Engineering Schrödinger cat states with a photonic even-parity detector

G. S. Thekkadath1, B. A. Bell1, I. A. Walmsley1, and A. I. Lvovsky1,2

1Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
2Russian Quantum Center, 100 Novaya St., Skolkovo, Moscow 143025, Russia

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

When two equal photon-number states are combined on a balanced beam splitter, both output ports of the beam splitter contain only even numbers of photons. Consider the time-reversal of this interference phenomenon: the probability that a pair of photon-number-resolving detectors at the output ports of a beam splitter both detect the same number of photons depends on the overlap between the input state of the beam splitter and a state containing only even photon numbers. Here, we propose using this even-parity detection to engineer quantum states containing only even photon-number terms. As an example, we demonstrate the ability to prepare superpositions of two coherent states with opposite amplitudes, i.e. two-component Schrödinger cat states. Our scheme can prepare cat states of arbitrary size with nearly perfect fidelity. Moreover, we investigate engineering more complex even-parity states such as four-component cat states by iteratively applying our even-parity detector.

► BibTeX data

► References

[1] A. I. Lvovsky, Photonics: Scientific Foundations, Technology and Applications 1, 121 (2015).
https:/​/​doi.org/​10.1002/​9781119009719.ch5

[2] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, Rev. Mod. Phys. 84, 621 (2012).
https:/​/​doi.org/​10.1103/​RevModPhys.84.621

[3] S. L. Braunstein and P. van Loock, Rev. Mod. Phys. 77, 513 (2005).
https:/​/​doi.org/​10.1103/​RevModPhys.77.513

[4] C. M. Caves, Phys. Rev. D 23, 1693 (1981).
https:/​/​doi.org/​10.1103/​PhysRevD.23.1693

[5] E. Schrödinger, Naturwissenschaften 23, 823 (1935).
https:/​/​doi.org/​10.1007/​BF01491891

[6] M. J. Holland and K. Burnett, Phys. Rev. Lett. 71, 1355 (1993).
https:/​/​doi.org/​10.1103/​PhysRevLett.71.1355

[7] D. Gottesman, A. Kitaev, and J. Preskill, Phys. Rev. A 64, 012310 (2001).
https:/​/​doi.org/​10.1103/​PhysRevA.64.012310

[8] B. Yurke and D. Stoler, Phys. Rev. Lett. 57, 13 (1986).
https:/​/​doi.org/​10.1103/​PhysRevLett.57.13

[9] C. K. Law and J. H. Eberly, Phys. Rev. Lett. 76, 1055 (1996).
https:/​/​doi.org/​10.1103/​PhysRevLett.76.1055

[10] C. C. Gerry, A. Benmoussa, and R. A. Campos, Phys. Rev. A 72, 053818 (2005).
https:/​/​doi.org/​10.1103/​PhysRevA.72.053818

[11] B. Hacker, S. Welte, S. Daiss, A. Shaukat, S. Ritter, L. Li, and G. Rempe, Nat. Photonics 13, 110 (2019).
https:/​/​doi.org/​10.1038/​s41566-018-0339-5

[12] A. I. Lvovsky and J. Mlynek, Phys. Rev. Lett. 88, 250401 (2002).
https:/​/​doi.org/​10.1103/​PhysRevLett.88.250401

[13] A. Zavatta, S. Viciani, and M. Bellini, Science 306, 660 (2004).
https:/​/​doi.org/​10.1126/​science.1103190

[14] J. Fiurášek, R. García-Patrón, and N. J. Cerf, Phys. Rev. A 72, 033822 (2005).
https:/​/​doi.org/​10.1103/​PhysRevA.72.033822

[15] E. Bimbard, N. Jain, A. MacRae, and A. Lvovsky, Nat. Photonics 4, 243 (2010).
https:/​/​doi.org/​10.1038/​nphoton.2010.6

[16] J. Sperling, W. Vogel, and G. S. Agarwal, Phys. Rev. A 89, 043829 (2014).
https:/​/​doi.org/​10.1103/​PhysRevA.89.043829

