The type-independent resource theory of local operations and shared randomness

David Schmid1,2, Denis Rosset1, and Francesco Buscemi3

1Perimeter Institute for Theoretical Physics, 31 Caroline St. N, Waterloo, Ontario, N2L 2Y5, Canada
2Institute for Quantum Computing and Dept. of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
3Graduate School of Informatics, Nagoya University, Chikusa-ku, 464-8601 Nagoya, Japan

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


In space-like separated experiments and other scenarios where multiple parties share a classical common cause but no cause-effect relations, quantum theory allows a variety of nonsignaling resources which are useful for distributed quantum information processing. These include quantum states, nonlocal boxes, steering assemblages, teleportages, channel steering assemblages, and so on. Such resources are often studied using nonlocal games, semiquantum games, entanglement-witnesses, teleportation experiments, and similar tasks. We introduce a unifying framework which subsumes the full range of nonsignaling resources, as well as the games and experiments which probe them, into a common resource theory: that of local operations and shared randomness (LOSR). Crucially, we allow these LOSR operations to locally change the type of a resource, so that players can convert resources of $any$ type into resources of any other type, and in particular into strategies for the specific type of game they are playing. We then prove several theorems relating resources and games of different types. These theorems generalize a number of seminal results from the literature, and can be applied to lessen the assumptions needed to characterize the nonclassicality of resources. As just one example, we prove that semiquantum games are able to perfectly characterize the LOSR nonclassicality of every resource of $any$ type (not just quantum states, as was previously shown). As a consequence, we show that any resource can be characterized in a measurement-device-independent manner.

Contributed talk by David Schmid at QPL 2020:

► BibTeX data

► References

[1] A. Einstein, B. Podolsky, and N. Rosen, Physical Review 47, 777 (1935).

[2] C. J. Wood and R. W. Spekkens, New J. Phys. 17, 033002 (2015).

[3] F. Costa and S. Shrapnel, New Journal of Physics 18, 063032 (2016).

[4] J.-M. A. Allen, J. Barrett, D. C. Horsman, C. M. Lee, and R. W. Spekkens, Physical Review X 7, 031021 (2017).

[5] J. Barrett, R. Lorenz, and O. Oreshkov, (2019), arXiv:1906.10726.

[6] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys. 81, 865 (2009).

[7] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, Rev. Mod. Phys. 86, 419 (2014a).

[8] B. Coecke, T. Fritz, and R. W. Spekkens, Information and Computation 250, 59 (2016), Quantum Physics and Logic.

[9] J. Watrous, The theory of quantum information (Cambridge University Press, 2018).

[10] H. M. Wiseman, S. J. Jones, and A. C. Doherty, Phys. Rev. Lett. 98, 140402 (2007).

[11] D. Cavalcanti and P. Skrzypczyk, Reports on Progress in Physics 80, 024001 (2017).

[12] M. Piani, J. Opt. Soc. Am. B 32, A1 (2015).

[13] M. J. Hoban and A. B. Sainz, New Journal of Physics 20, 053048 (2018).

[14] D. Cavalcanti, P. Skrzypczyk, and I. Šupić, Phys. Rev. Lett. 119, 110501 (2017).

[15] C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor, E. Rains, P. W. Shor, J. A. Smolin, and W. K. Wootters, Phys. Rev. A 59, 1070 (1999).

[16] E. G. Cavalcanti, M. J. W. Hall, and H. M. Wiseman, Phys. Rev. A 87, 032306 (2013).

[17] A. Belén Sainz, M. J. Hoban, P. Skrzypczyk, and L. Aolita, (2019), arXiv:1907.03705.

[18] F. Buscemi, Phys. Rev. Lett. 108, 200401 (2012a).

[19] D. Schmid, T. C. Fraser, R. Kunjwal, A. B. Sainz, E. Wolfe, and R. W. Spekkens, ``Why standard entanglement theory is inappropriate for the study of bell scenarios,'' (2019a), arXiv:2004.09194 [quant-ph].

[20] J. I. de Vicente, J. Phys. A 47, 424017 (2014).

[21] R. Gallego and L. Aolita, Phys. Rev. A 95 (2017).

