Improving Variational Quantum Optimization using CVaR

Panagiotis Kl. Barkoutsos1, Giacomo Nannicini2, Anton Robert1,3, Ivano Tavernelli1, and Stefan Woerner1

1IBM Research – Zurich
2IBM T.J. Watson Research Center
3École Normale Supérieure, PSL University, Paris

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Hybrid quantum/classical variational algorithms can be implemented on noisy intermediate-scale quantum computers and can be used to find solutions for combinatorial optimization problems. Approaches discussed in the literature minimize the expectation of the problem Hamiltonian for a parameterized trial quantum state. The expectation is estimated as the sample mean of a set of measurement outcomes, while the parameters of the trial state are optimized classically. This procedure is fully justified for quantum mechanical observables such as molecular energies. In the case of classical optimization problems, which yield diagonal Hamiltonians, we argue that aggregating the samples in a different way than the expected value is more natural. In this paper we propose the Conditional Value-at-Risk as an aggregation function. We empirically show -- using classical simulation as well as quantum hardware -- that this leads to faster convergence to better solutions for all combinatorial optimization problems tested in our study. We also provide analytical results to explain the observed difference in performance between different variational algorithms.

► BibTeX data

► References

[1] Karen Aardal, Robert E Bixby, Cor AJ Hurkens, Arjen K Lenstra, and Job W Smeltink. Market split and basis reduction: Towards a solution of the cornuéjols-dawande instances. INFORMS Journal on Computing, 12 (3): 192–202, 2000. ISSN 1091-9856. 10.1287/​ijoc.12.3.192.12635.
https:/​/​doi.org/​10.1287/​ijoc.12.3.192.12635

