Modelling equilibration of local many-body quantum systems by random graph ensembles

Daniel Nickelsen1,2,3 and Michael Kastner1,2

1National Institute for Theoretical Physics (NITheP), Stellenbosch 7600, South Africa
2Institute of Theoretical Physics, Department of Physics, University of Stellenbosch, Stellenbosch 7600, South Africa
3African Institute for Mathematical Sciences, Muizenberg, Cape Town, South Africa

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


We introduce structured random matrix ensembles, constructed to model many-body quantum systems with local interactions. These ensembles are employed to study equilibration of isolated many-body quantum systems, showing that rather complex matrix structures, well beyond Wigner's full or banded random matrices, are required to faithfully model equilibration times. Viewing the random matrices as connectivities of graphs, we analyse the resulting network of classical oscillators in Hilbert space with tools from network theory. One of these tools, called the maximum flow value, is found to be an excellent proxy for equilibration times. Since maximum flow values are less expensive to compute, they give access to approximate equilibration times for system sizes beyond those accessible by exact diagonalisation.

► BibTeX data

► References

[1] J. von Neumann. Beweis des Ergodensatzes und des ${H}$-Theorems in der neuen Mechanik. Z. Phys., 57: 30–70, 1929. 10.1007/​BF01339852.

[2] H. Tasaki. From quantum dynamics to the canonical distribution: General picture and a rigorous example. Phys. Rev. Lett., 80: 1373–1376, Feb 1998. 10.1103/​PhysRevLett.80.1373.

[3] N. Linden, S. Popescu, A. J. Short, and A. Winter. Quantum mechanical evolution towards thermal equilibrium. Phys. Rev. E, 79: 061103, 2009. 10.1103/​PhysRevE.79.061103.

[4] S. Goldstein, J. L. Lebowitz, C. Mastrodonato, R. Tumulka, and N. Zanghì. Approach to thermal equilibrium of macroscopic quantum systems. Phys. Rev. E, 81: 011109, 2010a. 10.1103/​PhysRevE.81.011109.

[5] P. Reimann. Canonical thermalization. New J. Phys., 12: 055027, 2010. 10.1088/​1367-2630/​12/​5/​055027.

[6] P. Reimann and M. Kastner. Equilibration of isolated macroscopic quantum systems. New J. Phys., 14: 043020, 2012. 10.1088/​1367-2630/​14/​4/​043020.

[7] C. Gogolin and J. Eisert. Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems. Rep. Prog. Phys., 79: 056001, 2016. 10.1088/​0034-4885/​79/​5/​056001.

[8] T. Mori, T. N. Ikeda, E. Kaminishi, and M. Ueda. Thermalization and prethermalization in isolated quantum systems: a theoretical overview. J. Phys. B, 51: 112001, 2018. 10.1088/​1361-6455/​aabcdf.

[9] A. J. Short and T. C. Farrelly. Quantum equilibration in finite time. New J. Phys., 14: 013063, 2012. 10.1088/​1367-2630/​14/​1/​013063.

[10] S. Goldstein, T. Hara, and H. Tasaki. Time scales in the approach to equilibrium of macroscopic quantum systems. Phys. Rev. Lett., 111: 140401, 2013. 10.1103/​PhysRevLett.111.140401.

[11] S. Goldstein, T. Hara, and H. Tasaki. Extremely quick thermalization in a macroscopic quantum system for a typical nonequilibrium subspace. New J. Phys., 17: 045002, 2015. 10.1088/​1367-2630/​17/​4/​045002.

[12] A. S. L. Malabarba, L. P. García-Pintos, N. Linden, T. C. Farrelly, and A. J. Short. Quantum systems equilibrate rapidly for most observables. Phys. Rev. E, 90: 012121. 10.1103/​PhysRevE.90.012121.

[13] T. Farrelly. Equilibration of quantum gases. New J. Phys., 18: 073014, 2016. 10.1088/​1367-2630/​18/​7/​073014.

[14] P. Reimann. Typical fast thermalization processes in closed many-body systems. Nat. Commun., 7: 10821, 2016. 10.1038/​ncomms10821.

[15] H. Wilming, M. Goihl, C. Krumnow, and J. Eisert. Towards local equilibration in closed interacting quantum many-body systems. URL https:/​/​​abs/​1704.06291.

[16] L. P. García-Pintos, N. Linden, A. S. L. Malabarba, A. J. Short, and A. Winter. Equilibration time scales of physically relevant observables. Phys. Rev. X, 7: 031027, 2017. 10.1103/​PhysRevX.7.031027.

[17] T. R. de Oliveira, C. Charalambous, D. Jonathan, M. Lewenstein, and A. Riera. Equilibration time scales in closed many-body quantum systems. New J. Phys., 20: 033032, 2018. 10.1088/​1367-2630/​aab03b.