[17] S. Glancy and H. M. de Vasconcelos, J. Opt. Soc. Am. B 25, 712 (2008).
https:/​/​doi.org/​10.1364/​JOSAB.25.000712

[18] M. Dakna, T. Anhut, T. Opatrný, L. Knöll, and D.-G. Welsch, Phys. Rev. A 55, 3184 (1997).
https:/​/​doi.org/​10.1103/​PhysRevA.55.3184

[19] J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, Phys. Rev. Lett. 97, 083604 (2006).
https:/​/​doi.org/​10.1103/​PhysRevLett.97.083604

[20] A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, Science 312, 83 (2006).
https:/​/​doi.org/​10.1126/​science.1122858

[21] A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri, and P. Grangier, Nature 448, 784 (2007).
https:/​/​doi.org/​10.1038/​nature06054

[22] K. Wakui, H. Takahashi, A. Furusawa, and M. Sasaki, Opt. Express 15, 3568 (2007).
https:/​/​doi.org/​10.1364/​OE.15.003568

[23] P. Marek, H. Jeong, and M. S. Kim, Phys. Rev. A 78, 063811 (2008).
https:/​/​doi.org/​10.1103/​PhysRevA.78.063811

[24] H. Takahashi, K. Wakui, S. Suzuki, M. Takeoka, K. Hayasaka, A. Furusawa, and M. Sasaki, Phys. Rev. Lett. 101, 233605 (2008).
https:/​/​doi.org/​10.1103/​PhysRevLett.101.233605

[25] K. Huang, H. Le Jeannic, J. Ruaudel, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, E. Wu, H. Zeng, Y.-C. Jeong, R. Filip, O. Morin, and J. Laurat, Phys. Rev. Lett. 115, 023602 (2015).
https:/​/​doi.org/​10.1103/​PhysRevLett.115.023602

[26] D. V. Sychev, A. E. Ulanov, A. A. Pushkina, M. W. Richards, I. A. Fedorov, and A. I. Lvovsky, Nat. Photonics 11, 379 (2017).
https:/​/​doi.org/​10.1038/​nphoton.2017.57

[27] J. Etesse, M. Bouillard, B. Kanseri, and R. Tualle-Brouri, Phys. Rev. Lett. 114, 193602 (2015).
https:/​/​doi.org/​10.1103/​PhysRevLett.114.193602

[28] A. E. Lita, A. J. Miller, and S. W. Nam, Opt. Express 16, 3032 (2008).
https:/​/​doi.org/​10.1364/​OE.16.003032

[29] A. Karimi, Int. J. Quantum Inf 16, 1850003 (2018).
https:/​/​doi.org/​10.1142/​S021974991850003X

[30] N. Quesada, L. G. Helt, J. Izaac, J. M. Arrazola, R. Shahrokhshahi, C. R. Myers, and K. K. Sabapathy, Phys. Rev. A 100, 022341 (2019).
https:/​/​doi.org/​10.1103/​PhysRevA.100.022341

[31] D. Su, C. R. Myers, and K. K. Sabapathy, arXiv:1902.02331.
arXiv:arXiv:1902.02331

[32] D. Su, C. R. Myers, and K. K. Sabapathy, Phys. Rev. A 100, 052301 (2019).
https:/​/​doi.org/​10.1103/​PhysRevA.100.052301

[33] T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, Phys. Rev. A 82, 031802 (2010).
https:/​/​doi.org/​10.1103/​PhysRevA.82.031802

[34] K. T. McCusker and P. G. Kwiat, Phys. Rev. Lett. 103, 163602 (2009).
https:/​/​doi.org/​10.1103/​PhysRevLett.103.163602

[35] T. J. Bartley, G. Donati, J. B. Spring, X.-M. Jin, M. Barbieri, A. Datta, B. J. Smith, and I. A. Walmsley, Phys. Rev. A 86, 043820 (2012).
https:/​/​doi.org/​10.1103/​PhysRevA.86.043820