[2] Héctor Abraham, Ismail Yunus Akhalwaya, Gadi Aleksandrowicz, Thomas Alexander, Gadi Alexandrowics, Eli Arbel, Abraham Asfaw, Carlos Azaustre, AzizNgoueya, Panagiotis Barkoutsos, George Barron, Luciano Bello, Yael Ben-Haim, Daniel Bevenius, Lev S. Bishop, Sorin Bolos, Samuel Bosch, Sergey Bravyi, David Bucher, Fran Cabrera, Padraic Calpin, Lauren Capelluto, Jorge Carballo, Ginés Carrascal, Adrian Chen, Chun-Fu Chen, Richard Chen, Jerry M. Chow, Christian Claus, Christian Clauss, Abigail J. Cross, Andrew W. Cross, Simon Cross, Juan Cruz-Benito, Chris Culver, Antonio D. Córcoles-Gonzales, Sean Dague, Tareq El Dandachi, Matthieu Dartiailh, DavideFrr, Abdón Rodríguez Davila, Delton Ding, Jun Doi, Eric Drechsler, Drew, Eugene Dumitrescu, Karel Dumon, Ivan Duran, Kareem EL-Safty, Eric Eastman, Pieter Eendebak, Daniel Egger, Mark Everitt, Paco Martín Fernández, Axel Hernández Ferrera, Albert Frisch, Andreas Fuhrer, MELVIN GEORGE, Julien Gacon, Gadi, Borja Godoy Gago, Jay M. Gambetta, Adhisha Gammanpila, Luis Garcia, Shelly Garion, Juan Gomez-Mosquera, Salvador de la Puente González, Jesse Gorzinski, Ian Gould, Donny Greenberg, Dmitry Grinko, Wen Guan, John A. Gunnels, Mikael Haglund, Isabel Haide, Ikko Hamamura, Vojtech Havlicek, Joe Hellmers, Łukasz Herok, Stefan Hillmich, Hiroshi Horii, Connor Howington, Shaohan Hu, Wei Hu, Haruki Imai, Takashi Imamichi, Kazuaki Ishizaki, Raban Iten, Toshinari Itoko, Ali Javadi, Ali Javadi-Abhari, Jessica, Kiran Johns, Tal Kachmann, Naoki Kanazawa, Kang-Bae, Anton Karazeev, Paul Kassebaum, Spencer King, Knabberjoe, Arseny Kovyrshin, Rajiv Krishnakumar, Vivek Krishnan, Kevin Krsulich, Gawel Kus, Ryan LaRose, Raphaël Lambert, Joe Latone, Scott Lawrence, Dennis Liu, Peng Liu, Yunho Maeng, Aleksei Malyshev, Jakub Marecek, Manoel Marques, Dolph Mathews, Atsushi Matsuo, Douglas T. McClure, Cameron McGarry, David McKay, Dan McPherson, Srujan Meesala, Martin Mevissen, Antonio Mezzacapo, Rohit Midha, Zlatko Minev, Abby Mitchell, Nikolaj Moll, Michael Duane Mooring, Renier Morales, Niall Moran, Prakash Murali, Jan Müggenburg, David Nadlinger, Ken Nakanishi, Giacomo Nannicini, Paul Nation, Yehuda Naveh, Patrick Neuweiler, Pradeep Niroula, Hassi Norlen, Lee James O'Riordan, Oluwatobi Ogunbayo, Pauline Ollitrault, Steven Oud, Dan Padilha, Hanhee Paik, Simone Perriello, Anna Phan, Francesco Piro, Marco Pistoia, Alejandro Pozas-iKerstjens, Viktor Prutyanov, Daniel Puzzuoli, Jesús Pérez, Quintiii, Rudy Raymond, Rafael Martín-Cuevas Redondo, Max Reuter, Julia Rice, Diego M. Rodríguez, RohithKarur, Max Rossmannek, Mingi Ryu, Tharrmashastha SAPV, SamFerracin, Martin Sandberg, Hayk Sargsyan, Ninad Sathaye, Bruno Schmitt, Chris Schnabel, Zachary Schoenfeld, Travis L. Scholten, Eddie Schoute, Joachim Schwarm, Ismael Faro Sertage, Kanav Setia, Nathan Shammah, Yunong Shi, Adenilton Silva, Andrea Simonetto, Nick Singstock, Yukio Siraichi, Iskandar Sitdikov, Seyon Sivarajah, Magnus Berg Sletfjerding, John A. Smolin, Mathias Soeken, Igor Olegovich Sokolov, SooluThomas, Dominik Steenken, Matt Stypulkoski, Jack Suen, Kevin J. Sung, Hitomi Takahashi, Ivano Tavernelli, Charles Taylor, Pete Taylour, Soolu Thomas, Mathieu Tillet, Maddy Tod, Enrique de la Torre, Kenso Trabing, Matthew Treinish, TrishaPe, Wes Turner, Yotam Vaknin, Carmen Recio Valcarce, Francois Varchon, Almudena Carrera Vazquez, Desiree Vogt-Lee, Christophe Vuillot, James Weaver, Rafal Wieczorek, Jonathan A. Wildstrom, Robert Wille, Erick Winston, Jack J. Woehr, Stefan Woerner, Ryan Woo, Christopher J. Wood, Ryan Wood, Steve Wood, James Wootton, Daniyar Yeralin, Richard Young, Jessie Yu, Christopher Zachow, Laura Zdanski, Christa Zoufal, Zoufalc, a matsuo, azulehner, bcamorrison, brandhsn, chlorophyll zz, dan1pal, dime10, drholmie, elfrocampeador, enavarro51, faisaldebouni, fanizzamarco, gadial, gruu, kanejess, klinvill, kurarrr, lerongil, ma5x, merav aharoni, michelle4654, ordmoj, sethmerkel, strickroman, sumitpuri, tigerjack, toural, vvilpas, welien, willhbang, yang.luh, yelojakit, and yotamvakninibm. Qiskit: An open-source framework for quantum computing, 2019. URL https:/​/​qiskit.org.
https:/​/​qiskit.org