[22] E. Wolfe, D. Schmid, A. B. Sainz, R. Kunjwal, and R. W. Spekkens, ``Quantifying Bell: the resource theory of nonclassicality of common-cause boxes,'' (2019), arXiv:1903.06311 [quant-ph].

[23] J. S. Bell, Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy (Cambridge University Press, 2004).

[24] G. Pütz, D. Rosset, T. J. Barnea, Y.-C. Liang, and N. Gisin, Physical Review Letters 113, 190402 (2014).

[25] D. Rosset, R. Ferretti-Schöbitz, J.-D. Bancal, N. Gisin, and Y.-C. Liang, Physical Review A 86, 062325 (2012).

[26] S. Pironio, V. Scarani, and T. Vidick, New Journal of Physics 18, 100202 (2016).

[27] D. Cavalcanti, P. Skrzypczyk, G. H. Aguilar, R. V. Nery, P. H. S. Ribeiro, and S. P. Walborn, Nature Communications 6, 7941 (2015).

[28] R. F. Werner, Phys. Rev. A 40, 4277 (1989).

[29] J. Barrett, Phys. Rev. A 65, 042302 (2002).

[30] P. Lipka-Bartosik and P. Skrzypczyk, (2019), arXiv:1908.05107 [quant-ph].

[31] C. Branciard, D. Rosset, Y.-C. Liang, and N. Gisin, Physical Review Letters 110, 060405 (2013).

[32] D. Rosset, C. Branciard, N. Gisin, and Y.-C. Liang, New Journal of Physics 15, 053025 (2013).

[33] F. Shahandeh, M. J. W. Hall, and T. C. Ralph, Physical Review Letters 118, 150505 (2017).

[34] D. Rosset, A. Martin, E. Verbanis, C. C. W. Lim, and R. Thew, Physical Review A 98, 052332 (2018a).

[35] G. Vidal, J. Mod. Optic. 47, 355 (2000).

[36] D. Rosset, D. Schmid, and F. Buscemi, ``Characterizing nonclassicality of arbitrary distributed devices,'' (2019), arXiv:1911.12462 [quant-ph].

[37] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, Rev. Mod. Phys. 86, 419 (2014b).

[38] D. Chruściński and G. Sarbicki, Journal of Physics A: Mathematical and Theoretical 47, 483001 (2014).

[39] S. Popescu and D. Rohrlich, Foundations of Physics 24, 379 (1994).

[40] J. Barrett, N. Linden, S. Massar, S. Pironio, S. Popescu, and D. Roberts, Physical Review A 71, 022101 (2005).

[41] D. Beckman, D. Gottesman, M. A. Nielsen, and J. Preskill, Phys. Rev. A 64, 052309 (2001).

[42] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2010).

[43] D. Schmid, K. Ried, and R. W. Spekkens, Phys. Rev. A 100, 022112 (2019b).

[44] K. Horodecki, A. Grudka, P. Joshi, W. Kłobus, and J. Łodyga, Physical Review A 92, 032104 (2015).

[45] J. I. de Vicente, Journal of Physics A: Mathematical and Theoretical 47, 424017 (2014).

[46] E. Schrodinger, Mathematical Proceedings of the Cambridge Philosophical Society 31, 555 (1935).

[47] P. Skrzypczyk, M. Navascués, and D. Cavalcanti, Physical Review Letters 112, 180404 (2014).

[48] R. Gallego and L. Aolita, Physical Review X 5, 041008 (2015).

[49] M. Piani and J. Watrous, Physical Review Letters 114, 060404 (2015).

[50] R. Uola, A. C. S. Costa, H. C. Nguyen, and O. Gühne, (2019a), arXiv:1903.06663.

[51] M. F. Pusey, Phys. Rev. A 88, 032313 (2013).

[52] I. Šupić, P. Skrzypczyk, and D. Cavalcanti, (2018), arXiv:1804.10612.

[53] G. Chiribella, G. M. D'Ariano, and P. Perinotti, Phys. Rev. A 80, 022339 (2009).

[54] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).

[55] P. Lipka-Bartosik and P. Skrzypczyk, ``The operational advantages provided by non-classical teleportation,'' (2019), arXiv:1908.05107 [quant-ph].