[36] R. J. Birrittella, M. El Baz, and C. C. Gerry, J. Opt. Soc. Am. B 35, 1514 (2018).
https:/​/​doi.org/​10.1364/​JOSAB.35.001514

[37] M. Eaton, R. Nehra, and O. Pfister, New J. Phys. 21, 113034 (2019).
https:/​/​doi.org/​10.1088/​1367-2630/​ab5330

[38] W. Schleich, M. Pernigo, and F. L. Kien, Phys. Rev. A 44, 2172 (1991).
https:/​/​doi.org/​10.1103/​PhysRevA.44.2172

[39] B. C. Sanders, Phys. Rev. A 45, 6811 (1992).
https:/​/​doi.org/​10.1103/​PhysRevA.45.6811

[40] J. Wenger, M. Hafezi, F. Grosshans, R. Tualle-Brouri, and P. Grangier, Phys. Rev. A 67, 012105 (2003).
https:/​/​doi.org/​10.1103/​PhysRevA.67.012105

[41] H. Jeong, W. Son, M. S. Kim, D. Ahn, and C. Brukner, Phys. Rev. A 67, 012106 (2003).
https:/​/​doi.org/​10.1103/​PhysRevA.67.012106

[42] M. Stobińska, H. Jeong, and T. C. Ralph, Phys. Rev. A 75, 052105 (2007).
https:/​/​doi.org/​10.1103/​PhysRevA.75.052105

[43] S. Haroche, Rev. Mod. Phys. 85, 1083 (2013).
https:/​/​doi.org/​10.1103/​RevModPhys.85.1083

[44] D. J. Wineland, Rev. Mod. Phys. 85, 1103 (2013).
https:/​/​doi.org/​10.1103/​RevModPhys.85.1103

[45] B. Vlastakis, A. Petrenko, N. Ofek, L. Sun, Z. Leghtas, K. Sliwa, Y. Liu, M. Hatridge, J. Blumoff, L. Frunzio, et al., Nat. Commun. 6, 8970 (2015).
https:/​/​doi.org/​10.1038/​ncomms9970%20|

[46] C. Wang, Y. Y. Gao, P. Reinhold, R. W. Heeres, N. Ofek, K. Chou, C. Axline, M. Reagor, J. Blumoff, K. Sliwa, et al., Science 352, 1087 (2016).
https:/​/​doi.org/​10.1126/​science.aaf2941

[47] S. J. van Enk and O. Hirota, Phys. Rev. A 64, 022313 (2001).
https:/​/​doi.org/​10.1103/​PhysRevA.64.022313

[48] H. Jeong, M. S. Kim, and J. Lee, Phys. Rev. A 64, 052308 (2001).
https:/​/​doi.org/​10.1103/​PhysRevA.64.052308

[49] T. C. Ralph, A. Gilchrist, G. J. Milburn, W. J. Munro, and S. Glancy, Phys. Rev. A 68, 042319 (2003).
https:/​/​doi.org/​10.1103/​PhysRevA.68.042319

[50] A. Gilchrist, K. Nemoto, W. J. Munro, T. C. Ralph, S. Glancy, S. L. Braunstein, and G. J. Milburn, J. Opt. B: Quantum Semiclass. Opt. 6, S828 (2004).
https:/​/​doi.org/​10.1088/​1464-4266/​6/​8/​032

[51] A. P. Lund, T. C. Ralph, and H. L. Haselgrove, Phys. Rev. Lett. 100, 030503 (2008).
https:/​/​doi.org/​10.1103/​PhysRevLett.100.030503

[52] B. Vlastakis, G. Kirchmair, Z. Leghtas, S. E. Nigg, L. Frunzio, S. M. Girvin, M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, Science 342, 607 (2013).
https:/​/​doi.org/​10.1126/​science.1243289

[53] N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Leghtas, B. Vlastakis, Y. Liu, L. Frunzio, S. Girvin, L. Jiang, et al., Nature 536, 441 (2016).
https:/​/​doi.org/​10.1038/​nature18949

