Completely positive master equation for arbitrary driving and small level spacing

Evgeny Mozgunov1 and Daniel Lidar1,2,3,4

1Center for Quantum Information Science & Technology, University of Southern California, Los Angeles, California 90089, USA
2Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, USA
3Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
4Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Markovian master equations are a ubiquitous tool in the study of open quantum systems, but deriving them from first principles involves a series of compromises. On the one hand, the Redfield equation is valid for fast environments (whose correlation function decays much faster than the system relaxation time) regardless of the relative strength of the coupling to the system Hamiltonian, but is notoriously non-completely-positive. On the other hand, the Davies equation preserves complete positivity but is valid only in the ultra-weak coupling limit and for systems with a finite level spacing, which makes it incompatible with arbitrarily fast time-dependent driving.
Here we show that a recently derived Markovian coarse-grained master equation (CGME), already known to be completely positive, has a much expanded range of applicability compared to the Davies equation, and moreover, is locally generated and can be generalized to accommodate arbitrarily fast driving. This generalization, which we refer to as the time-dependent CGME, is thus suitable for the analysis of fast operations in gate-model quantum computing, such as quantum error correction and dynamical decoupling. Our derivation proceeds directly from the Redfield equation and allows us to place rigorous error bounds on all three equations: Redfield, Davies, and coarse-grained. Our main result is thus a completely positive Markovian master equation that is a controlled approximation to the true evolution for any time-dependence of the system Hamiltonian, and works for systems with arbitrarily small level spacing. We illustrate this with an analysis showing that dynamical decoupling can extend coherence times even in a strictly Markovian setting.

Real quantum devices available in the lab today are never perfectly isolated from their environment. ​If the isolation is good enough, the effect of the environment can be either neglected altogether, or approximated by a simple mathematical model. We investigate this intuition in great detail, trying to answer exactly how good the isolation needs to be for a simple mathematical model to be within, say, 5% of what an experimentalist would actually see in the lab. Usually, this question is answered on a case-by-case basis by attempting to fit the experimental results with the model and observing the error of the fit. Here we approach this question in some generality, as a rigorous mathematical theorem that we prove under very weak assumptions.

Our result states that as long as the dynamics of the environment is much faster than its effect on the system, so the environment has time to equilibrate regardless of what the system is doing, then there is a mathematical model that can be trusted. The generality of our result is such that it applies to any number of qubits, as well as other quantum systems such as atoms and quantum dots. The control applied to the quantum system by the experimentalist is included in our model and can have a nontrivial interplay with the open system effects. Our model captures this interplay in many relevant cases, both for future theoretical results in quantum information, and for the simulation of quantum experiments.

► BibTeX data

► References

[1] R. Alicki and K. Lendi, Quantum Dynamical Semigroups and Applications (Springer Science & Business Media, 2007).
https:/​/​doi.org/​10.1007/​3-540-18276-4

[2] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002).
https:/​/​doi.org/​10.1093/​acprof:oso/​9780199213900.001.0001

[3] C.W. Gardiner and P. Zoller, Quantum Noise, Springer Series in Synergetics, Vol. 56 (Springer, Berlin, 2000).
https:/​/​www.springer.com/​gp/​book/​9783540223016

[4] E. B. Davies, ``Markovian master equations,'' Communications in Mathematical Physics 39, 91–110 (1974).
https:/​/​doi.org/​10.1007/​BF01608389

[5] G. Lindblad, ``On the generators of quantum dynamical semigroups,'' Comm. Math. Phys. 48, 119–130 (1976).
https:/​/​doi.org/​10.1007/​BF01608499

[6] T. Albash, W. Vinci, A. Mishra, P. A. Warburton, and D. A. Lidar, ``Consistency tests of classical and quantum models for a quantum annealer,'' Phys. Rev. A 91, 042314– (2015a).
https:/​/​doi.org/​10.1103/​PhysRevA.91.042314

[7] S. Boixo, V. N. Smelyanskiy, A. Shabani, S. V. Isakov, M. Dykman, V. S. Denchev, M. H. Amin, A. Y. Smirnov, M. Mohseni, and H. Neven, ``Computational multiqubit tunnelling in programmable quantum annealers,'' Nat Commun 7 (2016).
https:/​/​doi.org/​10.1038/​ncomms10327