[3] Carlo Acerbi and Dirk Tasche. On the coherence of expected shortfall. Journal of Banking & Finance, 26 (7): 1487–1503, 2002. 10.1016/​S0378-4266(02)00283-2.
https:/​/​doi.org/​10.1016/​S0378-4266(02)00283-2

[4] Francisco Barahona. On the computational complexity of ising spin glass models. Journal of Physics A: Mathematical and General, 15 (10): 3241, 1982. 10.1088/​0305-4470/​15/​10/​028.
https:/​/​doi.org/​10.1088/​0305-4470/​15/​10/​028

[5] Ethan Bernstein and Umesh Vazirani. Quantum complexity theory. SIAM Journal on Computing, 26 (5): 1411–1473, 1997. 10.1137/​S0097539796300921.
https:/​/​doi.org/​10.1137/​S0097539796300921

[6] Gavin E Crooks. Performance of the quantum approximate optimization algorithm on the maximum cut problem. arXiv preprint arXiv:1811.08419, 2018. URL https:/​/​arxiv.org/​abs/​1811.08419.
arXiv:1811.08419

[7] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A Quantum Approximate Optimization Algorithm. arXiv preprint arXiv:1411.4028, pages 1–16, 2014a. URL http:/​/​arxiv.org/​abs/​1411.4028.
arXiv:1411.4028

[8] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A Quantum Approximate Optimization Algorithm Applied to a Bounded Occurrence Constraint Problem. arXiv preprint arXiv:1412.6062, 2014b. URL http:/​/​arxiv.org/​abs/​1412.6062.
arXiv:1412.6062

[9] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Hartmut Neven. Quantum algorithms for fixed qubit architectures. arXiv preprint arXiv:1703.06199, 2017. URL https:/​/​arxiv.org/​abs/​1703.06199.
arXiv:1703.06199

[10] E. Schuyler Fried, Nicolas P. D. Sawaya, Yudong Cao, Ian D. Kivlichan, Jhonathan Romero, and Alán Aspuru-Guzik. qTorch: The quantum tensor contraction handler. PLOS ONE, 13 (12): 1–20, 12 2018. 10.1371/​journal.pone.0208510.
https:/​/​doi.org/​10.1371/​journal.pone.0208510

[11] Lov K Grover. Quantum mechanics helps in searching for a needle in a haystack. Physical review letters, 79 (2): 325, 1997. 10.1103/​PhysRevLett.79.325.
https:/​/​doi.org/​10.1103/​PhysRevLett.79.325

[12] Matthew B Hastings. Classical and quantum bounded depth approximation algorithms. arXiv preprint arXiv:1905.07047, 2019. URL https:/​/​arxiv.org/​abs/​1905.07047.
arXiv:1905.07047

[13] Jeff L. Hong. Monte carlo estimation of value-at-risk, conditional value-at-risk and their sensitivities. In Proceedings of the 2011 Winter Simulation Conference, pages 95–107. IEEE, 2011. 10.1109/​WSC.2011.6147743.
https:/​/​doi.org/​10.1109/​WSC.2011.6147743

[14] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M Chow, and Jay M Gambetta. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 549 (7671): 242, 2017. 10.1038/​nature23879.
https:/​/​doi.org/​10.1038/​nature23879

[15] Andrew Lucas. Ising formulations of many np problems. Frontiers in Physics, 2: 5, 2014. ISSN 2296-424X. 10.3389/​fphy.2014.00005.
https:/​/​doi.org/​10.3389/​fphy.2014.00005

[16] Nikolaj Moll, Panagiotis Barkoutsos, Lev S Bishop, Jerry M Chow, Andrew Cross, Daniel J Egger, Stefan Filipp, Andreas Fuhrer, Jay M Gambetta, Marc Ganzhorn, Abhinav Kandala, Antonio Mezzacapo, Peter Müller, Walter Riess, Gian Salis, John Smolin, Ivano Tavernelli, and Kristan Temme. Quantum optimization using variational algorithms on near-term quantum devices. Quantum Science and Technology, 3 (3): 030503, 2018. 10.1088/​2058-9565/​aab822.
https:/​/​doi.org/​10.1088/​2058-9565/​aab822

