Entanglement-breaking superchannels

Senrui Chen1,2 and Eric Chitambar3

1Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
2Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
3Department of Electrical and Computer Engineering, Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

In this paper we initiate the study of entanglement-breaking (EB) superchannels. These are processes that always yield separable maps when acting on one side of a bipartite completely positive (CP) map. EB superchannels are a generalization of the well-known EB channels. We give several equivalent characterizations of EB supermaps and superchannels. Unlike its channel counterpart, we find that not every EB superchannel can be implemented as a measure-and-prepare superchannel. We also demonstrate that many EB superchannels can be superactivated, in the sense that they can output non-separable channels when wired in series.
We then introduce the notions of CPTP- and CP-complete images of a superchannel, which capture deterministic and probabilistic channel convertibility, respectively. This allows us to characterize the power of EB superchannels for generating CP maps in different scenarios, and it reveals some fundamental differences between channels and superchannels. Finally, we relax the definition of separable channels to include $(p,q)$-non-entangling channels, which are bipartite channels that cannot generate entanglement using $p$- and $q$-dimensional ancillary systems. By introducing and investigating $k$-EB maps, we construct examples of $(p,q)$-EB superchannels that are not fully entanglement breaking. Partial results on the characterization of $(p,q)$-EB superchannels are also provided.

► BibTeX data

► References

[1] J. I. Cirac, W. Dür, B. Kraus, and M. Lewenstein. Entangling operations and their implementation using a small amount of entanglement. Phys. Rev. Lett., 86: 544–547, Jan 2001. 10.1103/​PhysRevLett.86.544.
https:/​/​doi.org/​10.1103/​PhysRevLett.86.544

[2] G. Chiribella, G. M. D'Ariano, and P. Perinotti. Transforming quantum operations: Quantum supermaps. EPL (Europhysics Letters), 83 (3): 30004, jul 2008a. 10.1209/​0295-5075/​83/​30004.
https:/​/​doi.org/​10.1209/​0295-5075/​83/​30004

[3] Michael Horodecki, Peter W. Shor, and Mary Beth Ruskai. Entanglement breaking channels. Reviews in Mathematical Physics, 15 (06): 629–641, 2003. 10.1142/​S0129055X03001709.
https:/​/​doi.org/​10.1142/​S0129055X03001709

[4] Eric Chitambar and Gilad Gour. Quantum resource theories. Rev. Mod. Phys., 91: 025001, Apr 2019. 10.1103/​RevModPhys.91.025001.
https:/​/​doi.org/​10.1103/​RevModPhys.91.025001

[5] Thomas Theurer, Dario Egloff, Lijian Zhang, and Martin B. Plenio. Quantifying operations with an application to coherence. Phys. Rev. Lett., 122: 190405, May 2019. 10.1103/​PhysRevLett.122.190405.
https:/​/​doi.org/​10.1103/​PhysRevLett.122.190405

[6] Graeme D Berk, Andrew JP Garner, Benjamin Yadin, Kavan Modi, and Felix A Pollock. Resource theories of multi-time processes: A window into quantum non-markovianity, 2019. arXiv:1907.07003.
arXiv:1907.07003

[7] Yunchao Liu and Xiao Yuan. Operational resource theory of quantum channels. Physical Review Research, 2 (1): 012035, 2020. 10.1103/​PhysRevResearch.2.012035.
https:/​/​doi.org/​10.1103/​PhysRevResearch.2.012035

[8] Zi-Wen Liu and Andreas Winter. Resource theories of quantum channels and the universal role of resource erasure. 2019. arXiv:1904.04201.
arXiv:1904.04201

[9] Gilad Gour and Andreas Winter. How to quantify a dynamical quantum resource. Phys. Rev. Lett., 123: 150401, Oct 2019. 10.1103/​PhysRevLett.123.150401.
https:/​/​doi.org/​10.1103/​PhysRevLett.123.150401

[10] Gilad Gour and Carlo Maria Scandolo. The entanglement of a bipartite channel. 2019. arXiv:1907.02552.
arXiv:1907.02552

[11] Stefan Bäuml, Siddhartha Das, Xin Wang, and Mark M. Wilde. Resource theory of entanglement for bipartite quantum channels. 2019. arXiv:1907.04181.
arXiv:1907.04181

[12] Andrzej Jamiołkowski. Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics, 3 (4): 275–278, 1972. 10.1016/​0034-4877(72)90011-0.
https:/​/​doi.org/​10.1016/​0034-4877(72)90011-0