[8] T. Albash, I. Hen, F. M. Spedalieri, and D. A. Lidar, ``Reexamination of the evidence for entanglement in a quantum annealer,'' Physical Review A 92, 062328– (2015b).
https:/​/​doi.org/​10.1103/​PhysRevA.92.062328

[9] A. Mishra, T. Albash, and D. A. Lidar, ``Finite temperature quantum annealing solving exponentially small gap problem with non-monotonic success probability,'' Nature Communications 9, 2917 (2018).
https:/​/​doi.org/​10.1038/​s41467-018-05239-9

[10] R. Feynman and F. Vernon, ``The theory of a general quantum system interacting with a linear dissipative system,'' Annals of Physics 24, 118 – 173 (1963).
https:/​/​doi.org/​10.1016/​0003-4916(63)90068-X

[11] A. Caldeira and A. Leggett, ``Quantum tunnelling in a dissipative system,'' Annals of Physics 149, 374 – 456 (1983).
https:/​/​doi.org/​10.1016/​0003-4916(83)90202-6

[12] D. E. Makarov and N. Makri, ``Path integrals for dissipative systems by tensor multiplication. condensed phase quantum dynamics for arbitrarily long time,'' Chemical Physics Letters 221, 482 – 491 (1994).
https:/​/​doi.org/​10.1016/​0009-2614(94)00275-4

[13] E. Sim, ``Quantum dynamics for a system coupled to slow baths: On-the-fly filtered propagator method,'' The Journal of Chemical Physics 115, 4450–4456 (2001).
https:/​/​doi.org/​10.1063/​1.1394208

[14] K. Kraus, States, Effects, and Operations (Springer, Berlin, 1983).
https:/​/​doi.org/​10.1007/​3-540-12732-1

[15] J. M. Dominy and D. A. Lidar, ``Beyond complete positivity,'' Quant. Inf. Proc. 15, 1349 (2016).
https:/​/​doi.org/​10.1007/​s11128-015-1228-1

[16] V. Gorini, A. Frigerio, M. Verri, A. Kossakowski, and E. C. G. Sudarshan, ``Properties of quantum Markovian master equations,'' Reports on Mathematical Physics 13, 149–173 (1978).
https:/​/​doi.org/​10.1016/​0034-4877(78)90050-2

[17] S. Nakajima, ``On Quantum Theory of Transport Phenomena : Steady Diffusion,'' Prog. Theor. Phys. 20, 948 (1958).
https:/​/​doi.org/​10.1143/​PTP.20.948

[18] R. Zwanzig, ``Ensemble Method in the Theory of Irreversibility,'' J. Chem. Phys. 33, 1338 (1960).
https:/​/​doi.org/​10.1063/​1.1731409

[19] A. Redfield, ``The theory of relaxation processes,'' in Advances in Magnetic Resonance, Advances in Magnetic and Optical Resonance, Vol. 1, edited by J. S. Waugh (Academic Press, 1965) pp. 1 – 32.
https:/​/​doi.org/​10.1016/​B978-1-4832-3114-3.50007-6

[20] D. Bacon, D. A. Lidar, and K. B. Whaley, ``Robustness of decoherence-free subspaces for quantum computation,'' Phys. Rev. A 60, 1944–1955 (1999).
https:/​/​doi.org/​10.1103/​PhysRevA.60.1944

[21] A. J. van Wonderen and K. Lendi, ``Virtues and limitations of markovian master equations with a time-dependent generator,'' J. Stat. Phys. 100, 633–658 (2000).
https:/​/​doi.org/​10.1023/​A:1018671424739

[22] D. A. Lidar, Z. Bihary, and K. Whaley, ``From completely positive maps to the quantum Markovian semigroup master equation,'' Chem. Phys. 268, 35 (2001).
https:/​/​doi.org/​10.1016/​S0301-0104(01)00330-5

[23] S. Daffer, K. Wodkiewicz, J.D. Cresser, J.K. McIver, ``Depolarizing channel as a completely positive map with memory,'' Phys. Rev. A 70, 010304(R) (2004).
https:/​/​doi.org/​10.1103/​PhysRevA.70.010304

