Maximum $N$-body correlations do not in general imply genuine multipartite entanglement
1Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany
2Departamento de Química Física, Universidad del País Vasco UPV/EHU, E-48080 Bilbao, Spain
3IKERBASQUE Basque Foundation for Science, E-48013 Bilbao, Spain
Published: | 2020-02-10, volume 4, page 229 |
Eprint: | arXiv:1908.04220v2 |
Doi: | https://doi.org/10.22331/q-2020-02-10-229 |
Citation: | Quantum 4, 229 (2020). |
Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.
Abstract
The existence of correlations between the parts of a quantum system on the one hand, and entanglement between them on the other, are different properties. Yet, one intuitively would identify strong $N$-party correlations with $N$-party entanglement in an $N$-partite quantum state. If the local systems are qubits, this intuition is confirmed: The state with the strongest $N$-party correlations is the Greenberger-Horne-Zeilinger (GHZ) state, which does have genuine multipartite entanglement. However, for high-dimensional local systems the state with strongest $N$-party correlations may be a tensor product of Bell states, that is, partially separable. We show this by introducing several novel tools for handling the Bloch representation.

► BibTeX data
► References
[1] U. Fano, A Stokes-Parameter Technique for the Treatment of Polarization in Quantum Mechanics, Phys. Rev. 93, 121 (1954).
[2] U. Fano, Description of States in Quantum Mechanics by Density Matrix and Operator Techniques, Rev. Mod. Phys. 29, 74 (1957).
[3] G. Mahler and V.A. Weberruß, Quantum Networks, 2nd Edition (Springer, Berlin, 2004).
[4] C. Klöckl and M. Huber, Characterizing multipartite entanglement without shared reference frames, Phys. Rev. A 91, 042339 (2015).
[5] C. Eltschka and J. Siewert, Monogamy equalities for qubit entanglement from Lorentz invariance, Phys. Rev. Lett. 114, 140402 (2015).
https://doi.org/10.1103/PhysRevLett.114.140402
[6] M.-C. Tran, B. Dakic, F. Arnault, W. Laskowski, and T. Paterek, Quantum entanglement from random measurements, Phys. Rev. A 94, 042302 (2016).
[7] P. Appel, M. Huber, and C. Klöckl, Monogamy of correlations and entropy inequalities in the Bloch picture, J. Phys. Commun. (2020), doi:10.1088/2399-6528/ab6fb.
[8] F. Huber, O. Gühne, and J. Siewert, Absolutely Maximally Entangled States of Seven Qubits Do Not Exist, Phys. Rev. Lett. 118, 200502 (2017).
[9] C. Eltschka and J. Siewert, Distribution of entanglement and correlations in all finite dimensions, Quantum 2, 64 (2018).
[10] N. Wyderka, F. Huber, and O. Gühne, Constraints on correlations in multiqubit systems, Phys. Rev. A 97, 060101 (2018).
[11] F. Huber, C. Eltschka, J. Siewert, and O. Gühne, Bounds on absolutely maximally entangled states from shadow inequalities, and the quantum MacWilliams identity, J. Phys. A: Math. Theor. 51, 175301 (2018).
[12] C. Eltschka, F. Huber, O. Gühne, and J. Siewert, Exponentially many entanglement and correlation constraints for multipartite quantum states Phys. Rev. A 98, 052317 (2018).
[13] T. Cox and P.C.E. Stamp, Partitioned density matrices and entanglement correlators, Phys. Rev. A 98, 062110 (2018).
[14] N. Wyderka and O. Gühne, Characterizing quantum states via sector lengths, (2019).
arXiv:1905.06928
https://arxiv.org/abs/1905.06928
[15] C. Eltschka and J. Siewert, Joint Schmidt-type decomposition for two bipartite pure states, Phys. Rev. A 101, 022302 (2020).
[16] J. Schlienz and G. Mahler, Description of entanglement, Phys. Rev. A 52, 4396 (1995).
[17] J. Schlienz and G. Mahler, The maximal entangled three-particle state is unique, Phys. Lett. A 224, 39 (1996).
[18] M. Żukowski and C. Brukner, Bell's theorem for general $N$-qubit states, Phys. Rev. Lett. 88, 210401 (2002).
[19] M. Teodorescu-Frumosu and G. Jaeger, Quantum Lorentz-group invariants of $n$-qubit systems, Phys. Rev. A 67, 052305 (2003).
[20] H. Aschauer, J. Calsamiglia, M. Hein, and H.J. Briegel, Local invariants for multi-partite entangled states allowing for a simple entanglement criterion, Quantum Inf. Comput. 4, 383 (2004); journal link; arXiv.org link.
arXiv:quant-ph/0306048
[21] A. J. Scott, Multipartite entanglement, quantum error correcting codes, and entangling power of quantum evolutions, Phys. Rev. A 69, 052330 (2004).
[22] J.I. de Vicente, Separability criteria based on the Bloch representation of density matrices, Quantum Inf. Comput. 7, 624 (2007); journal link; arXiv.org link.
arXiv:quant-ph/0607195
[23] J.I. de Vicente, Further results on entanglement detection and quantification from the correlation matrix criterion, J. Phys. A: Math. Theor. 41, 065309 (2008).
[24] P. Badziag, C. Brukner, W. Laskowski, T. Paterek, and M. Żukowski, Experimentally Friendly Geometrical Criteria for Entanglement, Phys. Rev. Lett. 100, 140403 (2008).
[25] W. Laskowski, M. Markiewicz, T. Paterek, and M. Żukowski, Correlation-tensor criteria for genuine multiqubit entanglement, Phys. Rev. A 84, 062305 (2011).
[26] J.I. de Vicente and M. Huber, Multipartite entanglement detection from correlation tensors, Phys. Rev. A 84, 062306 (2011).
