, Guang-Can Guo, and Giulio Chiribella, "Experimental Transmission of Quantum Information Using a Superposition of Causal Orders", Physical Review Letters 124 3, 030502 (2020).

[60] Giulio Chiribella and Hlér Kristjánsson, "Quantum Shannon theory with superpositions of trajectories", Proceedings of the Royal Society of London Series A 475 2225, 20180903 (2019).

[61] Nicolas Loizeau and Alexei Grinbaum, "Channel capacity enhancement with indefinite causal order", Physical Review A 101 1, 012340 (2020).

[62] Philippe Allard Guérin, Giulia Rubino, and Časlav Brukner, "Communication through quantum-controlled noise", Physical Review A 99 6, 062317 (2019).

[63] K. Goswami, Y. Cao, G. A. Paz-Silva, J. Romero, and A. G. White, "Increasing communication capacity via superposition of order", Physical Review Research 2 3, 033292 (2020).

[64] Lorenzo M. Procopio, Francisco Delgado, Marco Enríquez, Nadia Belabas, and Juan Ariel Levenson, "Sending classical information via three noisy channels in superposition of causal orders", Physical Review A 101 1, 012346 (2020).

[65] Lorenzo M. Procopio, Francisco Delgado, Marco Enríquez, Nadia Belabas, and Juan Ariel Levenson, "Communication Enhancement through Quantum Coherent Control of N Channels in an Indefinite Causal-Order Scenario", Entropy 21 10, 1012 (2019).

[66] K. Goswami and J. Romero, "Experiments on quantum causality", AVS Quantum Science 2 3, 037101 (2020).

[67] Joshua Foo, Sho Onoe, and Magdalena Zych, "Unruh-deWitt detectors in quantum superpositions of trajectories", Physical Review D 102 8, 085013 (2020).

[68] Tamal Guha, Mir Alimuddin, and Preeti Parashar, "Thermodynamic advancement in the causally inseparable occurrence of thermal maps", Physical Review A 102 3, 032215 (2020).

[69] K. Goswami, Y. Cao, G. A. Paz-Silva, J. Romero, and A. G. White, "Communicating via ignorance: Increasing communication capacity via superposition of order", arXiv:1807.07383, (2018).

[70] Qingxiuxiong Dong, Shojun Nakayama, Akihito Soeda, and Mio Murao, "Controlled quantum operations and combs, and their applications to universal controllization of divisible unitary operations", arXiv:1911.01645, (2019).

[71] Márcio M. Taddei, Jaime Cariñe, Daniel Martínez, Tania García, Nayda Guerrero, Alastair A. Abbott, Mateus Araújo, Cyril Branciard, Esteban S. Gómez, Stephen P. Walborn, Leandro Aolita, and Gustavo Lima, "Computational advantage from quantum superposition of multiple temporal orders of photonic gates", arXiv:2002.07817, (2020).

[72] Yu Guo, Xiao-Min Hu, Zhi-Bo Hou, Huan Cao, Jin-Ming Cui, Bi-Heng Liu, Yun-Feng Huang, Chuan-Feng Li, Guang-Can Guo, and Giulio Chiribella, "Experimental transmission of quantum information using a superposition of causal orders", arXiv:1811.07526, (2018).

[73] John Burniston, Michael Grabowecky, Carlo Maria Scandolo, Giulio Chiribella, and Gilad Gour, "Necessary and sufficient conditions on measurements of quantum channels", Proceedings of the Royal Society of London Series A 476 2236, 20190832 (2020).

[74] Alexandre Clément and Simon Perdrix, "PBS-Calculus: A Graphical Language for Coherent Control of Quantum Computations", arXiv:2002.09387, (2020).

[75] Masashi Ban, "Relaxation process of a two-level system in a coherent superposition of two environments", Quantum Information Processing 19 10, 351 (2020).

[76] Masashi Ban, "Decoherence of a two-level system in a coherent superposition of two dephasing environments", Quantum Information Processing 19 11, 409 (2020).

[77] Augustin Vanrietvelde and Giulio Chiribella, "Universal control of quantum processes using sector-preserving channels", arXiv:2106.12463, (2021).

[78] Matt Wilson and Augustin Vanrietvelde, "Composable constraints", arXiv:2112.06818, (2021).

[79] Mark M. Wilde, "Coherent Quantum Channel Discrimination", arXiv:2001.02668, (2020).

[80] Philippe Allard Guérin, Giulia Rubino, and Časlav Brukner, "Communication through quantum-controlled noise", arXiv:1812.06848, (2018).

[81] Masashi Ban, "Two-qubit correlation in two independent environments with indefiniteness", Physics Letters A 385, 126936 (2021).

[82] Masashi Ban, "Non-classicality created by quantum channels with indefinite causal order", Physics Letters A 402, 127381 (2021).

[83] Nicola Pinzani and Stefano Gogioso, "Giving Operational Meaning to the Superposition of Causal Orders", arXiv:2003.13306, (2020).

[84] Manish K. Gupta and Ujjwal Sen, "Transmitting quantum information by superposing causal order of mutually unbiased measurements", arXiv:1909.13125, (2019).

[85] Yidong Liao, Daniel Ebler, Feiyang Liu, and Oscar Dahlsten, "Quantum speed-up in global optimization of binary neural nets", New Journal of Physics 23 6, 063013 (2021).

[86] Indrakshi Dey and Nicola Marchetti, "Entanglement Distribution and Quantum Teleportation in Higher Dimension over the Superposition of Causal Orders of Quantum Channels", arXiv:2303.10683, (2023).

[87] Cyril Branciard, Alexandre Clément, Mehdi Mhalla, and Simon Perdrix, "Coherent control and distinguishability of quantum channels via PBS-diagrams", arXiv:2103.02073, (2021).

[88] Alexandre Clément and Simon Perdrix, "Resource Optimisation of Coherently Controlled Quantum Computations with the PBS-calculus", arXiv:2202.05260, (2022).

[89] Marcello Caleffi and Angela Sara Cacciapuoti, "Quantum Switch for the Quantum Internet: Noiseless Communications through Noisy Channels", arXiv:1907.07432, (2019).

The above citations are from Crossref's cited-by service (last updated successfully 2024-05-17 20:23:26) and SAO/NASA ADS (last updated successfully 2024-05-17 20:23:28). The list may be incomplete as not all publishers provide suitable and complete citation data.