Energy upper bound for structurally stable $N$-passive states

Raffaele Salvia1 and Vittorio Giovannetti2

1Scuola Normale Superiore and University of Pisa, I-56127 Pisa, Italy
2NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56126 Pisa, Italy

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Passive states are special configurations of a quantum system which exhibit no energy decrement at the end of an arbitrary cyclic driving of the model Hamiltonian. When applied to an increasing number of copies of the initial density matrix, the requirement of passivity induces a hierarchical ordering which, in the asymptotic limit of infinitely many elements, pinpoints ground states and thermal Gibbs states. In particular, for large values of $N$ the energy content of a $N$-passive state which is also structurally stable (i.e. capable to maintain its passivity status under small perturbations of the model Hamiltonian), is expected to be close to the corresponding value of the thermal Gibbs state which has the same entropy. In the present paper we provide a quantitative assessment of this fact, by producing an upper bound for the energy of an arbitrary $N$-passive, structurally stable state which only depends on the spectral properties of the Hamiltonian of the system. We also show the condition under which our inequality can be saturated. A generalization of the bound is finally presented that, for sufficiently large $N$, applies to states which are $N$-passive, but not necessarily structurally stable.

► BibTeX data

► References

[1] R. Alicki and R. Kosloff, ``Introduction to Quantum Thermodynamics: History and Prospects,''in Thermodynamics in the quantum regime - recent progress and outlook, F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso, Eds., Berlin, Germany: Springer, 2018. doi: 10.1007/​978-3-319-99046-0_1.

[2] A. E. Allahverdyan, R. Balian, and Th. M. Nieuwenhuizen, ``Maximal work extraction from quantum systems,'' Europhysics Letters, vol. 67, no. 4, pp. 565–571, Aug. 2004. doi: 10.1209/​epl/​i2004-10101-2.

[3] W. Pusz and S. L. Woronowicz, ``Passive states and KMS states for general quantum systems,'' Communications in Mathematical Physics, vol. 58, no. 3, pp. 273–290, Oct. 1978. doi: 10.1007/​BF01614224.

[4] A. Lenard, ``Thermodynamical proof of the gibbs formula for elementary quantum systems'', Journal of Statistical Physics, vol. 19, no. 6, pp. 575–586, Dec. 1978. doi: 10.1007/​BF01011769.

[5] R. Kubo, ``Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems,'' Journal of the Physical Society of Japan, vol. 12, no. 6, pp. 570–586, Jun. 1957. doi: 10.1143/​JPSJ.12.570.

[6] P. C. Martin and J. Schwinger, ``Theory of Many-Particle Systems. I,'' Physical Review, vol. 115, no. 6, pp. 1342–1373, Sep. 1959. doi: 10.1103/​PhysRev.115.1342.

[7] C. J. K. Batty, ``The KMS condition and passive states,'' Journal of Functional Analysis, vol. 46, no. 2, pp. 246–257, Apr. 1982. doi: 10.1016/​0022-1236(82)90038-6.

[8] R. Alicki and M. Fannes, ``Entanglement boost for extractable work from ensembles of quantum batteries,'' Physical Review E, vol. 87, no. 4, Apr. 2013, Art. no. 042123. doi: 10.1103/​PhysRevE.87.042123.

[9] J. Gemmer, M. Michel, and G. Mahler, Quantum Thermodynamics. Berlin, Germany: Springer, 2008. doi: 10.1007/​b98082.

[10] M. N. Bera, A. Winter, and M. Lewenstein, ``Thermodynamics from information,'' in Thermodynamics in the quantum regime - recent progress and outlook, F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso, Eds., Berlin, Germany: Springer, 2018. doi: 10.1007/​978-3-319-99046-0_33.

[11] J. Anders and V. Giovannetti, ``Thermodynamics of discrete quantum processes'', New Journal of Physics, vol. 15, Mar. 2013, Art. no. 033022. doi: 10.1088/​1367-2630/​15/​3/​033022.

[12] C. Sparciari, D. Jennings, and J. Oppenheim, ``Energetic instability of passive states in thermodynamics,'' Nature Communications, vol. 8, Jan. 2017, Art. no. 1895. doi: 10.1038/​s41467-017-01505-4.

[13] F. G. S. L. Bradão, et al., ``The second laws of quantum thermodynamics,'' Proceedings of the National Academy of Sciences of the United States of America, vol. 112, no. 11, pp. 3275–3279, Mar. 2015. doi: 10.1073/​pnas.1411728112.

[14] P. Skrzypczyk, R. Silva, and N. Brunner, ``Passivity, complete passivity, and virtual temperatures,'' Physical Review E, vol. 91, May 2015, Art. no. 052133. doi: 10.1103/​PhysRevE.91.052133.

[15] K. V. Hovhannisyan, et al., ``Entanglement Generation is Not Necessary for Optimal Work Extraction'', Physical Review Letters, vol. 111, Apr. 2013, Art. no. 240401. doi: 10.1103/​PhysRevLett.111.240401.

[16] M. Perarnau-Llobet, et al., ``Extractable Work from Correlations'', Physical Review X, vol. 5, Oct. 2015, Art. no. 041011. doi: 10.1103/​PhysRevX.5.041011.

[17] G. Francica et al., ``Daemonic ergotropy: enhanced work extraction from quantum correlations,'' npj Quantum Information, vol. 3, Mar. 2017, Art. no. 12. doi: 10.1038/​s41534-017-0012-8.

[18] M. Alimuddin, T. Guha, and P. Parashar, ``Bound on Ergotropic Gap for Bipartite Separable States,'' Physical Review A, vol. 99, May 2019, Art. no. 052320. doi: 10.1103/​PhysRevA.99.052320.