[27] We will use the term ``$k$-sector length'' instead of ``squared $k$-sector length'' following Ref. Tran2016. In the present context this does not lead to confusion.
[28] One may imagine very different correlation quantifiers, e.g., D. Girolami, T. Tufarelli, and C.E. Susa, Quantifying Genuine Multipartite Correlations and their Pattern Complexity, Phys. Rev. Lett. 119, 140505 (2017).
[29] J. Kaszlikowski, A. Sen De, U. Sen, V. Vedral, A. Winter, Quantum Correlation Without Classical Correlations, Phys. Rev. Lett. 101, 070502 (2008).
[30] C. Schwemmer, L. Knips, M.C. Tran, A. de Rosier, W. Laskowski, T. Paterek, and H. Weinfurter, Genuine Multipartite Entanglement without Multipartite Correlations, Phys. Rev. Lett. 114, 180501 (2015).
[31] M.C. Tran, M. Zuppardo, A. de Rosier, L. Knips, W. Laskowski, T. Paterek, and H. Weinfurter, Genuine $N$-partite entanglement without $N$-partite correlation functions, Phys. Rev. A 95, 062331 (2017).
[32] W. Klobus, W. Laskowski, T. Paterek, M. Wiesniak, and H. Weinfurter, Higher dimensional entanglement without correlations, Eur. Phys. J. D 73, 29 (2019).
[33] This relation corresponds to a special case of the quantum MacWilliams identity, cf. Ref. Huber2018.
[34] V. Coffman, J. Kundu, and W.K. Wootters, Distributed entanglement, Phys. Rev. A 61, 052306 (2000).
[35] P. Rungta, V. Buzek, C.M. Caves, M. Hillery, and G.J. Milburn, Universal state inversion and concurrence in arbitrary dimensions, Phys. Rev. A 64, 042315 (2001).
https://doi.org/10.1103/PhysRevA.64.042315
[36] W. Hall, Multipartite reduction criteria for separability, Phys. Rev. A 72, 022311 (2005).
https://doi.org/10.1103/PhysRevA.72.022311
[37] M. Lewenstein, R. Augusiak, D. Chruściński, S. Rana, and J. Samsonowicz, Sufficient separability criteria and linear maps, Phys. Rev. A 93, 042335 (2016).
https://doi.org/10.1103/PhysRevA.93.042335
[38] An in-depth analysis of this projection operator will be carried out in forthcoming work.
[39] D. Goyeneche and K. Życzkowski, Genuinely multipartite entangled states and orthogonal arrays, Phys. Rev. A 90, 022316 (2014).
[40] D. Goyeneche, D. Alsina, J.I. Latorre, A. Riera, and K. Życzkowski, Absolutely maximally entangled states, combinatorial designs, and multiunitary matrices, Phys. Rev. A 92, 032316 (2015).
Cited by
[1] Andreas Ketterer, Nikolai Wyderka, and Otfried Gühne, "Entanglement characterization using quantum designs", Quantum 4, 325 (2020).
[2] Satoya Imai, Otfried Gühne, and Stefan Nimmrichter, "Work fluctuations and entanglement in quantum batteries", Physical Review A 107 2, 022215 (2023).
[3] Haiqing Huang, Irfan Ahmed, Ahmed Ali, Xin-wei Zha, Raymond Hon-Fu Chan, and Yanpeng Zhang, "Relations between the average bipartite entanglement and N-partite correlation functions", Laser Physics 32 7, 075201 (2022).
[4] Daniel Miller, Daniel Loss, Ivano Tavernelli, Hermann Kampermann, Dagmar Bruß, and Nikolai Wyderka, "Shor–Laflamme distributions of graph states and noise robustness of entanglement", Journal of Physics A: Mathematical and Theoretical 56 33, 335303 (2023).
[5] Andreas Ketterer, Satoya Imai, Nikolai Wyderka, and Otfried Gühne, "Statistically significant tests of multiparticle quantum correlations based on randomized measurements", Physical Review A 106 1, L010402 (2022).
[6] Matthias Miller and Daniel Miller, 2021 IEEE International Conference on Quantum Computing and Engineering (QCE) 378 (2021) ISBN:978-1-6654-1691-7.
[7] Owidiusz Makuta, Błażej Kuzaka, and Remigiusz Augusiak, "Fully non-positive-partial-transpose genuinely entangled subspaces", Quantum 7, 915 (2023).
[8] Cornelia Spee, "Certifying the purity of quantum states with temporal correlations", Physical Review A 102 1, 012420 (2020).
[9] Jens Siewert, "On orthogonal bases in the Hilbert-Schmidt space of matrices", Journal of Physics Communications 6 5, 055014 (2022).
[10] Vaishali Gulati, Arvind, and Kavita Dorai, "Classification and measurement of multipartite entanglement by reconstruction of correlation tensors on an NMR quantum processor", The European Physical Journal D 76 10, 194 (2022).
[11] Satoya Imai, Nikolai Wyderka, Andreas Ketterer, and Otfried Gühne, "Bound Entanglement from Randomized Measurements", Physical Review Letters 126 15, 150501 (2021).
[12] Shravan Shravan, Simon Morelli, Otfried Gühne, and Satoya Imai, "Geometry of two-body correlations in three-qubit states", arXiv:2309.09549, (2023).
[13] Daniel Miller, "Small quantum networks in the qudit stabilizer formalism", arXiv:1910.09551, (2019).
The above citations are from Crossref's cited-by service (last updated successfully 2023-11-29 05:48:15) and SAO/NASA ADS (last updated successfully 2023-11-29 05:48:16). The list may be incomplete as not all publishers provide suitable and complete citation data.
This Paper is published in Quantum under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Copyright remains with the original copyright holders such as the authors or their institutions.