[54] Z. Leghtas, G. Kirchmair, B. Vlastakis, R. J. Schoelkopf, M. H. Devoret, and M. Mirrahimi, Phys. Rev. Lett. 111, 120501 (2013).
https:/​/​doi.org/​10.1103/​PhysRevLett.111.120501

[55] M. Mirrahimi, Z. Leghtas, V. V. Albert, S. Touzard, R. J. Schoelkopf, L. Jiang, and M. H. Devoret, New J. Phys. 16, 045014 (2014).
https:/​/​doi.org/​10.1088/​1367-2630/​16/​4/​045014

[56] V. V. Albert, K. Noh, K. Duivenvoorden, D. J. Young, R. T. Brierley, P. Reinhold, C. Vuillot, L. Li, C. Shen, S. M. Girvin, B. M. Terhal, and L. Jiang, Phys. Rev. A 97, 032346 (2018).
https:/​/​doi.org/​10.1103/​PhysRevA.97.032346

[57] W. H. Zurek, Nature 412, 712 (2001).
https:/​/​doi.org/​10.1038/​35089017

[58] G. S. Agarwal and P. K. Pathak, Phys. Rev. A 70, 053813 (2004).
https:/​/​doi.org/​10.1103/​PhysRevA.70.053813

[59] D. A. Dalvit, R. de Matos Filho, and F. Toscano, New J. Phys. 8, 276 (2006).
https:/​/​doi.org/​10.1088/​1367-2630/​8/​11/​276

[60] U. Roy, S. Ghosh, P. K. Panigrahi, and D. Vitali, Phys. Rev. A 80, 052115 (2009).
https:/​/​doi.org/​10.1103/​PhysRevA.80.052115

[61] U. Leonhardt, Measuring the Quantum State of Light (Cambridge University Press, 1997).
https:/​/​books.google.ca/​books?id=wmsJy1A_cyIC

[62] C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044 (1987).
https:/​/​doi.org/​10.1103/​PhysRevLett.59.2044

[63] R. A. Campos, B. E. A. Saleh, and M. C. Teich, Phys. Rev. A 40, 1371 (1989).
https:/​/​doi.org/​10.1103/​PhysRevA.40.1371

[64] J. R. Johansson, P. D. Nation, and F. Nori, Comput. Phys. Commun. 184, 1234 (2013).
https:/​/​doi.org/​10.1016/​j.cpc.2012.11.019

[65] P. C. Humphreys, B. J. Metcalf, T. Gerrits, T. Hiemstra, A. E. Lita, J. Nunn, S. W. Nam, A. Datta, W. S. Kolthammer, and I. A. Walmsley, New J. Phys. 17, 103044 (2015).
https:/​/​doi.org/​10.1088/​1367-2630/​17/​10/​103044

[66] A. Kenfack and K. Życzkowski, J. Opt. B: Quantum Semiclass. Opt. 6, 396 (2004).
https:/​/​doi.org/​10.1088/​1464-4266/​6/​10/​003

[67] L. A. Howard, T. J. Weinhold, F. Shahandeh, J. Combes, M. R. Vanner, A. G. White, and M. Ringbauer, Phys. Rev. Lett. 123, 020402 (2019).
https:/​/​doi.org/​10.1103/​PhysRevLett.123.020402

[68] M. Ringbauer, T. J. Weinhold, L. Howard, A. White, and M. Vanner, New J. Phys. 20, 053042 (2018).
https:/​/​doi.org/​10.1088/​1367-2630/​aabb8d

[69] J. Hastrup, J. S. Neergaard-Nielsen, and U. L. Andersen, Opt. Lett. 45, 640 (2020).
https:/​/​doi.org/​10.1364/​OL.383194

[70] Y. Eto, A. Koshio, A. Ohshiro, J. Sakurai, K. Horie, T. Hirano, and M. Sasaki, Opt. Lett. 36, 4653 (2011).
https:/​/​doi.org/​10.1364/​OL.36.004653

