Efficient variational contraction of two-dimensional tensor networks with a non-trivial unit cell

A. Nietner1,2, B. Vanhecke3, F. Verstraete3, J. Eisert1,2, and L. Vanderstraeten3

1Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, D-14195 Berlin, Germany
2Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
3Department of Physics and Astronomy, University of Ghent, Krijgslaan 281, 9000 Gent, Belgium

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Tensor network states provide an efficient class of states that faithfully capture strongly correlated quantum models and systems in classical statistical mechanics. While tensor networks can now be seen as becoming standard tools in the description of such complex many-body systems, close to optimal variational principles based on such states are less obvious to come by. In this work, we generalize a recently proposed variational uniform matrix product state algorithm for capturing one-dimensional quantum lattices in the thermodynamic limit, to the study of regular two-dimensional tensor networks with a non-trivial unit cell. A key property of the algorithm is a computational effort that scales linearly rather than exponentially in the size of the unit cell. We demonstrate the performance of our approach on the computation of the classical partition functions of the antiferromagnetic Ising model and interacting dimers on the square lattice, as well as of a quantum doped resonating valence bond state.

► BibTeX data

► References

[1] S. R. White. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett., 69: 2863–2866, Nov 1992. 10.1103/​PhysRevLett.69.2863.

[2] F. Verstraete, J. I. Cirac, and V. Murg. Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems. Adv. Phys., 57: 143, 2008. 10.1080/​14789940801912366.

[3] R. Orús. A practical introduction to tensor networks: Matrix product states and projected entangled pair states. Ann. Phys., 349: 117–158, 2014. 10.1016/​j.aop.2014.06.013.

[4] N. Schuch. Lecture notes for the 44th IFF Spring School ``Quantum Information Processing'' in Juelich, 2013.

[5] J. Eisert. Entanglement and tensor network states. Modeling and Simulation, 3: 520, 2013. https:/​/​arxiv.org/​abs/​1308.3318.

[6] J. C. Bridgeman and C. T. Chubb. Hand-waving and interpretive dance: An introductory course on tensor networks. J. Phys. A, 50: 223001, 2017. 10.1088/​1751-8121/​aa6dc3.

[7] U. Schollwöck. The density-matrix renormalization group in the age of matrix product states. Ann. Phys., 326 (1): 96 – 192, 2011. ISSN 0003-4916. https:/​/​doi.org/​10.1016/​j.aop.2010.09.012.

[8] F. Pollmann and A. M. Turner. Detection of symmetry-protected topological phases in one dimension. Phys. Rev. B, 86: 125441, 2012. 10.1103/​PhysRevB.86.125441.

[9] N. Schuch, D. Pérez-García, and I. Cirac. Classifying quantum phases using matrix product states and projected entangled pair states. Phys. Rev. B, 84: 165139, Oct 2011. 10.1103/​PhysRevB.84.165139.

[10] A. Nietner, C. Krumnow, E. J. Bergholtz, and J. Eisert. Composite symmetry-protected topological order and effective models. Phys. Rev. B, 96: 235138, 2017. 10.1103/​PhysRevB.96.235138.

[11] P. Corboz and F. Mila. Crystals of bound states in the magnetization plateaus of the shastry-sutherland model. Phys. Rev. Lett., 112: 147203, Apr 2014. 10.1103/​PhysRevLett.112.147203.

[12] P. Corboz, T. M. Rice, and M. Troyer. Competing states in the $t$-$j$ model: Uniform $d$-wave state versus stripe state. Phys. Rev. Lett., 113: 046402, Jul 2014. 10.1103/​PhysRevLett.113.046402.

[13] L. Vanderstraeten, J. Haegeman, P. Corboz, and F. Verstraete. Gradient methods for variational optimization of projected entangled-pair states. Phys. Rev. B, 94: 155123, Oct 2016. 10.1103/​PhysRevB.94.155123.

[14] A. Kshetrimayum, C. Balz, B. Lake, and J. Eisert. Tensor network investigation of the double layer Kagome compound $\mathrm{Ca}_{10}\mathrm{Cr}_{7}\mathrm{O}_{28}$. 2019a. https:/​/​arxiv.org/​abs/​1904.00028.