[17] Giacomo Nannicini. Performance of hybrid quantum-classical variational heuristics for combinatorial optimization. Physical Review E, 99: 013304, Jan 2019. 10.1103/​PhysRevE.99.013304.
https:/​/​doi.org/​10.1103/​PhysRevE.99.013304

[18] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. Wiley, New York, 1988. 10.1002/​9781118627372.
https:/​/​doi.org/​10.1002/​9781118627372

[19] Murphy Yuezhen Niu, Sirui Lu, and Isaac L Chuang. Optimizing qaoa: Success probability and runtime dependence on circuit depth. arXiv preprint arXiv:1905.12134, 2019. URL https:/​/​arxiv.org/​abs/​1905.12134.
arXiv:1905.12134

[20] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man Hong Yung, Xiao Qi Zhou, Peter J. Love, Alán Aspuru-Guzik, and Jeremy L. O'Brien. A variational eigenvalue solver on a photonic quantum processor. Nature Communications, 5, 2014. 10.1038/​ncomms5213.
https:/​/​doi.org/​10.1038/​ncomms5213

Cited by

[1] Tatsuhiko Shirai and Nozomu Togawa, "Post-processing variationally scheduled quantum algorithm for constrained combinatorial optimization problems", arXiv:2309.08120, (2023).

[2] Daniel J. Egger, Jakub Mareček, and Stefan Woerner, "Warm-starting quantum optimization", Quantum 5, 479 (2021).

[3] Shi-Xin Zhang, Chang-Yu Hsieh, Shengyu Zhang, and Hong Yao, "Differentiable quantum architecture search", Quantum Science and Technology 7 4, 045023 (2022).

[4] David Amaro, Carlo Modica, Matthias Rosenkranz, Mattia Fiorentini, Marcello Benedetti, and Michael Lubasch, "Filtering variational quantum algorithms for combinatorial optimization", Quantum Science and Technology 7 1, 015021 (2022).

[5] Linghua Zhu, Ho Lun Tang, George S. Barron, F. A. Calderon-Vargas, Nicholas J. Mayhall, Edwin Barnes, and Sophia E. Economou, "An adaptive quantum approximate optimization algorithm for solving combinatorial problems on a quantum computer", arXiv:2005.10258, (2020).

[6] Anton Robert, Panagiotis Kl. Barkoutsos, Stefan Woerner, and Ivano Tavernelli, "Resource-efficient quantum algorithm for protein folding", npj Quantum Information 7, 38 (2021).

[7] Alexandre Choquette, Agustin Di Paolo, Panagiotis Kl. Barkoutsos, David Sénéchal, Ivano Tavernelli, and Alexandre Blais, "Quantum-optimal-control-inspired ansatz for variational quantum algorithms", Physical Review Research 3 2, 023092 (2021).

[8] Li Li, Minjie Fan, Marc Coram, Patrick Riley, and Stefan Leichenauer, "Quantum optimization with a novel Gibbs objective function and ansatz architecture search", Physical Review Research 2 2, 023074 (2020).

[9] Ruslan Shaydulin, Changhao Li, Shouvanik Chakrabarti, Matthew DeCross, Dylan Herman, Niraj Kumar, Jeffrey Larson, Danylo Lykov, Pierre Minssen, Yue Sun, Yuri Alexeev, Joan M. Dreiling, John P. Gaebler, Thomas M. Gatterman, Justin A. Gerber, Kevin Gilmore, Dan Gresh, Nathan Hewitt, Chandler V. Horst, Shaohan Hu, Jacob Johansen, Mitchell Matheny, Tanner Mengle, Michael Mills, Steven A. Moses, Brian Neyenhuis, Peter Siegfried, Romina Yalovetzky, and Marco Pistoia, "Evidence of Scaling Advantage for the Quantum Approximate Optimization Algorithm on a Classically Intractable Problem", arXiv:2308.02342, (2023).