[71] G. Harder, T. J. Bartley, A. E. Lita, S. W. Nam, T. Gerrits, and C. Silberhorn, Phys. Rev. Lett. 116, 143601 (2016).
https:/​/​doi.org/​10.1103/​PhysRevLett.116.143601

[72] T. Eberle, V. Händchen, and R. Schnabel, Opt. Express 21, 11546 (2013).
https:/​/​doi.org/​10.1364/​OE.21.011546

[73] H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, Phys. Rev. Lett. 117, 110801 (2016).
https:/​/​doi.org/​10.1103/​PhysRevLett.117.110801

[74] G. S. Thekkadath, D. S. Phillips, J. F. F. Bulmer, W. R. Clements, A. Eckstein, B. A. Bell, J. Lugani, T. A. W. Wolterink, A. Lita, S. W. Nam, T. Gerrits, C. G. Wade, and I. A. Walmsley, arXiv:1908.04765.
arXiv:arXiv:1908.04765

[75] H. M. Vasconcelos, L. Sanz, and S. Glancy, Opt. Lett. 35, 3261 (2010).
https:/​/​doi.org/​10.1364/​OL.35.003261

[76] A. L. Grimsmo, J. Combes, and B. Q. Baragiola, arXiv:1901.08071.
arXiv:arXiv:1901.08071

[77] T. Kiss, U. Herzog, and U. Leonhardt, Phys. Rev. A 52, 2433 (1995).
https:/​/​doi.org/​10.1103/​PhysRevA.52.2433

Cited by

[1] Joshua Combes and Austin P. Lund, "Homodyne measurement with a Schrödinger cat state as a local oscillator", Physical Review A 106 6, 063706 (2022).

[2] Abdul Q Batin, Suranjana Ghosh, Prasanta K. Panigrahi, and Utpal Roy, "Quantum scissor from exact generalized photon number statistics", Scientific Reports 14 1, 7107 (2024).

[3] Huiping Zhan, Gaoxiang Li, and Huatang Tan, "Preparing macroscopic mechanical quantum superpositions via photon detection", Physical Review A 101 6, 063834 (2020).

[4] Caspar Groiseau, Stuart J. Masson, and Scott Parkins, "Generation of spin cat states in an engineered Dicke model", Physical Review A 104 5, 053721 (2021).

[5] Manoj K. Mishra, Hari Prakash, and Vibhuti B. Jha, "Ququats as superposition of coherent states and their application in quantum information processing", International Journal of Quantum Information 19 02, 2150013 (2021).

[6] E N Bashmakova, S B Korolev, and T Yu Golubeva, "Effect of entanglement in the generalized photon subtraction scheme", Laser Physics Letters 20 11, 115203 (2023).

[7] N.I. Masalaeva and I.V. Sokolov, "Quantum statistics of Schrödinger cat states prepared by logical gate with non-Gaussian resource state", Physics Letters A 424, 127846 (2022).

[8] Ekaterina Fedotova, Nikolai Kuznetsov, Egor Tiunov, A. E. Ulanov, and A. I. Lvovsky, "Continuous-variable quantum tomography of high-amplitude states", Physical Review A 108 4, 042430 (2023).

[9] Arman, Gargi Tyagi, and Prasanta K. Panigrahi, "Photon added cat state: phase space structure and statistics", Optics Letters 46 5, 1177 (2021).

[10] Arman and Prasanta K. Panigrahi, "Generating overlap between compass states and squeezed, displaced, or Fock states", Physical Review A 109 3, 033724 (2024).

[11] Naeem Akhtar, Xiaosen Yang, Muhammad Asjad, Jia-Xin Peng, Gao Xianlong, and Yuanping Chen, "Compasslike states in a thermal reservoir and fragility of their nonclassical features", Physical Review A 109 5, 053718 (2024).