[15] P. Czarnik, J. Dziarmaga, and P. Corboz. Time evolution of an infinite projected entangled pair state: An efficient algorithm. Phys. Rev. B, 99: 035115, Jan 2019. 10.1103/​PhysRevB.99.035115.

[16] C. Hubig and J. I. Cirac. Time-dependent study of disordered models with infinite projected entangled pair states. SciPost Phys., 6: 31, 2019. 10.21468/​SciPostPhys.6.3.031.

[17] A. Kshetrimayum, M. Goihl, and J. Eisert. Time evolution of many-body localized systems in two spatial dimensions. 2019b. https:/​/​arxiv.org/​abs/​1910.11359.

[18] L. Vanderstraeten, M. Mariën, F. Verstraete, and J. Haegeman. Excitations and the tangent space of projected entangled-pair states. Phys. Rev. B, 92: 201111, Nov 2015. 10.1103/​PhysRevB.92.201111.

[19] L. Vanderstraeten, J. Haegeman, and F. Verstraete. Simulating excitation spectra with projected entangled-pair states. Phys. Rev. B, 99: 165121, Apr 2019a. 10.1103/​PhysRevB.99.165121.

[20] A. Kshetrimayum, M. Rizzi, J. Eisert, and R. Orús. Tensor network annealing algorithm for two-dimensional thermal states. Phys. Rev. Lett., 122: 070502, Feb 2019c. 10.1103/​PhysRevLett.122.070502.

[21] Piotr Czarnik, Lukasz Cincio, and Jacek Dziarmaga. Projected entangled pair states at finite temperature: Imaginary time evolution with ancillas. Phys. Rev. B, 86: 245101, Dec 2012. 10.1103/​PhysRevB.86.245101.

[22] A. Kshetrimayum, H. Weimer, and R. Orus. A simple tensor network algorithm for 2d steady states. Nature Comm., 8: 1291, 2017. 10.1038/​s41467-017-01511-6.

[23] T. Nishino. Density matrix renormalization group method for 2d classical models. J. Phys. Soc. Jap., 64 (10): 3598–3601, 1995. 10.1143/​JPSJ.64.3598.

[24] T. Nishino, Y. Hieida, K. Okunishi, N. Maeshima, Y. Akutsu, and A. Gendiar. Two-dimensional tensor product variational formulation. Prog. Th. Phys., 105 (3): 409–417, 03 2001. 10.1143/​PTP.105.409.

[25] L. Vanderstraeten, B. Vanhecke, and F. Verstraete. Residual entropies for three-dimensional frustrated spin systems with tensor networks. Phys. Rev. E, 98: 042145, Oct 2018. 10.1103/​PhysRevE.98.042145.

[26] M. Levin and Cody P. Nave. Tensor renormalization group approach to two-dimensional classical lattice models. Phys. Rev. Lett., 99: 120601, Sep 2007. 10.1103/​PhysRevLett.99.120601.

[27] Z. Y. Xie, J. Chen, M. P. Qin, J. W. Zhu, L. P. Yang, and T. Xiang. Coarse-graining renormalization by higher-order singular value decomposition. Phys. Rev. B, 86: 045139, Jul 2012. 10.1103/​PhysRevB.86.045139.

[28] G. Evenbly and G. Vidal. Tensor network renormalization. Phys. Rev. Lett., 115: 180405, Oct 2015. 10.1103/​PhysRevLett.115.180405.

[29] S. Yang, Z.-G. Gu, and X.-G. Wen. Loop optimization for tensor network renormalization. Phys. Rev. Lett., 118: 110504, Mar 2017. 10.1103/​PhysRevLett.118.110504.

[30] M. Bal, M. Mariën, J. Haegeman, and F. Verstraete. Renormalization group flows of hamiltonians using tensor networks. Phys. Rev. Lett., 118: 250602, Jun 2017. 10.1103/​PhysRevLett.118.250602.

[31] M. Hauru, C. Delcamp, and S. Mizera. Renormalization of tensor networks using graph-independent local truncations. Phys. Rev. B, 97: 045111, Jan 2018. 10.1103/​PhysRevB.97.045111.