[56] I. Šupić, P. Skrzypczyk, and D. Cavalcanti, Physical Review A 95, 042340 (2017).

[57] T. Gonda and R. W. Spekkens, (2019), arXiv:1912.07085.

[58] W. Dür, G. Vidal, and J. I. Cirac, Phys. Rev. A 62, 062314 (2000).

[59] D. Schmid, H. Du, M. Mudassar, G. Coulter-de Wit, D. Rosset, and M. J. Hoban, ``Postquantum common-cause channels: the resource theory of local operations and shared entanglement,'' (2020), arXiv:2004.06133 [quant-ph].

[60] D. Mayers and A. Yao, Quantum Information & Computation 4, 273 (2004).

[61] A. Montanaro and R. de Wolf, Theory of Computing , 1 (2016).

[62] I. Šupić and J. Bowles, (2019), arXiv:1904.10042.

[63] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett. 23, 880 (1969).

[64] I. Šupić and M. J. Hoban, New Journal of Physics 18, 075006 (2016), arXiv:1601.01552.

[65] A. Gheorghiu, E. Kashefi, and P. Wallden, New Journal of Physics 17, 083040 (2015).

[66] J.-D. Bancal, N. Sangouard, and P. Sekatski, Physical Review Letters 121, 250506 (2018).

[67] M. O. Renou, J. Kaniewski, and N. Brunner, Physical Review Letters 121, 250507 (2018), arXiv:1807.04956.

[68] A. Tavakoli, J. Kaniewski, T. Vértesi, D. Rosset, and N. Brunner, Physical Review A 98, 062307 (2018).

[69] P. Sekatski, J.-D. Bancal, S. Wagner, and N. Sangouard, Physical Review Letters 121, 180505 (2018).

[70] J. Sperling and W. Vogel, Physica Scripta 83, 045002 (2011).

[71] F. Buscemi, Phys. Rev. Lett. 108, 200401 (2012b).

[72] F. Buscemi, Probl Inf Transm 52, 201 (2016).

[73] D. Rosset, F. Buscemi, and Y.-C. Liang, Phys. Rev. X 8, 021033 (2018b).

[74] P. Skrzypczyk and N. Linden, Phys. Rev. Lett. 122, 140403 (2019).

[75] P. Skrzypczyk, I. Supic, and D. Cavalcanti, Phys. Rev. Lett. 122, 130403 (2019).

[76] R. Takagi, B. Regula, K. Bu, Z.-W. Liu, and G. Adesso, Phys. Rev. Lett. 122, 140402 (2019).

[77] R. Uola, T. Kraft, J. Shang, X.-D. Yu, and O. Gühne, Phys. Rev. Lett. 122, 130404 (2019b).

[78] R. Uola, T. Kraft, and A. A. Abbott, ``Quantification of quantum dynamics with input-output games,'' (2019c), arXiv:1906.09206 [quant-ph].

[79] R. Takagi and B. Regula, Phys. Rev. X 9, 031053 (2019).

Cited by

[1] Wan-Guan Chang, Chia-Yi Ju, Guang-Yin Chen, Yueh-Nan Chen, and Huan-Yu Ku, "Visually quantifying single-qubit quantum memory", Physical Review Research 6 2, 023035 (2024).

[2] Tamal Guha, Mir Alimuddin, Sumit Rout, Amit Mukherjee, Some Sankar Bhattacharya, and Manik Banik, "Quantum Advantage for Shared Randomness Generation", Quantum 5, 569 (2021).

[3] Tomáš Gonda and Robert W. Spekkens, "Monotones in General Resource Theories", Compositionality 5, 7 (2023).

[4] Miguel Navascués, Elie Wolfe, Denis Rosset, and Alejandro Pozas-Kerstjens, "Genuine Network Multipartite Entanglement", Physical Review Letters 125 24, 240505 (2020).

[5] Bartosz Regula and Ryuji Takagi, "One-Shot Manipulation of Dynamical Quantum Resources", Physical Review Letters 127 6, 060402 (2021).