[10] Johannes Weidenfeller, Lucia C. Valor, Julien Gacon, Caroline Tornow, Luciano Bello, Stefan Woerner, and Daniel J. Egger, "Scaling of the quantum approximate optimization algorithm on superconducting qubit based hardware", Quantum 6, 870 (2022).

[11] Linghua Zhu, Ho Lun Tang, George S. Barron, F. A. Calderon-Vargas, Nicholas J. Mayhall, Edwin Barnes, and Sophia E. Economou, "Adaptive quantum approximate optimization algorithm for solving combinatorial problems on a quantum computer", Physical Review Research 4 3, 033029 (2022).

[12] Zeqiao Zhou, Yuxuan Du, Xinmei Tian, and Dacheng Tao, "QAOA-in-QAOA: Solving Large-Scale MaxCut Problems on Small Quantum Machines", Physical Review Applied 19 2, 024027 (2023).

[13] Jernej Rudi Finžgar, Martin J. A. Schuetz, J. Kyle Brubaker, Hidetoshi Nishimori, and Helmut G. Katzgraber, "Designing quantum annealing schedules using Bayesian optimization", Physical Review Research 6 2, 023063 (2024).

[14] Xin Wang, Zhixin Song, and Youle Wang, "Variational Quantum Singular Value Decomposition", Quantum 5, 483 (2021).

[15] Jarrod R. McClean, Matthew P. Harrigan, Masoud Mohseni, Nicholas C. Rubin, Zhang Jiang, Sergio Boixo, Vadim N. Smelyanskiy, Ryan Babbush, and Hartmut Neven, "Low-Depth Mechanisms for Quantum Optimization", PRX Quantum 2 3, 030312 (2021).

[16] Jason Larkin, Matías Jonsson, Daniel Justice, and Gian Giacomo Guerreschi, "Evaluation of QAOA based on the approximation ratio of individual samples", Quantum Science and Technology 7 4, 045014 (2022).

[17] James Sud, Stuart Hadfield, Eleanor Rieffel, Norm Tubman, and Tad Hogg, "Parameter-setting heuristic for the quantum alternating operator ansatz", Physical Review Research 6 2, 023171 (2024).

[18] George S. Barron, Bryan T. Gard, Orien J. Altman, Nicholas J. Mayhall, Edwin Barnes, and Sophia E. Economou, "Preserving Symmetries for Variational Quantum Eigensolvers in the Presence of Noise", Physical Review Applied 16 3, 034003 (2021).

[19] Ruslan Shaydulin, Stuart Hadfield, Tad Hogg, and Ilya Safro, "Classical symmetries and the Quantum Approximate Optimization Algorithm", Quantum Information Processing 20 11, 359 (2021).

[20] Andrew Patterson, Hongxiang Chen, Leonard Wossnig, Simone Severini, Dan Browne, and Ivan Rungger, "Quantum state discrimination using noisy quantum neural networks", Physical Review Research 3 1, 013063 (2021).

[21] John Golden, Andreas Bärtschi, Stephan Eidenbenz, and Daniel O'Malley, "Numerical Evidence for Exponential Speed-up of QAOA over Unstructured Search for Approximate Constrained Optimization", arXiv:2202.00648, (2022).

[22] Thomas Lubinski, Carleton Coffrin, Catherine McGeoch, Pratik Sathe, Joshua Apanavicius, and David E. Bernal Neira, "Optimization Applications as Quantum Performance Benchmarks", arXiv:2302.02278, (2023).

[23] Pablo Díez-Valle, Jorge Luis-Hita, Senaida Hernández-Santana, Fernando Martínez-García, Álvaro Díaz-Fernández, Eva Andrés, Juan José García-Ripoll, Escolástico Sánchez-Martínez, and Diego Porras, "Multiobjective variational quantum optimization for constrained problems: an application to cash handling", Quantum Science and Technology 8 4, 045009 (2023).