[18] P. Reimann. Transportless equilibration in isolated many-body quantum systems. New J. Phys., 21: 053014, 2019. 10.1088/​1367-2630/​ab1a63.

[19] E. P. Wigner. Characteristic vectors of bordered matrices with infinite dimensions. Ann. Math., 62: 548–564, 1955. 10.2307/​1970079.

[20] E. P. Wigner. Characteristic vectors of bordered matrices with infinite dimensions II. Ann. Math., 65: 203–207, 1957. 10.2307/​1969956.

[21] E. P. Wigner. On the distribution of the roots of certain symmetric matrices. Ann. Math., 67: 325–327, 1958. 10.2307/​1970008.

[22] M. L. Mehta. Random Matrices. Elsevier, Amsterdam, 3rd edition, 2004.

[23] L. F. Santos and E. J. Torres-Herrera. Analytical expressions for the evolution of many-body quantum systems quenched far from equilibrium. AIP Conf. Proc., 1912: 020015, 2017. 10.1063/​1.5016140.

[24] E. J. Torres-Herrera, A. M. García-García, and L. F. Santos. Generic dynamical features of quenched interacting quantum systems: Survival probability, density imbalance, and out-of-time-ordered correlator. Phys. Rev. B, 97: 060303, 2018. 10.1103/​PhysRevB.97.060303.

[25] L. F. Santos and E. J. Torres-Herrera. Nonequilibrium many-body quantum dynamics: From full random matrices to real systems. In F. Binder, L. Correa, C. Gogolin, J. Anders, and G. Adesso, editors, Thermodynamics in the Quantum Regime. Fundamental Theories of Physics, pages 457–479. Springer, 2018. 10.1007/​978-3-319-99046-0_19.

[26] E. J. Torres-Herrera, J. Karp, M. Távora, and L. F. Santos. Realistic many-body quantum systems vs. full random matrices: Static and dynamical properties. Entropy, 18: 1–20, 2016. 10.3390/​e18100359.

[27] J. B. French and S. S. M. Wong. Validity of random matrix theories for many-particle systems. Phys. Lett. B, 33: 449–452, 1970. 10.1016/​0370-2693(70)90213-3.

[28] O. Bohigas and J. Flores. Two-body random Hamiltonian and level density. Phys. Lett. B, 34: 261–263, 1971. 10.1016/​0370-2693(71)90598-3.

[29] V. K. B. Kota, A. Relaño, J. Retamosa, and M. Vyas. Thermalization in the two-body random ensemble. J. Stat. Mech., 2011: P10028, 2011. 10.1088/​1742-5468/​2011/​10/​P10028.

[30] V. V. Flambaum and F. M. Izrailev. Entropy production and wave packet dynamics in the fock space of closed chaotic many-body systems. Phys. Rev. E, 64: 036220, 2001. 10.1103/​PhysRevE.64.036220.

[31] F. Borgonovi, F. M. Izrailev, and L. F. Santos. Exponentially fast dynamics of chaotic many-body systems. Phys. Rev. E, 99: 010101, 2019. 10.1103/​PhysRevE.99.010101.

[32] F. Borgonovi and F. M. Izrailev. Emergence of correlations in the process of thermalization of interacting bosons. Phys. Rev. E, 99: 012115, 2019. 10.1103/​PhysRevE.99.012115.

[33] V. K. B. Kota. Embedded random matrix ensembles for complexity and chaos in finite interacting particle systems. Phys. Rep., 347: 223–288, 2001. 10.1016/​S0370-1573(00)00113-7.

[34] V. K. B. Kota and N. D. Chavda. Random $k$-body ensembles for chaos and thermalization in isolated systems. Entropy, 20: 1–22, 2018. 10.3390/​e20070541.

[35] M. Vyas and T. H. Seligman. Random matrix ensembles for many-body quantum systems. AIP Conf. Proc., 1950: 030009, 2018. 10.1063/​1.5031701.

[36] T. H. Seligman, J. J.M. Verbaarschot, and M. R. Zirnbauer. Spectral fluctuation properties of Hamiltonian systems: The transition region between order and chaos. J. Phys. A, 18: 2751–2770, 1985. 10.1088/​0305-4470/​18/​14/​026.

[37] Y. V. Fyodorov, O. A. Chubykalo, F. M. Izrailev, and G. Casati. Wigner random banded matrices with sparse structure: Local spectral density of states. Phys. Rev. Lett., 76: 1603–1606, 1996. 10.1103/​PhysRevLett.76.1603.

[38] L. Erdos and A. Knowles. Quantum diffusion and eigenfunction delocalization in a random band matrix model. Commun. Math. Phys., 303: 509–554, 2011. 10.1007/​s00220-011-1204-2.

[39] A. D. Mirlin, Y. V. Fyodorov, F.-M. Dittes, J. Quezada, and T. H. Seligman. Transition from localized to extended eigenstates in the ensemble of power-law random banded matrices. Phys. Rev. E, 54: 3221–3230, 1996. 10.1103/​PhysRevE.54.3221.

