Engineering Schrödinger cat states with a photonic even-parity detector

G. S. Thekkadath1, B. A. Bell1, I. A. Walmsley1, and A. I. Lvovsky1,2

1Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
2Russian Quantum Center, 100 Novaya St., Skolkovo, Moscow 143025, Russia

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


When two equal photon-number states are combined on a balanced beam splitter, both output ports of the beam splitter contain only even numbers of photons. Consider the time-reversal of this interference phenomenon: the probability that a pair of photon-number-resolving detectors at the output ports of a beam splitter both detect the same number of photons depends on the overlap between the input state of the beam splitter and a state containing only even photon numbers. Here, we propose using this even-parity detection to engineer quantum states containing only even photon-number terms. As an example, we demonstrate the ability to prepare superpositions of two coherent states with opposite amplitudes, i.e. two-component Schrödinger cat states. Our scheme can prepare cat states of arbitrary size with nearly perfect fidelity. Moreover, we investigate engineering more complex even-parity states such as four-component cat states by iteratively applying our even-parity detector.

► BibTeX data

► References

[1] A. I. Lvovsky, Photonics: Scientific Foundations, Technology and Applications 1, 121 (2015).

[2] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, Rev. Mod. Phys. 84, 621 (2012).

[3] S. L. Braunstein and P. van Loock, Rev. Mod. Phys. 77, 513 (2005).

[4] C. M. Caves, Phys. Rev. D 23, 1693 (1981).

[5] E. Schrödinger, Naturwissenschaften 23, 823 (1935).

[6] M. J. Holland and K. Burnett, Phys. Rev. Lett. 71, 1355 (1993).

[7] D. Gottesman, A. Kitaev, and J. Preskill, Phys. Rev. A 64, 012310 (2001).

[8] B. Yurke and D. Stoler, Phys. Rev. Lett. 57, 13 (1986).

[9] C. K. Law and J. H. Eberly, Phys. Rev. Lett. 76, 1055 (1996).

[10] C. C. Gerry, A. Benmoussa, and R. A. Campos, Phys. Rev. A 72, 053818 (2005).

[11] B. Hacker, S. Welte, S. Daiss, A. Shaukat, S. Ritter, L. Li, and G. Rempe, Nat. Photonics 13, 110 (2019).

[12] A. I. Lvovsky and J. Mlynek, Phys. Rev. Lett. 88, 250401 (2002).

[13] A. Zavatta, S. Viciani, and M. Bellini, Science 306, 660 (2004).

[14] J. Fiurášek, R. García-Patrón, and N. J. Cerf, Phys. Rev. A 72, 033822 (2005).

[15] E. Bimbard, N. Jain, A. MacRae, and A. Lvovsky, Nat. Photonics 4, 243 (2010).

[16] J. Sperling, W. Vogel, and G. S. Agarwal, Phys. Rev. A 89, 043829 (2014).

[17] S. Glancy and H. M. de Vasconcelos, J. Opt. Soc. Am. B 25, 712 (2008).

[18] M. Dakna, T. Anhut, T. Opatrný, L. Knöll, and D.-G. Welsch, Phys. Rev. A 55, 3184 (1997).

[19] J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, Phys. Rev. Lett. 97, 083604 (2006).

[20] A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, Science 312, 83 (2006).

[21] A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri, and P. Grangier, Nature 448, 784 (2007).

[22] K. Wakui, H. Takahashi, A. Furusawa, and M. Sasaki, Opt. Express 15, 3568 (2007).

[23] P. Marek, H. Jeong, and M. S. Kim, Phys. Rev. A 78, 063811 (2008).

[24] H. Takahashi, K. Wakui, S. Suzuki, M. Takeoka, K. Hayasaka, A. Furusawa, and M. Sasaki, Phys. Rev. Lett. 101, 233605 (2008).

[25] K. Huang, H. Le Jeannic, J. Ruaudel, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, E. Wu, H. Zeng, Y.-C. Jeong, R. Filip, O. Morin, and J. Laurat, Phys. Rev. Lett. 115, 023602 (2015).

[26] D. V. Sychev, A. E. Ulanov, A. A. Pushkina, M. W. Richards, I. A. Fedorov, and A. I. Lvovsky, Nat. Photonics 11, 379 (2017).

[27] J. Etesse, M. Bouillard, B. Kanseri, and R. Tualle-Brouri, Phys. Rev. Lett. 114, 193602 (2015).

[28] A. E. Lita, A. J. Miller, and S. W. Nam, Opt. Express 16, 3032 (2008).

[29] A. Karimi, Int. J. Quantum Inf 16, 1850003 (2018).

[30] N. Quesada, L. G. Helt, J. Izaac, J. M. Arrazola, R. Shahrokhshahi, C. R. Myers, and K. K. Sabapathy, Phys. Rev. A 100, 022341 (2019).

