Kitaev’s quantum double model as an error correcting code

Shawn X. Cui1, Dawei Ding2, Xizhi Han2, Geoffrey Penington2, Daniel Ranard2, Brandon C. Rayhaun2, and Zhou Shangnan2

1Departments of Mathematics, Physics and Astronomy, Purdue University, West Lafayette, IN 47907
2Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Kitaev's quantum double models in 2D provide some of the most commonly studied examples of topological quantum order. In particular, the ground space is thought to yield a quantum error-correcting code. We offer an explicit proof that this is the case for arbitrary finite groups. Actually a stronger claim is shown: any two states with zero energy density in some contractible region must have the same reduced state in that region. Alternatively, the local properties of a gauge-invariant state are fully determined by specifying that its holonomies in the region are trivial. We contrast this result with the fact that local properties of gauge-invariant states are not generally determined by specifying all of their non-Abelian fluxes --- that is, the Wilson loops of lattice gauge theory do not form a complete commuting set of observables. We also note that the methods developed by P. Naaijkens (PhD thesis, 2012) under a different context can be adapted to provide another proof of the error correcting property of Kitaev's model. Finally, we compute the topological entanglement entropy in Kitaev's model, and show, contrary to previous claims in the literature, that it does not depend on whether the ``log dim R'' term is included in the definition of entanglement entropy.

► BibTeX data

► References

[1] R Alicki, M Fannes, and M Horodecki. A statistical mechanics view on Kitaev's proposal for quantum memories. Journal of Physics A: Mathematical and Theoretical, 40 (24): 6451, 2007. 10.1088/​1751-8113/​40/​24/​012.
https:/​/​doi.org/​10.1088/​1751-8113/​40/​24/​012

[2] Sven Bachmann. Local disorder, topological ground state degeneracy and entanglement entropy, and discrete anyons. Reviews in Mathematical Physics, 29 (06): 1750018, 2017. 10.1142/​S0129055X17500180.
https:/​/​doi.org/​10.1142/​S0129055X17500180

[3] John C Baez. Spin networks in gauge theory. Advances in Mathematics, 117 (2): 253–272, 1996. 10.1006/​aima.1996.0012.
https:/​/​doi.org/​10.1006/​aima.1996.0012

[4] Sergey Bravyi and Matthew B Hastings. A short proof of stability of topological order under local perturbations. Communications in mathematical physics, 307 (3): 609, 2011. 10.1007/​s00220-011-1346-2.
https:/​/​doi.org/​10.1007/​s00220-011-1346-2

[5] Sergey Bravyi, Matthew B Hastings, and Spyridon Michalakis. Topological quantum order: stability under local perturbations. Journal of mathematical physics, 51 (9): 093512, 2010. 10.1063/​1.3490195.
https:/​/​doi.org/​10.1063/​1.3490195

[6] Oliver Buerschaper and Miguel Aguado. Mapping Kitaev's quantum double lattice models to Levin and Wen's string-net models. Physical Review B, 80 (15): 155136, 2009. 10.1103/​PhysRevB.80.155136.
https:/​/​doi.org/​10.1103/​PhysRevB.80.155136

[7] Oliver Buerschaper, Juan Martín Mombelli, Matthias Christandl, and Miguel Aguado. A hierarchy of topological tensor network states. Journal of Mathematical Physics, 54 (1): 012201, 2013. 10.1063/​1.4773316.
https:/​/​doi.org/​10.1063/​1.4773316

[8] Horacio Casini, Marina Huerta, and José Alejandro Rosabal. Remarks on entanglement entropy for gauge fields. Physical Review D, 89 (8): 085012, 2014. 10.1103/​PhysRevD.89.085012.
https:/​/​doi.org/​10.1103/​PhysRevD.89.085012

[9] Matthew Cha, Pieter Naaijkens, and Bruno Nachtergaele. The complete set of infinite volume ground states for Kitaev's Abelian quantum double models. Communications in Mathematical Physics, 357 (1): 125–157, 2018. 10.1007/​s00220-017-2989-4.
https:/​/​doi.org/​10.1007/​s00220-017-2989-4

[10] Liang Chang. Kitaev models based on unitary quantum groupoids. Journal of Mathematical Physics, 55 (4): 041703, 2014. 10.1063/​1.4869326.
https:/​/​doi.org/​10.1063/​1.4869326

[11] Michael H Freedman, Michael Larsen, and Zhenghan Wang. A modular functor which is universal for quantum computation. Communications in Mathematical Physics, 227 (3): 605–622, 2002. 10.1007/​s002200200645.
https:/​/​doi.org/​10.1007/​s002200200645