[24] A. Shabani and D. A. Lidar, ``Completely positive post-markovian master equation via a measurement approach,'' Phys. Rev. A 71, 020101(R) (2005).
https:/​/​doi.org/​10.1103/​PhysRevA.71.020101

[25] S. Maniscalco and F. Petruccione, ``Non-Markovian dynamics of a qubit,'' Phys. Rev. A 73, 012111 (2006).
https:/​/​doi.org/​10.1103/​PhysRevA.73.012111

[26] J. Piilo, S. Maniscalco, K. Härkönen, and K.-A. Suominen, ``Non-markovian quantum jumps,'' Physical Review Letters 100, 180402– (2008).
https:/​/​doi.org/​10.1103/​PhysRevLett.100.180402

[27] H.-P. Breuer and B. Vacchini, ``Quantum semi-markov processes,'' Physical Review Letters 101, 140402– (2008).
https:/​/​doi.org/​10.1103/​PhysRevLett.101.140402

[28] R. S. Whitney, ``Staying positive: going beyond lindblad with perturbative master equations,'' Journal of Physics A: Mathematical and Theoretical 41, 175304 (2008).
https:/​/​doi.org/​10.1088/​1751-8113/​41/​17/​175304

[29] L.-A. Wu, G. Kurizki, and P. Brumer, ``Master equation and control of an open quantum system with leakage,'' Physical Review Letters 102, 080405– (2009).
https:/​/​doi.org/​10.1103/​PhysRevLett.102.080405

[30] D. Chruściński and A. Kossakowski, ``Non-markovian quantum dynamics: Local versus nonlocal,'' Phys. Rev. Lett. 104, 070406 (2010).
https:/​/​doi.org/​10.1103/​PhysRevLett.104.070406

[31] T. Albash, S. Boixo, D. A. Lidar, and P. Zanardi, ``Quantum adiabatic Markovian master equations,'' New J. of Phys. 14, 123016 (2012).
https:/​/​doi.org/​10.1088/​1367-2630/​14/​12/​123016

[32] E. Mozgunov, ``Local master equation for small temperatures,'' arXiv:1611.04188 (2016).
arXiv:1611.04188

[33] A. Y. Smirnov and M. H. Amin, ``Theory of open quantum dynamics with hybrid noise,'' New Journal of Physics 20, 103037 (2018).
https:/​/​doi.org/​10.1088/​1367-2630/​aae79c

[34] R. Dann, A. Levy, and R. Kosloff, ``Time-dependent markovian quantum master equation,'' Phys. Rev. A 98, 052129 (2018).
https:/​/​doi.org/​10.1103/​PhysRevA.98.052129

[35] L. C. Venuti and D. A. Lidar, ``Error reduction in quantum annealing using boundary cancellation: Only the end matters,'' Phys. Rev. A 98, 022315 (2018).
https:/​/​doi.org/​10.1103/​PhysRevA.98.022315

[36] G. McCauley, B. Cruikshank, D. I. Bondar, and K. Jacobs, ``Completely positive, accurate master equation for weakly-damped quantum systems across all regimes,'' arXiv:1906.08279 (2019).
arXiv:1906.08279

[37] F. Benatti, R. Floreanini, and U. Marzolino, ``Environment-induced entanglement in a refined weak-coupling limit,'' EPL (Europhysics Letters) 88, 20011 (2009).
https:/​/​doi.org/​10.1209/​0295-5075/​88/​20011

[38] F. Benatti, R. Floreanini, and U. Marzolino, ``Entangling two unequal atoms through a common bath,'' Phys. Rev. A 81, 012105 (2010).
https:/​/​doi.org/​10.1103/​PhysRevA.81.012105

[39] M. Merkli, ``Quantum markovian master equations: Resonance theory shows validity for all time scales,'' Annals of Physics 412, 167996 (2020).
https:/​/​doi.org/​10.1016/​j.aop.2019.167996

[40] C. Majenz, T. Albash, H.-P. Breuer, and D. A. Lidar, ``Coarse graining can beat the rotating-wave approximation in quantum markovian master equations,'' Phys. Rev. A 88, 012103– (2013).
https:/​/​doi.org/​10.1103/​PhysRevA.88.012103