[24] Austin Gilliam, Stefan Woerner, and Constantin Gonciulea, "Grover Adaptive Search for Constrained Polynomial Binary Optimization", Quantum 5, 428 (2021).

[25] Lucas Slattery, Benjamin Villalonga, and Bryan K. Clark, "Unitary block optimization for variational quantum algorithms", Physical Review Research 4 2, 023072 (2022).

[26] Charles Moussa, Henri Calandra, and Vedran Dunjko, "To quantum or not to quantum: towards algorithm selection in near-term quantum optimization", Quantum Science and Technology 5 4, 044009 (2020).

[27] Antoine Michel, Sebastian Grijalva, Loïc Henriet, Christophe Domain, and Antoine Browaeys, "Blueprint for a digital-analog variational quantum eigensolver using Rydberg atom arrays", Physical Review A 107 4, 042602 (2023).

[28] Sebastian Leontica and David Amaro, "Exploring the neighborhood of 1-layer QAOA with instantaneous quantum polynomial circuits", Physical Review Research 6 1, 013071 (2024).

[29] Dimitris Alevras, Mihir Metkar, Takahiro Yamamoto, Vaibhaw Kumar, Triet Friedhoff, Jae-Eun Park, Mitsuharu Takeori, Mariana LaDue, Wade Davis, and Alexey Galda, "mRNA secondary structure prediction using utility-scale quantum computers", arXiv:2405.20328, (2024).

[30] Christa Zoufal, Ryan V. Mishmash, Nitin Sharma, Niraj Kumar, Aashish Sheshadri, Amol Deshmukh, Noelle Ibrahim, Julien Gacon, and Stefan Woerner, "Variational quantum algorithm for unconstrained black box binary optimization: Application to feature selection", Quantum 7, 909 (2023).

[31] V. Vijendran, Aritra Das, Dax Enshan Koh, Syed M. Assad, and Ping Koy Lam, "An expressive ansatz for low-depth quantum approximate optimisation", Quantum Science and Technology 9 2, 025010 (2024).

[32] Sami Khairy, Ruslan Shaydulin, Lukasz Cincio, Yuri Alexeev, and Prasanna Balaprakash, "Reinforcement-Learning-Based Variational Quantum Circuits Optimization for Combinatorial Problems", arXiv:1911.04574, (2019).

[33] Giuseppe Scriva, Nikita Astrakhantsev, Sebastiano Pilati, and Guglielmo Mazzola, "Challenges of variational quantum optimization with measurement shot noise", Physical Review A 109 3, 032408 (2024).

[34] Simone Cantori, David Vitali, and Sebastiano Pilati, "Supervised learning of random quantum circuits via scalable neural networks", Quantum Science and Technology 8 2, 025022 (2023).

[35] Yagnik Chatterjee, Eric Bourreau, and Marko J. Rančić, "Solving various NP-hard problems using exponentially fewer qubits on a quantum computer", Physical Review A 109 5, 052441 (2024).

[36] Samuel Fernández-Lorenzo, Diego Porras, and Juan José García-Ripoll, "Hybrid quantum-classical optimization with cardinality constraints and applications to finance", Quantum Science and Technology 6 3, 034010 (2021).

[37] Marvin Bechtold, Johanna Barzen, Frank Leymann, Alexander Mandl, Julian Obst, Felix Truger, and Benjamin Weder, "Investigating the effect of circuit cutting in QAOA for the MaxCut problem on NISQ devices", Quantum Science and Technology 8 4, 045022 (2023).

[38] Simone Cantori and Sebastiano Pilati, "Challenges and opportunities in the supervised learning of quantum circuit outputs", arXiv:2402.04992, (2024).

[39] Nishant Jain, Brian Coyle, Elham Kashefi, and Niraj Kumar, "Graph neural network initialisation of quantum approximate optimisation", Quantum 6, 861 (2022).