[19] M. N. Bera, et al., ``Thermodynamics as a Consequence of Information Conservation,'' Quantum, vol. 3, Feb. 2019, Art. no. 121. doi: 10.1103/​10.22331/​q-2019-02-14-121.

[20] D. Gelbwaser-Klimovsky, R. Alicki, and G. Kurizki, ``Work and energy gain of heat-pumped quantized amplifiers,'' Europhysics Letters, vol. 103, no. 6, Oct. 2013, Art. no. 60005. doi: 10.1209/​0295-5075/​103/​60005.

[21] D. Gelbwaser-Klimovsky and G. Kurizki, ``Heat-machine control by quantum-state preparation: From quantum engines to refrigerators,'' Physical Review E, vol. 90, no. 2, Aug. 2014, 022102. doi: 10.1103/​PhysRevE.90.022102.

[22] D. Gelbwaser-Klimovsky and G. Kurizki, ``Work extraction from heat-powered quantized optomechanical setups,'' Scientific Reports, vol. 5, Jan. 2015, Art. no. 7809. doi: 10.1038/​srep07809.

[23] N. Friis and M. Huber, ``Precision and Work Fluctuations in Gaussian Battery Charging,'' Quantum, vol. 2, Apr. 2018, Art. no. 61. doi: 10.22331/​q-2018-04-23-61.

[24] M. Perarnau-Llobet, et al., ``Most energetic passive states,'' Physical Review E, vol. 92, no. 4, Oct. 2015, Art. no. 042147. doi: 10.1103/​PhysRevE.92.042147.

[25] F. Binder, et al., ``Quantum thermodynamics of general quantum processes,'' Physical Review E, vol. 91, no. 3, Mar. 2015, Art. no. 032119. doi: 10.1103/​PhysRevE.91.032119.

[26] F. Campaioli, F. A. Pollock, and S. Vinjanampathy, ``Quantum Batteries - Review Chapter,'' in Thermodynamics in the quantum regime - recent progress and outlook, F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso, Eds., Berlin, Germany: Springer, 2018. doi: 10.1007/​978-3-319-99046-0_8.

[27] G. M. Andolina, ``Extractable Work, the Role of Correlations, and Asymptotic Freedom in Quantum Batteries,'' et al. Physical Review Letters, vol. 122, no. 4, Jul. 2019, Art. no. 047702. doi: 10.1007/​10.1103/​PhysRevLett.122.047702.

[28] D. Farina, et al., ``Charger-mediated energy transfer for quantum batteries: An open-system approach,'' Physical Review B, vol. 99, no. 3, Jan. 2019, Art. no. 035421. doi: 10.1103/​PhysRevB.99.035421.

[29] D. Rossini, G. M. Andolina, and M. Polini, ``Many-body localized quantum batteries,'', Physical Review B, vol. 100, no. 11, Sep. 2019, Art. no. 115142. doi: 10.1103/​PhysRevB.100.115142.

[30] K. Sen and U. Sen, ``Local passivity and entanglement in shared quantum batteries,'' 2019, arXiv: 1911.05540.

[31] G. De Palma, ``The Wehrl entropy has Gaussian optimizers,'' Letters in Mathematical Physics, vol. 108, no. 1, pp. 97–116, Jan. 2018. doi: 10.1007/​s11005-017-0994-3.

[32] G. De Palma, et al. , ``Passive states as optimal inputs for single-jump lossy quantum channels,'' Physical Review A, vol. 93, no. 6, Jun. 2016, Art. no. 062328. doi: 10.1103/​PhysRevA.93.062328.

[33] G. De Palma, D. Trevisan, and V. Giovannetti, ``Passive States Optimize the Output of Bosonic Gaussian Quantum Channels,'' IEEE Transations on Information Theory, vol. 62, no. 5, pp. 2895–2906, May 2016. doi: 10.1109/​TIT.2016.2547426.

[34] H. Sahlmann and R. Verch, ``Passivity and Microlocal Spectrum Condition,'' Communications in Mathematical Physics, vol. 214, no. 3, pp. 705–731, Nov. 2000. doi: 10.1007/​s002200000297.

[35] A. W. Marshall and I. Olkin, Inequalities: theory of majorization and its applications, New York, NY, USA: Academic Press, 1979.

[36] M. A. Nielsen and G. Vidal, ``Majorization and the interconversion of bipartite states'', Quantum Information and Computation, vol. 1, no. 1, pp. 76–93, Jan. 2001. doi:.

Cited by

[1] Mir Alimuddin, Tamal Guha, and Preeti Parashar, "Structure of passive states and its implication in charging quantum batteries", Physical Review E 102 2, 022106 (2020).

[2] Patryk Lipka-Bartosik, Martí Perarnau-Llobet, and Nicolas Brunner, "Operational Definition of the Temperature of a Quantum State", Physical Review Letters 130 4, 040401 (2023).

[3] Francesco Mazzoncini, Vasco Cavina, Gian Marcello Andolina, Paolo Andrea Erdman, and Vittorio Giovannetti, "Optimal control methods for quantum batteries", Physical Review A 107 3, 032218 (2023).

[4] Nikolaos Koukoulekidis, Rhea Alexander, Thomas Hebdige, and David Jennings, "The geometry of passivity for quantum systems and a novel elementary derivation of the Gibbs state", Quantum 5, 411 (2021).

[5] Salvatore Tirone, Raffaele Salvia, and Vittorio Giovannetti, "Quantum Energy Lines and the Optimal Output Ergotropy Problem", Physical Review Letters 127 21, 210601 (2021).

The above citations are from Crossref's cited-by service (last updated successfully 2024-04-15 13:47:25) and SAO/NASA ADS (last updated successfully 2024-04-15 13:47:25). The list may be incomplete as not all publishers provide suitable and complete citation data.