[6] David Schmid, "A review and reformulation of macroscopic realism: resolving its deficiencies using the framework of generalized probabilistic theories", Quantum 8, 1217 (2024).

[7] Ram Krishna Patra, Sahil Gopalkrishna Naik, Edwin Peter Lobo, Samrat Sen, Tamal Guha, Some Sankar Bhattacharya, Mir Alimuddin, and Manik Banik, "Classical analogue of quantum superdense coding and communication advantage of a single quantum system", Quantum 8, 1315 (2024).

[8] Kuan-Yi Lee, Jhen-Dong Lin, Adam Miranowicz, Franco Nori, Huan-Yu Ku, and Yueh-Nan Chen, "Steering-enhanced quantum metrology using superpositions of noisy phase shifts", Physical Review Research 5 1, 013103 (2023).

[9] Beata Zjawin, David Schmid, Matty J. Hoban, and Ana Belén Sainz, "Quantifying EPR: the resource theory of nonclassicality of common-cause assemblages", Quantum 7, 926 (2023).

[10] Hayata Yamasaki, Simon Morelli, Markus Miethlinger, Jessica Bavaresco, Nicolai Friis, and Marcus Huber, "Activation of genuine multipartite entanglement: Beyond the single-copy paradigm of entanglement characterisation", Quantum 6, 695 (2022).

[11] Paulo J. Cavalcanti, John H. Selby, and Ana Belén Sainz, "Every nonsignaling channel is common-cause realizable", Physical Review A 109 4, 042211 (2024).

[12] Yi-Zheng Zhen, Yingqiu Mao, Kai Chen, Francesco Buscemi, and Oscar Dahlsten, "Unified approach to witness non-entanglement-breaking quantum channels", Physical Review A 101 6, 062301 (2020).

[13] Patricia Contreras-Tejada, Carlos Palazuelos, and Julio I. de Vicente, "Asymptotic Survival of Genuine Multipartite Entanglement in Noisy Quantum Networks Depends on the Topology", Physical Review Letters 128 22, 220501 (2022).

[14] Elie Wolfe, David Schmid, Ana Belén Sainz, Ravi Kunjwal, and Robert W. Spekkens, "Quantifying Bell: the Resource Theory of Nonclassicality of Common-Cause Boxes", Quantum 4, 280 (2020).

[15] Beata Zjawin, David Schmid, Matty J. Hoban, and Ana Belén Sainz, "The resource theory of nonclassicality of channel assemblages", Quantum 7, 1134 (2023).

[16] Matthew Girling, Cristina Cîrstoiu, and David Jennings, "Estimation of correlations and nonseparability in quantum channels via unitarity benchmarking", Physical Review Research 4 2, 023041 (2022).

[17] I. S. Eliëns, S. G. A. Brito, and R. Chaves, "Bell nonlocality using tensor networks and sparse recovery", Physical Review Research 2 2, 023198 (2020).

[18] Ana Belén Sainz, Matty J. Hoban, Paul Skrzypczyk, and Leandro Aolita, "Bipartite Postquantum Steering in Generalized Scenarios", Physical Review Letters 125 5, 050404 (2020).

[19] Andrés F. Ducuara and Paul Skrzypczyk, "Operational Interpretation of Weight-Based Resource Quantifiers in Convex Quantum Resource Theories", Physical Review Letters 125 11, 110401 (2020).

[20] Gilad Gour and Carlo Maria Scandolo, "Dynamical Entanglement", Physical Review Letters 125 18, 180505 (2020).

[21] Nitica Sakharwade, Michał Studziński, Michał Eckstein, and Paweł Horodecki, "Two instances of random access code in the quantum regime", New Journal of Physics 25 5, 053038 (2023).

[22] Ya-Li Mao, Zheng-Da Li, Sixia Yu, and Jingyun Fan, "Test of Genuine Multipartite Nonlocality", Physical Review Letters 129 15, 150401 (2022).

[23] Francesco Buscemi, Kodai Kobayashi, Shintaro Minagawa, Paolo Perinotti, and Alessandro Tosini, "Unifying different notions of quantum incompatibility into a strict hierarchy of resource theories of communication", Quantum 7, 1035 (2023).