[40] Anita Weidinger, Glen Bigan Mbeng, and Wolfgang Lechner, "Error mitigation for quantum approximate optimization", Physical Review A 108 3, 032408 (2023).

[41] Akshay Uttarkar and Vidya Niranjan, "A comparative insight into peptide folding with quantum CVaR-VQE algorithm, MD simulations and structural alphabet analysis", Quantum Information Processing 23 2, 48 (2024).

[42] Yahui Chai, Lena Funcke, Tobias Hartung, Karl Jansen, Stefan Kühn, Paolo Stornati, and Tobias Stollenwerk, "Optimal Flight-Gate Assignment on a Digital Quantum Computer", Physical Review Applied 20 6, 064025 (2023).

[43] Atsushi Matsuo, Yudai Suzuki, Ikko Hamamura, and Shigeru Yamashita, "Enhancing VQE Convergence for Optimization Problems with Problem-Specific Parameterized Quantum Circuits", IEICE Transactions on Information and Systems 106 11, 1772 (2023).

[44] David Fitzek, Toheed Ghandriz, Leo Laine, Mats Granath, and Anton Frisk Kockum, "Applying quantum approximate optimization to the heterogeneous vehicle routing problem", arXiv:2110.06799, (2021).

[45] Loïc Henriet, "Robustness to spontaneous emission of a variational quantum algorithm", Physical Review A 101 1, 012335 (2020).

[46] Lee Braine, Daniel J. Egger, Jennifer Glick, and Stefan Woerner, "Quantum Algorithms for Mixed Binary Optimization applied to Transaction Settlement", arXiv:1910.05788, (2019).

[47] Giuseppe Clemente, Arianna Crippa, Karl Jansen, Selomit Ramírez-Uribe, Andrés E. Rentería-Olivo, Germán Rodrigo, German F. R. Sborlini, and Luiz Vale Silva, "Variational quantum eigensolver for causal loop Feynman diagrams and directed acyclic graphs", Physical Review D 108 9, 096035 (2023).

[48] Ramin Ayanzadeh, Narges Alavisamani, Poulami Das, and Moinuddin Qureshi, "FrozenQubits: Boosting Fidelity of QAOA by Skipping Hotspot Nodes", arXiv:2210.17037, (2022).

[49] Ioannis Kolotouros and Petros Wallden, "Evolving objective function for improved variational quantum optimization", Physical Review Research 4 2, 023225 (2022).

[50] Robert J. Banks, Dan E. Browne, and P. A. Warburton, "Rapid quantum approaches for combinatorial optimisation inspired by optimal state-transfer", Quantum 8, 1253 (2024).

[51] Ajinkya Borle, Vincent Elfving, and Samuel J. Lomonaco, "Quantum approximate optimization for hard problems in linear algebra", SciPost Physics Core 4 4, 031 (2021).

[52] Sami Khairy, Ruslan Shaydulin, Lukasz Cincio, Yuri Alexeev, and Prasanna Balaprakash, "Learning to Optimize Variational Quantum Circuits to Solve Combinatorial Problems", arXiv:1911.11071, (2019).

[53] Nicholas H. Stair, Renke Huang, and Francesco A. Evangelista, "A Multireference Quantum Krylov Algorithm for Strongly Correlated Electrons", arXiv:1911.05163, (2019).

[54] L. Zambrano, A. D. Muñoz-Moller, M. Muñoz, L. Pereira, and A. Delgado, "Avoiding barren plateaus in the variational determination of geometric entanglement", Quantum Science and Technology 9 2, 025016 (2024).

[55] Zilu Chen, Xinyu Chen, Yibo Jiang, Xueyun Cheng, and Zhijin Guan, "Routing Strategy for Distributed Quantum Circuit based on Optimized Gate Transmission Direction", International Journal of Theoretical Physics 62 12, 255 (2023).