[41] T. S. Cubitt, A. Lucia, S. Michalakis, and D. Perez-Garcia, ``Stability of local quantum dissipative systems,'' Communications in Mathematical Physics 337, 1275–1315 (2015).
https:/​/​doi.org/​10.1007/​s00220-015-2355-3

[42] E. Knill, ``Quantum computing with realistically noisy devices,'' Nature 434, 39–44 (2005).
https:/​/​doi.org/​10.1038/​nature03350

[43] R. Alicki, D. A. Lidar, and P. Zanardi, ``Internal consistency of fault-tolerant quantum error correction in light of rigorous derivations of the quantum markovian limit,'' Phys. Rev. A 73, 052311 (2006).
https:/​/​doi.org/​10.1103/​PhysRevA.73.052311

[44] D. A. Lidar, ``Lecture notes on the theory of open quantum systems,'' arXiv preprint arXiv:1902.00967 (2019).
arXiv:1902.00967

[45] T. Albash and D. A. Lidar, ``Decoherence in adiabatic quantum computation,'' Phys. Rev. A 91, 062320– (2015).
https:/​/​doi.org/​10.1103/​PhysRevA.91.062320

[46] M. Žnidarič, ``Dephasing-induced diffusive transport in the anisotropic heisenberg model,'' New Journal of Physics 12, 043001 (2010).
https:/​/​doi.org/​10.1088/​1367-2630/​12/​4/​043001

[47] M. V. Medvedyeva, T. Prosen, and M. Žnidarič, ``Influence of dephasing on many-body localization,'' Phys. Rev. B 93, 094205 (2016).
https:/​/​doi.org/​10.1103/​PhysRevB.93.094205

[48] R. Bhatia, Matrix Analysis, Graduate Texts in Mathematics No. 169 (Springer-Verlag, New York, 1997).

[49] P. Gaspard and M. Nagaoka, ``Slippage of initial conditions for the redfield master equation,'' Journal of Chemical Physics 111, 5668–5675 (1999).
https:/​/​doi.org/​10.1063/​1.479867

[50] G. Vidal, ``Efficient classical simulation of slightly entangled quantum computations,'' Phys. Rev. Lett. 91, 147902 (2003).
https:/​/​doi.org/​10.1103/​PhysRevLett.91.147902

[51] F. Verstraete, J. J. Garcia-Ripoll, and J. I. Cirac, ``Matrix product density operators: Simulation of finite-temperature and dissipative systems,'' Phys. Rev. Lett. 93, 207204 (2004).
https:/​/​doi.org/​10.1103/​PhysRevLett.93.207204

[52] E. H. Lieb and D.W. Robinson, ``The finite group velocity of quantum spin systems,'' Commun. Math. Phys. 28, 251 (1972).
https:/​/​doi.org/​10.1007/​BF01645779

[53] J. Haah, M. Hastings, R. Kothari, and G. H. Low, ``Quantum algorithm for simulating real time evolution of lattice hamiltonians,'' in 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS) (2018) pp. 350–360.
https:/​/​doi.org/​10.1109/​FOCS.2018.00041

[54] H. Pichler, A. J. Daley, and P. Zoller, ``Nonequilibrium dynamics of bosonic atoms in optical lattices: Decoherence of many-body states due to spontaneous emission,'' Phys. Rev. A 82, 063605 (2010).
https:/​/​doi.org/​10.1103/​PhysRevA.82.063605

[55] L.-M Duan and G.-C. Guo, ``Reducing decoherence in quantum-computer memory with all quantum bits coupling to the same environment,'' Phys. Rev. A 57, 737 (1998).
https:/​/​doi.org/​10.1103/​PhysRevA.57.737

[56] P. Zanardi and M. Rasetti, ``Noiseless quantum codes,'' Phys. Rev. Lett. 79, 3306–3309 (1997).
https:/​/​doi.org/​10.1103/​PhysRevLett.79.3306

[57] D. A. Lidar, I. L. Chuang, and K. B. Whaley, ``Decoherence-free subspaces for quantum computation,'' Phys. Rev. Lett. 81, 2594–2597 (1998).
https:/​/​doi.org/​10.1103/​PhysRevLett.81.2594