[24] Patryk Lipka-Bartosik, Andrés F. Ducuara, Tom Purves, and Paul Skrzypczyk, "Operational Significance of the Quantum Resource Theory of Buscemi Nonlocality", PRX Quantum 2 2, 020301 (2021).

[25] Ryuji Takagi, Bartosz Regula, and Mark M. Wilde, "One-Shot Yield-Cost Relations in General Quantum Resource Theories", PRX Quantum 3 1, 010348 (2022).

[26] Francesco Buscemi, Kodai Kobayashi, and Shintaro Minagawa, "A complete and operational resource theory of measurement sharpness", Quantum 8, 1235 (2024).

[27] Denis Rosset, David Schmid, and Francesco Buscemi, "Type-Independent Characterization of Spacelike Separated Resources", Physical Review Letters 125 21, 210402 (2020).

[28] Thomas Cope, "Entanglement cost for steering assemblages", Physical Review A 104 4, 042220 (2021).

[29] David Schmid, Thomas C. Fraser, Ravi Kunjwal, Ana Belen Sainz, Elie Wolfe, and Robert W. Spekkens, "Understanding the interplay of entanglement and nonlocality: motivating and developing a new branch of entanglement theory", Quantum 7, 1194 (2023).

[30] David Schmid, Haoxing Du, Maryam Mudassar, Ghi Coulter-de Wit, Denis Rosset, and Matty J. Hoban, "Postquantum common-cause channels: the resource theory of local operations and shared entanglement", Quantum 5, 419 (2021).

[31] Eric Chitambar, Gilad Gour, Kuntal Sengupta, and Rana Zibakhsh, "Quantum Bell nonlocality as a form of entanglement", Physical Review A 104 5, 052208 (2021).

[32] Gilad Gour and Carlo Maria Scandolo, "Entanglement of a bipartite channel", Physical Review A 103 6, 062422 (2021).

[33] Thomas Cope and Tobias J. Osborne, "Extremal steering assemblages", Physical Review A 106 2, 022221 (2022).

[34] Patricia Contreras-Tejada, Carlos Palazuelos, and Julio I. de Vicente, "Genuine Multipartite Nonlocality Is Intrinsic to Quantum Networks", Physical Review Letters 126 4, 040501 (2021).

[35] Edwin Peter Lobo, Sahil Gopalkrishna Naik, Samrat Sen, Ram Krishna Patra, Manik Banik, and Mir Alimuddin, "Certifying beyond quantumness of locally quantum no-signaling theories through a quantum-input Bell test", Physical Review A 106 4, L040201 (2022).

[36] Rafael Wagner, Rui Soares Barbosa, and Ernesto F. Galvão, "Inequalities witnessing coherence, nonlocality, and contextuality", Physical Review A 109 3, 032220 (2024).

[37] David Schmid, John H. Selby, and Robert W. Spekkens, "Addressing some common objections to generalized noncontextuality", Physical Review A 109 2, 022228 (2024).

[38] John H. Selby and Ciarán M. Lee, "Compositional resource theories of coherence", Quantum 4, 319 (2020).

[39] Ana Belén Sainz, Matty J. Hoban, Paul Skrzypczyk, and Leandro Aolita, "Bipartite post-quantum steering in generalised scenarios", arXiv:1907.03705, (2019).

[40] Denis Rosset, Ämin Baumeler, Jean-Daniel Bancal, Nicolas Gisin, Anthony Martin, Marc-Olivier Renou, and Elie Wolfe, "Algebraic and geometric properties of local transformations", arXiv:2004.09405, (2020).

[41] Andrés F. Ducuara, Patryk Lipka-Bartosik, and Paul Skrzypczyk, "Multi-object operational tasks for convex quantum resource theories", arXiv:2004.12898, (2020).

The above citations are from Crossref's cited-by service (last updated successfully 2024-06-21 22:14:58) and SAO/NASA ADS (last updated successfully 2024-06-21 22:14:59). The list may be incomplete as not all publishers provide suitable and complete citation data.

1 thought on “The type-independent resource theory of local operations and shared randomness

  1. Pingback: Perspective in Quantum Views by Patryk Lipka-Bartosik "Unboxing hidden correlations"