[13] Man-Duen Choi. Completely positive linear maps on complex matrices. Linear algebra and its applications, 10 (3): 285–290, 1975. 10.1016/​0024-3795(75)90075-0.
https:/​/​doi.org/​10.1016/​0024-3795(75)90075-0

[14] Vlatko Vedral, Martin B Plenio, Michael A Rippin, and Peter L Knight. Quantifying entanglement. Physical Review Letters, 78 (12): 2275, 1997. 10.1103/​PhysRevLett.78.2275.
https:/​/​doi.org/​10.1103/​PhysRevLett.78.2275

[15] Howard Barnum, M. A. Nielsen, and Benjamin Schumacher. Information transmission through a noisy quantum channel. Phys. Rev. A, 57: 4153–4175, Jun 1998. 10.1103/​PhysRevA.57.4153.
https:/​/​doi.org/​10.1103/​PhysRevA.57.4153

[16] Gilad Gour. Comparison of quantum channels by superchannels. IEEE Transactions on Information Theory, 65 (9): 5880–5904, 2019. 10.1109/​TIT.2019.2907989.
https:/​/​doi.org/​10.1109/​TIT.2019.2907989

[17] John Burniston, Michael Grabowecky, Carlo Maria Scandolo, Giulio Chiribella, and Gilad Gour. Necessary and sufficient conditions on measurements of quantum channels. Proceedings of the Royal Society A, 476 (2236): 20190832, 2020. 10.1098/​rspa.2019.0832.
https:/​/​doi.org/​10.1098/​rspa.2019.0832

[18] Giulio Chiribella, Giacomo M D'Ariano, and Paolo Perinotti. Memory effects in quantum channel discrimination. Physical review letters, 101 (18): 180501, 2008b. 10.1103/​PhysRevLett.101.180501.
https:/​/​doi.org/​10.1103/​PhysRevLett.101.180501

[19] Mário Ziman. Process positive-operator-valued measure: A mathematical framework for the description of process tomography experiments. Phys. Rev. A, 77: 062112, Jun 2008. 10.1103/​PhysRevA.77.062112.
https:/​/​doi.org/​10.1103/​PhysRevA.77.062112

[20] Gus Gutoski and John Watrous. Toward a general theory of quantum games. In Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, pages 565–574, 2007. 10.1145/​1250790.1250873.
https:/​/​doi.org/​10.1145/​1250790.1250873

[21] Charles H. Bennett, David P. DiVincenzo, Christopher A. Fuchs, Tal Mor, Eric Rains, Peter W. Shor, John A. Smolin, and William K. Wootters. Quantum nonlocality without entanglement. Phys. Rev. A, 59: 1070–1091, Feb 1999. 10.1103/​PhysRevA.59.1070.
https:/​/​doi.org/​10.1103/​PhysRevA.59.1070

[22] Asher Peres and William K. Wootters. Optimal detection of quantum information. Phys. Rev. Lett., 66: 1119–1122, Mar 1991. 10.1103/​PhysRevLett.66.1119.
https:/​/​doi.org/​10.1103/​PhysRevLett.66.1119

[23] Eric Chitambar and Min-Hsiu Hsieh. Revisiting the optimal detection of quantum information. Phys. Rev. A, 88: 020302, Aug 2013. 10.1103/​PhysRevA.88.020302.
https:/​/​doi.org/​10.1103/​PhysRevA.88.020302

[24] G. Chiribella, G. M. D'Ariano, and P. Perinotti. Quantum circuit architecture. Phys. Rev. Lett., 101: 060401, Aug 2008c. 10.1103/​PhysRevLett.101.060401.
https:/​/​doi.org/​10.1103/​PhysRevLett.101.060401

[25] Giulio Chiribella, Giacomo Mauro D'Ariano, and Paolo Perinotti. Theoretical framework for quantum networks. Phys. Rev. A, 80: 022339, Aug 2009. 10.1103/​PhysRevA.80.022339.
https:/​/​doi.org/​10.1103/​PhysRevA.80.022339

[26] Gus Gutoski. On a measure of distance for quantum strategies. Journal of Mathematical Physics, 53 (3): 032202, 2012. 10.1063/​1.3693621.
https:/​/​doi.org/​10.1063/​1.3693621