[40] P. A. Nosov and I. M. Khaymovich. Robustness of delocalization to the inclusion of soft constraints in long-range random models. Phys. Rev. B, 99: 224208, 2019. 10.1103/​PhysRevB.99.224208.

[41] J. A. Méndez-Bermúdez, G. F. De Arruda, F. A. Rodrigues, and Y. Moreno. Diluted banded random matrices: Scaling behavior of eigenfunction and spectral properties. J. Phys. A, 50: 495205, 2017. 10.1088/​1751-8121/​aa9509.

[42] I. Jana and A. Soshnikov. Distribution of singular values of random band matrices; Marchenko–Pastur law and more. J. Stat. Phys., 168: 964–985, 2017. 10.1007/​s10955-017-1844-5.

[43] P. Bourgade. Random band matrices. Proc. Int. Cong. Math., 3: 2745–2770, 2018. 10.1142/​11060.

[44] I. Dumitriu and Y. Zhu. Sparse general Wigner-type matrices: Local law and eigenvector delocalization. J. Math. Phys., 60: 023301, 2019. 10.1063/​1.5053613.

[45] F. Borgonovi, F. M. Izrailev, L. F. Santos, and V. G. Zelevinsky. Quantum chaos and thermalization in isolated systems of interacting particles. Phys. Rep., 626: 1–58, 2016. 10.1016/​j.physrep.2016.02.005.

[46] G. P. Brandino, A. De Luca, R. M. Konik, and G. Mussardo. Quench dynamics in randomly generated extended quantum models. Phys. Rev. B, 85: 214435, 2012. 10.1103/​PhysRevB.85.214435.

[47] S. Goldstein, J. L. Lebowitz, R. Tumulka, and N. Zanghì. Long-time behavior of macroscopic quantum systems. Eur. Phys. J. H, 35: 173–200, 2010b. 10.1140/​epjh/​e2010-00007-7.

[48] D. Nickelsen and M. Kastner. Classical Lieb-Robinson bound for estimating equilibration timescales of isolated quantum systems. Phys. Rev. Lett., 122: 180602, 2019. 10.1103/​PhysRevLett.122.180602.

[49] R. Diestel. Graph Theory. Springer, Berlin, 3rd edition, 2005.

[50] I. Arad, T. Kuwahara, and Z. Landau. Connecting global and local energy distributions in quantum spin models on a lattice. J. Stat. Mech., 2016: 033301, 2016. 10.1088/​1742-5468/​2016/​03/​033301.

[51] W. Beugeling, R. Moessner, and M. Haque. Off-diagonal matrix elements of local operators in many-body quantum systems. Phys. Rev. E, 91: 012144, 2015. 10.1103/​PhysRevE.91.012144.

[52] J. Wang and W.-G. Wang. Correlations in eigenfunctions of quantum chaotic systems with sparse Hamiltonian matrices. Phys. Rev. E, 96: 052221, 2017. 10.1103/​PhysRevE.96.052221.

[53] S. C. Morampudi and C. R. Laumann. Many-body systems with random spatially local interactions. Phys. Rev. B, 100: 245152, 2019. 10.1103/​PhysRevB.100.245152.

[54] C. Nation and D. Porras. Off-diagonal observable elements from random matrix theory: distributions, fluctuations, and eigenstate thermalization. New J. Phys., 20: 103003, 2018. 10.1088/​1367-2630/​aae28f.

[55] L. Foini and J. Kurchan. Eigenstate thermalization hypothesis and out of time order correlators. Phys. Rev. E, 99: 42139, 2019. 10.1103/​PhysRevE.99.042139.

[56] M. Brenes, S. Pappalardi, J. Goold, and A. Silva. Multipartite entanglement structure in the eigenstate thermalization hypothesis. Phys. Rev. Lett., 124: 040605, 2020. 10.1103/​PhysRevLett.124.040605.

Cited by

[1] Charlie Nation and Diego Porras, "Taking snapshots of a quantum thermalization process: Emergent classicality in quantum jump trajectories", Physical Review E 102 4, 042115 (2020).

[2] Lennart Dabelow, Patrick Vorndamme, and Peter Reimann, "Modification of quantum many-body relaxation by perturbations exhibiting a banded matrix structure", Physical Review Research 2 3, 033210 (2020).

[3] Shoki Sugimoto, Ryusuke Hamazaki, and Masahito Ueda, "Test of Eigenstate Thermalization Hypothesis Based on Local Random Matrix Theory", arXiv:2005.06379.

The above citations are from Crossref's cited-by service (last updated successfully 2020-10-21 20:36:23) and SAO/NASA ADS (last updated successfully 2020-10-21 20:36:24). The list may be incomplete as not all publishers provide suitable and complete citation data.