[12] G. S. Thekkadath, D. S. Phillips, J. F. F. Bulmer, W. R. Clements, A. Eckstein, B. A. Bell, J. Lugani, T. A. W. Wolterink, A. Lita, S. W. Nam, T. Gerrits, C. G. Wade, and I. A. Walmsley, "Tuning between photon-number and quadrature measurements with weak-field homodyne detection", Physical Review A 101 3, 031801 (2020).

[13] A.V. Baeva, A.S. Losev, and I.V. Sokolov, "Schrödinger cat states prepared by logical gate with non-Gaussian resource state: Effect of finite squeezing and efficiency versus monotones", Physics Letters A 466, 128730 (2023).

[14] Kan Takase, Jun-ichi Yoshikawa, Warit Asavanant, Mamoru Endo, and Akira Furusawa, "Generation of optical Schrödinger cat states by generalized photon subtraction", Physical Review A 103 1, 013710 (2021).

[15] Jayanta Bera, Barun Halder, Suranjana Ghosh, Ray-Kuang Lee, and Utpal Roy, "Quantum sensing with sub-Planck structures for the dynamics of Bose-Einstein condensate in presence of engineered potential barriers inside a harmonic trap", Physics Letters A 453, 128484 (2022).

[16] The Vinh Ngo, Dmitriy V. Tsarev, Ray-Kuang Lee, and Alexander P. Alodjants, "Bose–Einstein condensate soliton qubit states for metrological applications", Scientific Reports 11 1, 19363 (2021).

[17] Miller Eaton, Carlos González-Arciniegas, Rafael N. Alexander, Nicolas C. Menicucci, and Olivier Pfister, "Measurement-based generation and preservation of cat and grid states within a continuous-variable cluster state", Quantum 6, 769 (2022).

[18] Naeem Akhtar, Jizhou Wu, Jia-Xin Peng, Wu-Ming Liu, and Gao Xianlong, "Sub-Planck structures and sensitivity of the superposed photon-added or photon-subtracted squeezed-vacuum states", Physical Review A 107 5, 052614 (2023).

[19] Jacob Hastrup and Ulrik Lund Andersen, "All-optical cat-code quantum error correction", Physical Review Research 4 4, 043065 (2022).

[20] Guanhao Huang, Nils J. Engelsen, Ofer Kfir, Claus Ropers, and Tobias J. Kippenberg, "Electron-Photon Quantum State Heralding Using Photonic Integrated Circuits", PRX Quantum 4 2, 020351 (2023).

[21] I. K. A. da Silva, F. A. Mendonca, and R. V. Ramos, "Dynamic multi-photon number resolving detector with fiber ring and single-photon detector", Optical and Quantum Electronics 55 12, 1063 (2023).

[22] Xinyu Chen, Feixiang Xu, Huichao Xu, and Lijian Zhang, "Efficient tomography of coherent optical detectors", Physical Review A 106 5, L051702 (2022).

[23] Naeem Akhtar, Barry C. Sanders, and Carlos Navarrete-Benlloch, "Sub-Planck structures: Analogies between the Heisenberg-Weyl and SU(2) groups", Physical Review A 103 5, 053711 (2021).

[24] L A Markovich and A Messina, "The fertile marriage between the two Glauber parity and displacement operators", Physica Scripta 95 7, 074008 (2020).

[25] Mattia Walschaers, Valentina Parigi, and Nicolas Treps, "Practical Framework for Conditional Non-Gaussian Quantum State Preparation", PRX Quantum 1 2, 020305 (2020).

[26] Mattia Walschaers, "Non-Gaussian Quantum States and Where to Find Them", PRX Quantum 2 3, 030204 (2021).

[27] Jacob Hastrup, Jonas Schou Neergaard-Nielsen, and Ulrik Lund Andersen, "Deterministic generation of a four-component optical cat state", Optics Letters 45 3, 640 (2020).

The above citations are from Crossref's cited-by service (last updated successfully 2024-07-15 10:52:54) and SAO/NASA ADS (last updated successfully 2024-07-15 10:52:55). The list may be incomplete as not all publishers provide suitable and complete citation data.