[31] D. Su, C. R. Myers, and K. K. Sabapathy, arXiv:1902.02331.

[32] D. Su, C. R. Myers, and K. K. Sabapathy, Phys. Rev. A 100, 052301 (2019).

[33] T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, Phys. Rev. A 82, 031802 (2010).

[34] K. T. McCusker and P. G. Kwiat, Phys. Rev. Lett. 103, 163602 (2009).

[35] T. J. Bartley, G. Donati, J. B. Spring, X.-M. Jin, M. Barbieri, A. Datta, B. J. Smith, and I. A. Walmsley, Phys. Rev. A 86, 043820 (2012).

[36] R. J. Birrittella, M. El Baz, and C. C. Gerry, J. Opt. Soc. Am. B 35, 1514 (2018).

[37] M. Eaton, R. Nehra, and O. Pfister, New J. Phys. 21, 113034 (2019).

[38] W. Schleich, M. Pernigo, and F. L. Kien, Phys. Rev. A 44, 2172 (1991).

[39] B. C. Sanders, Phys. Rev. A 45, 6811 (1992).

[40] J. Wenger, M. Hafezi, F. Grosshans, R. Tualle-Brouri, and P. Grangier, Phys. Rev. A 67, 012105 (2003).

[41] H. Jeong, W. Son, M. S. Kim, D. Ahn, and C. Brukner, Phys. Rev. A 67, 012106 (2003).

[42] M. Stobińska, H. Jeong, and T. C. Ralph, Phys. Rev. A 75, 052105 (2007).

[43] S. Haroche, Rev. Mod. Phys. 85, 1083 (2013).

[44] D. J. Wineland, Rev. Mod. Phys. 85, 1103 (2013).

[45] B. Vlastakis, A. Petrenko, N. Ofek, L. Sun, Z. Leghtas, K. Sliwa, Y. Liu, M. Hatridge, J. Blumoff, L. Frunzio, et al., Nat. Commun. 6, 8970 (2015).

[46] C. Wang, Y. Y. Gao, P. Reinhold, R. W. Heeres, N. Ofek, K. Chou, C. Axline, M. Reagor, J. Blumoff, K. Sliwa, et al., Science 352, 1087 (2016).

[47] S. J. van Enk and O. Hirota, Phys. Rev. A 64, 022313 (2001).

[48] H. Jeong, M. S. Kim, and J. Lee, Phys. Rev. A 64, 052308 (2001).

[49] T. C. Ralph, A. Gilchrist, G. J. Milburn, W. J. Munro, and S. Glancy, Phys. Rev. A 68, 042319 (2003).

[50] A. Gilchrist, K. Nemoto, W. J. Munro, T. C. Ralph, S. Glancy, S. L. Braunstein, and G. J. Milburn, J. Opt. B: Quantum Semiclass. Opt. 6, S828 (2004).

[51] A. P. Lund, T. C. Ralph, and H. L. Haselgrove, Phys. Rev. Lett. 100, 030503 (2008).

[52] B. Vlastakis, G. Kirchmair, Z. Leghtas, S. E. Nigg, L. Frunzio, S. M. Girvin, M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, Science 342, 607 (2013).

[53] N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Leghtas, B. Vlastakis, Y. Liu, L. Frunzio, S. Girvin, L. Jiang, et al., Nature 536, 441 (2016).

[54] Z. Leghtas, G. Kirchmair, B. Vlastakis, R. J. Schoelkopf, M. H. Devoret, and M. Mirrahimi, Phys. Rev. Lett. 111, 120501 (2013).

[55] M. Mirrahimi, Z. Leghtas, V. V. Albert, S. Touzard, R. J. Schoelkopf, L. Jiang, and M. H. Devoret, New J. Phys. 16, 045014 (2014).

[56] V. V. Albert, K. Noh, K. Duivenvoorden, D. J. Young, R. T. Brierley, P. Reinhold, C. Vuillot, L. Li, C. Shen, S. M. Girvin, B. M. Terhal, and L. Jiang, Phys. Rev. A 97, 032346 (2018).

[57] W. H. Zurek, Nature 412, 712 (2001).

[58] G. S. Agarwal and P. K. Pathak, Phys. Rev. A 70, 053813 (2004).

[59] D. A. Dalvit, R. de Matos Filho, and F. Toscano, New J. Phys. 8, 276 (2006).

[60] U. Roy, S. Ghosh, P. K. Panigrahi, and D. Vitali, Phys. Rev. A 80, 052115 (2009).

[61] U. Leonhardt, Measuring the Quantum State of Light (Cambridge University Press, 1997).

[62] C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044 (1987).