[12] Davide Gaiotto, Anton Kapustin, Nathan Seiberg, and Brian Willett. Generalized global symmetries. Journal of High Energy Physics, 2015 (2): 172, 2015. 10.1007/​JHEP02(2015)172.
https:/​/​doi.org/​10.1007/​JHEP02(2015)172

[13] A Yu Kitaev. Fault-tolerant quantum computation by anyons. Annals of Physics, 303 (1): 2–30, 2003. 10.1016/​S0003-4916(02)00018-0.
https:/​/​doi.org/​10.1016/​S0003-4916(02)00018-0

[14] Alexei Kitaev and John Preskill. Topological entanglement entropy. Phys. Rev. Lett., 96: 110404, 2006. 10.1103/​PhysRevLett.96.110404.
https:/​/​doi.org/​10.1103/​PhysRevLett.96.110404

[15] Michael Levin and Xiao-Gang Wen. Detecting topological order in a ground state wave function. Physical review letters, 96 (11): 110405, 2006. 10.1103/​PhysRevLett.96.110405.
https:/​/​doi.org/​10.1103/​PhysRevLett.96.110405

[16] Michael A Levin and Xiao-Gang Wen. String-net condensation: A physical mechanism for topological phases. Physical Review B, 71 (4): 045110, 2005. 10.1103/​PhysRevB.71.045110.
https:/​/​doi.org/​10.1103/​PhysRevB.71.045110

[17] Jennifer Lin and Ðorđe Radičević. Comments on defining entanglement entropy. Nuclear Physics B, 958: 115118, 2020. 10.1016/​j.nuclphysb.2020.115118.
https:/​/​doi.org/​10.1016/​j.nuclphysb.2020.115118

[18] Edward A Mazenc and Daniel Ranard. Target space entanglement entropy. arXiv preprint arXiv:1910.07449, 2019. URL https:/​/​arxiv.org/​abs/​1910.07449.
arXiv:1910.07449

[19] Pieter Naaijkens. Anyons in infinite quantum systems: QFT in $d= 2+ 1$ and the toric code. PhD thesis, Radboud Universiteit Nijmegen, 2012. URL https:/​/​hdl.handle.net/​2066/​92737.
https:/​/​hdl.handle.net/​2066/​92737

[20] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, New York, NY, USA, 10th edition, 2011. ISBN 1107002176, 9781107002173. 10.1119/​1.1463744.
https:/​/​doi.org/​10.1119/​1.1463744

[21] Masanori Ohya and Dénes Petz. Quantum entropy and its use. Springer Science & Business Media, 2004. 10.1016/​0079-6727(95)90032-2.
https:/​/​doi.org/​10.1016/​0079-6727(95)90032-2

[22] Norbert Schuch, Frank Verstraete, and J Ignacio Cirac. Nonlocal resources in the presence of superselection rules. Physical review letters, 92 (8): 087904, 2004. 10.1103/​PhysRevLett.92.087904.
https:/​/​doi.org/​10.1103/​PhysRevLett.92.087904

[23] Ambar Sengupta. Gauge invariant functions of connections. Proceedings of the American Mathematical Society, 121 (3): 897–905, 1994. 10.1090/​S0002-9939-1994-1215205-7.
https:/​/​doi.org/​10.1090/​S0002-9939-1994-1215205-7

[24] Ronak M Soni and Sandip P Trivedi. Aspects of entanglement entropy for gauge theories. Journal of High Energy Physics, 2016 (1): 136, 2016. 10.1007/​JHEP01(2016)136.
https:/​/​doi.org/​10.1007/​JHEP01(2016)136

[25] Karel Van Acoleyen, Nick Bultinck, Jutho Haegeman, Michael Marien, Volkher B Scholz, and Frank Verstraete. Entanglement of distillation for lattice gauge theories. Physical Review Letters, 117 (13): 131602, 2016. 10.1103/​PhysRevLett.117.131602.
https:/​/​doi.org/​10.1103/​PhysRevLett.117.131602

[26] GE Wall. Finite groups with class-preserving outer automorphisms. Journal of the London Mathematical Society, 1 (4): 315–320, 1947. 10.1112/​jlms/​s1-22.4.315.
https:/​/​doi.org/​10.1112/​jlms/​s1-22.4.315

[27] Gabriel Wong. A note on entanglement edge modes in Chern Simons theory. Journal of High Energy Physics, 2018 (8): 20, 2018. 10.1007/​JHEP08(2018)020.
https:/​/​doi.org/​10.1007/​JHEP08(2018)020

Cited by

[1] Yang Qiu and Zhenghan Wang, "Ground Subspaces of Topological Phases of Matter as Error Correcting Codes", arXiv:2004.11982.

The above citations are from SAO/NASA ADS (last updated successfully 2020-10-19 16:43:49). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2020-10-19 16:43:47).