[58] D. A. Lidar and K. B. Whaley, ``Decoherence-free subspaces and subsystems,'' in Irreversible Quantum Dynamics, Lecture Notes in Physics, Vol. 622, edited by F. Benatti and R. Floreanini (Springer, Berlin, 2003) p. 83.
https:/​/​www.springer.com/​us/​book/​9783540402237

[59] P.G. Kwiat, A.J. Berglund, J.B. Altepeter, and A.G. White, ``Experimental Verification of Decoherence-Free Subspaces,'' Science 290, 498 (2000).
https:/​/​doi.org/​10.1126/​science.290.5491.498

[60] L. Viola, E. M. Fortunato, M. A. Pravia, E. Knill, R. Laflamme, and D. G. Cory, ``Experimental realization of noiseless subsystems for quantum information processing,'' Science 293, 2059–2063 (2001).
https:/​/​doi.org/​10.1126/​science.1064460

[61] D. Kielpinski, V. Meyer, M. A. Rowe, C. A. Sackett, W. M. Itano, C. Monroe, and D. J. Wineland, ``A decoherence-free quantum memory using trapped ions,'' Science 291, 1013–1015 (2001).
https:/​/​doi.org/​10.1126/​science.1057357

[62] J. E. Ollerenshaw, D. A. Lidar, and L. E. Kay, ``Magnetic resonance realization of decoherence-free quantum computation,'' Phys. Rev. Lett. 91, 217904 (2003).
https:/​/​doi.org/​10.1103/​PhysRevLett.91.217904

[63] L. Viola and S. Lloyd, ``Dynamical suppression of decoherence in two-state quantum systems,'' Phys. Rev. A 58, 2733–2744 (1998).
https:/​/​doi.org/​10.1103/​PhysRevA.58.2733

[64] P. Zanardi, ``Symmetrizing evolutions,'' Physics Letters A 258, 77–82 (1999).
https:/​/​doi.org/​10.1016/​S0375-9601(99)00365-5

[65] D. Lidar and T. Brun, eds., Quantum Error Correction (Cambridge University Press, Cambridge, UK, 2013).
http:/​/​www.cambridge.org/​9780521897877

[66] D. Suter and G. A. Álvarez, ``Colloquium: Protecting quantum information against environmental noise,'' Reviews of Modern Physics 88, 041001– (2016).
https:/​/​doi.org/​10.1103/​RevModPhys.88.041001

[67] H. K. Ng, D. A. Lidar, and J. Preskill, ``Combining dynamical decoupling with fault-tolerant quantum computation,'' Phys. Rev. A 84, 012305– (2011).
https:/​/​doi.org/​10.1103/​PhysRevA.84.012305

[68] K. Szczygielski and R. Alicki, ``Markovian theory of dynamical decoupling by periodic control,'' Physical Review A 92, 022349– (2015).
https:/​/​doi.org/​10.1103/​PhysRevA.92.022349

[69] J. E. Gough and H. I. Nurdin, ``Can quantum markov evolutions ever be dynamically decoupled?'' in 2017 IEEE 56th Annual Conference on Decision and Control (CDC) (2017) pp. 6155–6160.
https:/​/​doi.org/​10.1109/​CDC.2017.8264587

[70] C. Addis, F. Ciccarello, M. Cascio, G. M. Palma, and S. Maniscalco, ``Dynamical decoupling efficiency versus quantum non-markovianity,'' New Journal of Physics 17, 123004 (2015).
https:/​/​doi.org/​10.1088/​1367-2630/​17/​12/​123004

[71] C. Arenz, D. Burgarth, P. Facchi, and R. Hillier, ``Dynamical decoupling of unbounded hamiltonians,'' Journal of Mathematical Physics, Journal of Mathematical Physics 59, 032203 (2018).
https:/​/​doi.org/​10.1063/​1.5016495

[72] L. Li, M. J. W. Hall, and H. M. Wiseman, ``Concepts of quantum non-markovianity: A hierarchy,'' Concepts of quantum non-Markovianity: A hierarchy, Physics Reports 759, 1–51 (2018).
https:/​/​doi.org/​10.1016/​j.physrep.2018.07.001