[27] Gus Gutoski. Quantum strategies and local operations. PhD thesis, University of Waterloo, 2009. Available at arXiv.org e-Print https:/​/​arxiv.org/​abs/​1003.0038v2.
arXiv:1003.0038v2

[28] Eric Chitambar, Debbie Leung, Laura Mančinska, Maris Ozols, and Andreas Winter. Everything you always wanted to know about LOCC (but were afraid to ask). Communications in Mathematical Physics, 328 (1): 303–326, May 2014. 10.1007/​s00220-014-1953-9.
https:/​/​doi.org/​10.1007/​s00220-014-1953-9

[29] W. Dür, G. Vidal, and J. I. Cirac. Three qubits can be entangled in two inequivalent ways. Phys. Rev. A, 62: 062314, Nov 2000. 10.1103/​PhysRevA.62.062314.
https:/​/​doi.org/​10.1103/​PhysRevA.62.062314

[30] Eric Chitambar, Julio I de Vicente, Mark W Girard, and Gilad Gour. Entanglement manipulation beyond local operations and classical communication. Journal of Mathematical Physics, 61 (4): 042201, 2020. 10.1063/​1.5124109.
https:/​/​doi.org/​10.1063/​1.5124109

[31] Matthias Christandl, Alexander Müller-Hermes, and Michael M Wolf. When do composed maps become entanglement breaking? In Annales Henri Poincaré, volume 20, pages 2295–2322. Springer, 2019. 10.1007/​s00023-019-00774-7.
https:/​/​doi.org/​10.1007/​s00023-019-00774-7

[32] Dariusz Chruściński and Andrzej Kossakowski. On partially entanglement breaking channels. Open Systems & Information Dynamics, 13 (1): 17–26, Mar 2006. ISSN 1573-1324. 10.1007/​s11080-006-7264-7.
https:/​/​doi.org/​10.1007/​s11080-006-7264-7

[33] Reinhard F. Werner. Quantum states with einstein-podolsky-rosen correlations admitting a hidden-variable model. Phys. Rev. A, 40: 4277–4281, Oct 1989. 10.1103/​PhysRevA.40.4277.
https:/​/​doi.org/​10.1103/​PhysRevA.40.4277

[34] Leonid Gurvits and Howard Barnum. Largest separable balls around the maximally mixed bipartite quantum state. Phys. Rev. A, 66: 062311, Dec 2002. 10.1103/​PhysRevA.66.062311.
https:/​/​doi.org/​10.1103/​PhysRevA.66.062311

[35] M Christandl. PPT square conjecture. In Banff International Research Station workshop: Operator structures in quantum information theory, 2012.

[36] Ludovico Lami and Vittorio Giovannetti. Entanglement–breaking indices. Journal of Mathematical Physics, 56 (9): 092201, 2015. 10.1063/​1.4931482.
https:/​/​doi.org/​10.1063/​1.4931482

[37] Ludovico Lami and Vittorio Giovannetti. Entanglement-saving channels. Journal of Mathematical Physics, 57 (3): 032201, 2016. 10.1063/​1.4942495.
https:/​/​doi.org/​10.1063/​1.4942495

[38] Mizanur Rahaman, Samuel Jaques, and Vern I Paulsen. Eventually entanglement breaking maps. Journal of Mathematical Physics, 59 (6): 062201, 2018. 10.1063/​1.5024385.
https:/​/​doi.org/​10.1063/​1.5024385

[39] Matthew Kennedy, Nicholas A. Manor, and Vern I. Paulsen. Composition of ppt maps. Quantum Info. Comput., 18 (5-6): 472–480, 2018. https:/​/​arxiv.org/​abs/​1710.08475v2.
arXiv:1710.08475v2

[40] Denis Rosset, Francesco Buscemi, and Yeong-Cherng Liang. Resource theory of quantum memories and their faithful verification with minimal assumptions. Phys. Rev. X, 8: 021033, May 2018. 10.1103/​PhysRevX.8.021033.
https:/​/​doi.org/​10.1103/​PhysRevX.8.021033

[41] Xiao Yuan, Yunchao Liu, Qi Zhao, Bartosz Regula, Jayne Thompson, and Mile Gu. Universal and operational benchmarking of quantum memories, 2019. arXiv:1907.02521.
arXiv:1907.02521

Cited by

On Crossref's cited-by service no data on citing works was found (last attempt 2020-08-10 17:58:18). On SAO/NASA ADS no data on citing works was found (last attempt 2020-08-10 17:58:19).