[32] R. J. Baxter. Dimers on a rectangular lattice. J. Math. Phys., 9 (4): 650–654, 1968. 10.1063/​1.1664623.

[33] R. J. Baxter. Variational approximations for square lattice models in statistical mechanics. J. Stat. Phys., 19: 461–478, Nov 1978. ISSN 1572-9613. 10.1007/​BF01011693.

[34] T. Nishino and K. Okunishi. Corner transfer matrix renormalization group method. J. Phys. Soc. Jap., 65 (4): 891–894, 1996. 10.1143/​JPSJ.65.891.

[35] T. Nishino and K. Okunishi. Corner transfer matrix algorithm for classical renormalization group. J. Phys. Soc. Jap., 66 (10): 3040–3047, 1997. 10.1143/​JPSJ.66.3040.

[36] R. Orús and G. Vidal. Simulation of two-dimensional quantum systems on an infinite lattice revisited: Corner transfer matrix for tensor contraction. Phys. Rev. B, 80: 094403, Sep 2009. 10.1103/​PhysRevB.80.094403.

[37] P. Corboz, J. Jordan, and G. Vidal. Simulation of fermionic lattice models in two dimensions with projected entangled-pair states: Next-nearest neighbor hamiltonians. Phys. Rev. B, 82: 245119, Dec 2010. 10.1103/​PhysRevB.82.245119.

[38] Guifré Vidal. Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett., 91: 147902, Oct 2003. 10.1103/​PhysRevLett.91.147902.

[39] R. Orús and G. Vidal. Infinite time-evolving block decimation algorithm beyond unitary evolution. Phys. Rev. B, 78: 155117, Oct 2008. 10.1103/​PhysRevB.78.155117.

[40] Shi-Ju Ran. Ab initio optimization principle for the ground states of translationally invariant strongly correlated quantum lattice models. Phys. Rev. E, 93: 053310, May 2016. 10.1103/​PhysRevE.93.053310.

[41] Shi-Ju Ran, Emanuele Tirrito, Cheng Peng, Xi Chen, Gang Su, and Maciej Lewenstein. Tensor network contractions. Lecture Notes in Physics, 2020. 10.1007/​978-3-030-34489-4.

[42] V. Zauner-Stauber, L. Vanderstraeten, M. T. Fishman, F. Verstraete, and J. Haegeman. Variational optimization algorithms for uniform matrix product states. Phys. Rev. B, 97: 045145, Jan 2018. 10.1103/​PhysRevB.97.045145.

[43] J. Haegeman, C. Lubich, I. Oseledets, B. Vandereycken, and F. Verstraete. Unifying time evolution and optimization with matrix product states. Phys. Rev. B, 94: 165116, Oct 2016. 10.1103/​PhysRevB.94.165116.

[44] L. Vanderstraeten, J. Haegeman, and F. Verstraete. Tangent-space methods for uniform matrix product states. SciPost Phys. Lect. Notes, page 7, 2019b. 10.21468/​SciPostPhysLectNotes.7.

[45] M. T. Fishman, L. Vanderstraeten, V. Zauner-Stauber, J. Haegeman, and F. Verstraete. Faster methods for contracting infinite two-dimensional tensor networks. Phys. Rev. B, 98: 235148, Dec 2018. 10.1103/​PhysRevB.98.235148.

[46] P. Corboz, S. R. White, G. Vidal, and M. Troyer. Stripes in the two-dimensional $t$-$j$ model with infinite projected entangled-pair states. Phys. Rev. B, 84: 041108, Jul 2011. 10.1103/​PhysRevB.84.041108.

[47] A. Bauer, J. Eisert, and C. Wille. Towards a mathematical formalism for classifying phases of matter. 2019. https:/​/​arxiv.org/​abs/​1903.05413.

[48] M. B. Hastings and T. Koma. Spectral gap and exponential decay of correlations. Comm. Math. Phys., 265 (3): 781–804, 2006. 10.1007/​s00220-006-0030-4.