[73] I. de Vega, M. C. Bañuls, and A. Pérez, ``Effects of dissipation on an adiabatic quantum search algorithm,'' New J. of Phys. 12, 123010 (2010).
https:/​/​doi.org/​10.1088/​1367-2630/​12/​12/​123010

[74] https:/​/​github.com/​mvjenia/​CGMEcode, code for the numerical section of the paper.
https:/​/​github.com/​mvjenia/​CGMEcode

[75] L. Isserlis, ``On certain probable errors and correlation coefficients of multiple frequency distributions with skew regression,'' Biometrika 11, 185 (1916).
https:/​/​doi.org/​10.1093/​biomet/​11.3.185

[76] T. Albash, D. A. Lidar, M. Marvian, and P. Zanardi, ``Fluctuation theorems for quantum processes,'' Phys. Rev. E 88, 032146– (2013).
https:/​/​doi.org/​10.1103/​PhysRevE.88.032146

[77] T. Albash and D. A. Lidar, ``Adiabatic quantum computation,'' Reviews of Modern Physics 90, 015002– (2018).
https:/​/​doi.org/​10.1103/​RevModPhys.90.015002

[78] R. Alicki, M. Fannes, and M. Horodecki, ``A statistical mechanics view on kitaev's proposal for quantum memories,'' Journal of Physics A: Mathematical and Theoretical 40, 6451–6467 (2007).
https:/​/​doi.org/​10.1088/​1751-8113/​40/​24/​012

[79] H. Bombin, ``Topological subsystem codes,'' Physical Review A 81, 032301– (2010).
https:/​/​doi.org/​10.1103/​PhysRevA.81.032301

[80] B. Altshuler, H. Krovi, and J. Roland, ``Anderson localization makes adiabatic quantum optimization fail,'' Proceedings of the National Academy of Sciences 107, 12446–12450 (2010).
https:/​/​doi.org/​10.1073/​pnas.1002116107

[81] M. Reed and B. Simon, Methods of Modern Mathematical Physics: Fourier analysis, self-adjointness, Vol. 2 (Academic Press, 1975).
https:/​/​books.google.com/​books?id=14XvAAAAMAAJ

[82] H. Alzer, ``On some inequalities for the incomplete gamma function,'' Mathematics of Computation 66, 771 (1997).
https:/​/​doi.org/​10.1090/​S0025-5718-97-00814-4

Cited by

[1] Jing Wu, Feng-Hua Ren, Run-Hong He, Shen-Shuang Nie, and Zhao-Ming Wang, "Adiabatic speedup and quantum heat current in an open system", Europhysics Letters 139 4, 48001 (2022).

[2] Matthew Gerry and Dvira Segal, "Full counting statistics and coherences: Fluctuation symmetry in heat transport with the unified quantum master equation", Physical Review E 107 5, 054115 (2023).

[3] Mostafa Khezri, Jeffrey A. Grover, James I. Basham, Steven M. Disseler, Huo Chen, Sergey Novikov, Kenneth M. Zick, and Daniel A. Lidar, "Anneal-path correction in flux qubits", npj Quantum Information 7 1, 36 (2021).

[4] Roie Dann and Ronnie Kosloff, "Quantum thermo-dynamical construction for driven open quantum systems", Quantum 5, 590 (2021).

[5] Bret Jackson, "An examination of phonon–inelastic molecule–metal scattering using reduced density matrix and stochastic wave packet methods", The Journal of Chemical Physics 158 2, 024701 (2023).

[6] Lorenzo Campos Venuti, Domenico D’Alessandro, and Daniel A. Lidar, "Optimal Control for Quantum Optimization of Closed and Open Systems", Physical Review Applied 16 5, 054023 (2021).

[7] Dragomir Davidović, "Completely Positive, Simple, and Possibly Highly Accurate Approximation of the Redfield Equation", Quantum 4, 326 (2020).

[8] Arshag Danageozian, Ashe Miller, Pratik J Barge, Narayan Bhusal, and Jonathan P Dowling, "Noisy coherent population trapping: applications to noise estimation and qubit state preparation", Journal of Physics B: Atomic, Molecular and Optical Physics 55 15, 155503 (2022).