[56] Lihui Lv, Bao Yan, Hong Wang, Zhi Ma, Yangyang Fei, Xiangdong Meng, and Qianheng Duan, "Using Variational Quantum Algorithm to Solve the LWE Problem", Entropy 24 10, 1428 (2022).

[57] Daisuke Tsukayama, Jun-ichi Shirakashi, and Hiroshi Imai, "CoolMomentum mitigating local minima in variational quantum eigensolvers", Japanese Journal of Applied Physics 62 8, 088003 (2023).

[58] Paolo Braccia, Filippo Caruso, and Leonardo Banchi, "How to enhance quantum generative adversarial learning of noisy information", New Journal of Physics 23 5, 053024 (2021).

[59] Phillip C. Lotshaw, Hanjing Xu, Bilal Khalid, Gilles Buchs, Travis S. Humble, and Arnab Banerjee, "Simulations of frustrated Ising Hamiltonians using quantum approximate optimization", Philosophical Transactions of the Royal Society of London Series A 381 2241, 20210414 (2023).

[60] D. V. Babukhin and W. V. Pogosov, "The effect of quantum noise on algorithmic perfect quantum state transfer on NISQ processors", Quantum Information Processing 21 1, 7 (2022).

[61] Martin R. Albrecht, Miloš Prokop, Yixin Shen, and Petros Wallden, "Variational quantum solutions to the Shortest Vector Problem", Quantum 7, 933 (2023).

[62] Samantha V. Barron, Daniel J. Egger, Elijah Pelofske, Andreas Bärtschi, Stephan Eidenbenz, Matthis Lehmkuehler, and Stefan Woerner, "Provable bounds for noise-free expectation values computed from noisy samples", arXiv:2312.00733, (2023).

[63] Julien Gacon, "Scalable Quantum Algorithms for Noisy Quantum Computers", arXiv:2403.00940, (2024).

[64] Yunlong Yu, Chenfeng Cao, Xiang-Bin Wang, Nic Shannon, and Robert Joynt, "Solution of SAT problems with the adaptive-bias quantum approximate optimization algorithm", Physical Review Research 5 2, 023147 (2023).

[65] Elias X. Huber, Benjamin Y. L. Tan, Paul R. Griffin, and Dimitris G. Angelakis, "Exponential Qubit Reduction in Optimization for Financial Transaction Settlement", arXiv:2307.07193, (2023).

[66] Ruslan Shaydulin and Yuri Alexeev, "Evaluating Quantum Approximate Optimization Algorithm: A Case Study", arXiv:1910.04881, (2019).

[67] Zhaolong Huang, Qiting Li, Junling Zhao, and Meimei Song, "Variational Quantum Algorithm Applied to Collision Avoidance of Unmanned Aerial Vehicles", Entropy 24 11, 1685 (2022).

[68] Vicente P. Soloviev, Concha Bielza, and Pedro Larrañaga, "Quantum approximate optimization algorithm for Bayesian network structure learning", Quantum Information Processing 22 1, 19 (2023).

[69] Hideki Okawa, "Charged particle reconstruction for future high energy colliders with Quantum Approximate Optimization Algorithm", arXiv:2310.10255, (2023).

[70] Nam H. Le, Milan Sonka, and Fatima Toor, "A Quantum Optimization Method for Geometric Constrained Image Segmentation", arXiv:2310.20154, (2023).

[71] Xavier Vasques, "A new step for computing", arXiv:2108.03997, (2021).

[72] Xavier Vasques, "The data center of tomorrow is made up of heterogeneous accelerators", arXiv:2003.10950, (2020).

The above citations are from SAO/NASA ADS (last updated successfully 2024-06-22 10:30:30). The list may be incomplete as not all publishers provide suitable and complete citation data.

Could not fetch Crossref cited-by data during last attempt 2024-06-22 10:30:24: Encountered the unhandled forward link type postedcontent_cite while looking for citations to DOI 10.22331/q-2020-04-20-256.