[49] F. G. S. L. Brandão and M. Horodecki. Exponential decay of correlations implies area law. Comm. Math. Phys., 333: 761–798, Jan 2015. ISSN 1432-0916. 10.1007/​s00220-014-2213-8.

[50] N. Schuch and F. Verstraete. Matrix product state approximations for infinite systems. 2017. https:/​/​arxiv.org/​abs/​1711.06559.

[51] Alexander M Dalzell and Fernando GSL Brandão. Locally accurate mps approximations for ground states of one-dimensional gapped local hamiltonians. Quantum, 3: 187, 2019. https:/​/​doi.org/​10.22331/​q-2019-09-23-187.

[52] Y. Huang. Approximating local properties by tensor network states with constant bond dimension. 2019. https:/​/​arxiv.org/​abs/​1903.10048.

[53] J. Haegeman, T. J. Osborne, and F. Verstraete. Post-matrix product state methods: To tangent space and beyond. Phys. Rev. B, 88: 075133, Aug 2013. 10.1103/​PhysRevB.88.075133.

[54] F. Alet, J. Lykke Jacobsen, G. Misguich, V. Pasquier, F. Mila, and M. Troyer. Interacting classical dimers on the square lattice. Phys. Rev. Lett., 94: 235702, Jun 2005. 10.1103/​PhysRevLett.94.235702.

[55] F. Alet, Y. Ikhlef, J. L. Jacobsen, G. Misguich, and V. Pasquier. Classical dimers with aligning interactions on the square lattice. Phys. Rev. E, 74: 041124, Oct 2006. 10.1103/​PhysRevE.74.041124.

[56] P. W. Kasteleyn. The statistics of dimers on a lattice: I. the number of dimer arrangements on a quadratic lattice. Physica, 27 (12): 1209 – 1225, 1961. ISSN 0031-8914. https:/​/​doi.org/​10.1016/​0031-8914(61)90063-5.

[57] H. N. V. Temperley and M. E. Fisher. Dimer problem in statistical mechanics-an exact result. Phil. Mag. A, 6 (68): 1061–1063, 1961. 10.1080/​14786436108243366.

[58] M. E. Fisher. Statistical mechanics of dimers on a plane lattice. Phys. Rev., 124: 1664–1672, Dec 1961. 10.1103/​PhysRev.124.1664.

[59] M. E. Fisher and John Stephenson. Statistical mechanics of dimers on a plane lattice. ii. dimer correlations and monomers. Phys. Rev., 132: 1411–1431, 1963. 10.1103/​PhysRev.132.1411.

[60] Y. Li, D. Wu, X. Huang, and C. Ding. Percolation of interacting classical dimers on the square lattice. Physica A, 404: 285 – 290, 2014. ISSN 0378-4371. https:/​/​doi.org/​10.1016/​j.physa.2014.02.076.

[61] N. Schuch, D. Poilblanc, J. I. Cirac, and D. Pérez-García. Resonating valence bond states in the PEPS formalism. Phys. Rev. B, 86: 115108, Sep 2012. 10.1103/​PhysRevB.86.115108.

[62] D. Poilblanc. Entanglement Hamiltonian of the quantum Néel state. J. Stat. Mech., 2014 (10): P10026, oct 2014. 10.1088/​1742-5468/​2014/​10/​p10026.

[63] D. Poilblanc, P. Corboz, N. Schuch, and J. I. Cirac. Resonating-valence-bond superconductors with fermionic projected entangled pair states. Phys. Rev. B, 89: 241106, Jun 2014. 10.1103/​PhysRevB.89.241106.

Cited by

[1] Augustine Kshetrimayum, Marcel Goihl, Dante M. Kennes, and Jens Eisert, "Quantum time crystals with programmable disorder in higher dimensions", arXiv:2004.07267.

[2] Joey Li, Amos Chan, and Thorsten B. Wahl, "Classification of symmetry-protected topological phases in two-dimensional many-body localized systems", Physical Review B 102 1, 014205 (2020).

The above citations are from SAO/NASA ADS (last updated successfully 2020-10-23 07:21:17). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2020-10-23 07:21:15).