[63] R. A. Campos, B. E. A. Saleh, and M. C. Teich, Phys. Rev. A 40, 1371 (1989).

[64] J. R. Johansson, P. D. Nation, and F. Nori, Comput. Phys. Commun. 184, 1234 (2013).

[65] P. C. Humphreys, B. J. Metcalf, T. Gerrits, T. Hiemstra, A. E. Lita, J. Nunn, S. W. Nam, A. Datta, W. S. Kolthammer, and I. A. Walmsley, New J. Phys. 17, 103044 (2015).

[66] A. Kenfack and K. Życzkowski, J. Opt. B: Quantum Semiclass. Opt. 6, 396 (2004).

[67] L. A. Howard, T. J. Weinhold, F. Shahandeh, J. Combes, M. R. Vanner, A. G. White, and M. Ringbauer, Phys. Rev. Lett. 123, 020402 (2019).

[68] M. Ringbauer, T. J. Weinhold, L. Howard, A. White, and M. Vanner, New J. Phys. 20, 053042 (2018).

[69] J. Hastrup, J. S. Neergaard-Nielsen, and U. L. Andersen, Opt. Lett. 45, 640 (2020).

[70] Y. Eto, A. Koshio, A. Ohshiro, J. Sakurai, K. Horie, T. Hirano, and M. Sasaki, Opt. Lett. 36, 4653 (2011).

[71] G. Harder, T. J. Bartley, A. E. Lita, S. W. Nam, T. Gerrits, and C. Silberhorn, Phys. Rev. Lett. 116, 143601 (2016).

[72] T. Eberle, V. Händchen, and R. Schnabel, Opt. Express 21, 11546 (2013).

[73] H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, Phys. Rev. Lett. 117, 110801 (2016).

[74] G. S. Thekkadath, D. S. Phillips, J. F. F. Bulmer, W. R. Clements, A. Eckstein, B. A. Bell, J. Lugani, T. A. W. Wolterink, A. Lita, S. W. Nam, T. Gerrits, C. G. Wade, and I. A. Walmsley, arXiv:1908.04765.

[75] H. M. Vasconcelos, L. Sanz, and S. Glancy, Opt. Lett. 35, 3261 (2010).

[76] A. L. Grimsmo, J. Combes, and B. Q. Baragiola, arXiv:1901.08071.

[77] T. Kiss, U. Herzog, and U. Leonhardt, Phys. Rev. A 52, 2433 (1995).

Cited by

[1] Arman, Gargi Tyagi, and Prasanta K. Panigrahi, "Photon added cat state: phase space structure and statistics", Optics Letters 46 5, 1177 (2021).

[2] Naeem Akhtar, Barry C. Sanders, and Carlos Navarrete-Benlloch, "Sub-Planck structures: Analogies between the Heisenberg-Weyl and SU(2) groups", Physical Review A 103 5, 053711 (2021).

[3] L A Markovich and A Messina, "The fertile marriage between the two Glauber parity and displacement operators", Physica Scripta 95 7, 074008 (2020).

[4] G. S. Thekkadath, D. S. Phillips, J. F. F. Bulmer, W. R. Clements, A. Eckstein, B. A. Bell, J. Lugani, T. A. W. Wolterink, A. Lita, S. W. Nam, T. Gerrits, C. G. Wade, and I. A. Walmsley, "Tuning between photon-number and quadrature measurements with weak-field homodyne detection", Physical Review A 101 3, 031801 (2020).

[5] Huiping Zhan, Gaoxiang Li, and Huatang Tan, "Preparing macroscopic mechanical quantum superpositions via photon detection", Physical Review A 101 6, 063834 (2020).

[6] Mattia Walschaers, Valentina Parigi, and Nicolas Treps, "Practical Framework for Conditional Non-Gaussian Quantum State Preparation", PRX Quantum 1 2, 020305 (2020).

[7] Manoj K. Mishra, Hari Prakash, and Vibhuti B. Jha, "Ququats as superposition of coherent states and their application in quantum information processing", International Journal of Quantum Information 19 02, 2150013 (2021).

[8] Kan Takase, Jun-ichi Yoshikawa, Warit Asavanant, Mamoru Endo, and Akira Furusawa, "Generation of optical Schrödinger cat states by generalized photon subtraction", Physical Review A 103 1, 013710 (2021).

[9] Jacob Hastrup, Jonas Schou Neergaard-Nielsen, and Ulrik Lund Andersen, "Deterministic generation of a four-component optical cat state", Optics Letters 45 3, 640 (2020).

The above citations are from Crossref's cited-by service (last updated successfully 2021-09-23 15:20:10) and SAO/NASA ADS (last updated successfully 2021-09-23 15:20:11). The list may be incomplete as not all publishers provide suitable and complete citation data.