[9] Gerhard Dorn, Enrico Arrigoni, and Wolfgang von der Linden, "Efficient energy resolved quantum master equation for transport calculations in large strongly correlated systems", Journal of Physics A: Mathematical and Theoretical 54 7, 075301 (2021).

[10] Owen Diba, Harry J. D. Miller, Jake Iles-Smith, and Ahsan Nazir, "Quantum Work Statistics at Strong Reservoir Coupling", Physical Review Letters 132 19, 190401 (2024).

[11] Ziwen Huang, Yunwei Lu, Anna Grassellino, Alexander Romanenko, Jens Koch, and Shaojiang Zhu, "Completely Positive Map for Noisy Driven Quantum Systems Derived by Keldysh Expansion", Quantum 7, 1158 (2023).

[12] Zihan Cheng and Andrew C. Potter, "Matrix product operator approach to nonequilibrium Floquet steady states", Physical Review B 106 22, L220307 (2022).

[13] Stefano Scali, Janet Anders, and Luis A. Correa, "Local master equations bypass the secular approximation", Quantum 5, 451 (2021).

[14] Zachary Morrell, Marc Vuffray, Andrey Y. Lokhov, Andreas Bärtschi, Tameem Albash, and Carleton Coffrin, "Signatures of Open and Noisy Quantum Systems in Single-Qubit Quantum Annealing", Physical Review Applied 19 3, 034053 (2023).

[15] Archak Purkayastha, "Lyapunov equation in open quantum systems and non-Hermitian physics", Physical Review A 105 6, 062204 (2022).

[16] Frederik Nathan and Mark S. Rudner, "Universal Lindblad equation for open quantum systems", Physical Review B 102 11, 115109 (2020).

[17] Jens Schulenborg, Michele Burrello, Martin Leijnse, and Karsten Flensberg, "Multilevel effects in quantum dot based parity-to-charge conversion of Majorana box qubits", Physical Review B 103 24, 245407 (2021).

[18] I. V. Vovchenko, V. Yu. Shishkov, A. A. Zyablovsky, and E. S. Andrianov, "Model for the Description of the Relaxation of Quantum-Mechanical Systems with Closely Spaced Energy Levels", JETP Letters 114 1, 51 (2021).

[19] Ronja Hotz and Gernot Schaller, "Coarse-graining master equation for periodically driven systems", Physical Review A 104 5, 052219 (2021).

[20] Devashish Tupkary, Abhishek Dhar, Manas Kulkarni, and Archak Purkayastha, "Fundamental limitations in Lindblad descriptions of systems weakly coupled to baths", Physical Review A 105 3, 032208 (2022).

[21] Orazio Scarlatella and Marco Schirò, "Self-consistent dynamical maps for open quantum systems", SciPost Physics 16 1, 026 (2024).

[22] Archak Purkayastha, Madhumita Saha, and Bijay Kumar Agarwalla, "Subdiffusive Phases in Open Clean Long-Range Systems", Physical Review Letters 127 24, 240601 (2021).

[23] Paolo Molignini and Nigel R. Cooper, "Topological phase transitions at finite temperature", Physical Review Research 5 2, 023004 (2023).

[24] Marco Merkli, "Dynamics of Open Quantum Systems I, Oscillation and Decay", Quantum 6, 615 (2022).

[25] Hans C. Fogedby, "Field-theoretical approach to open quantum systems and the Lindblad equation", Physical Review A 106 2, 022205 (2022).

[26] Sabine Bögli and Pierre-A. Vuillermot, "A Spectral Theorem for the Semigroup Generated by a Class of Infinitely Many Master Equations", Acta Applicandae Mathematicae 178 1, 4 (2022).

[27] Timofey T. Sergeev, Ivan V. Vovcenko, Alexander A. Zyablovsky, and Evgeny S. Andrianov, "Environment-assisted strong coupling regime", Quantum 6, 684 (2022).

[28] David Gaspard, "Quantum master equations for a fast particle in a gas", Physical Review A 106 6, 062211 (2022).

[29] Tatsuhiko Ikeda, Koki Chinzei, and Masahiro Sato, "Nonequilibrium steady states in the Floquet-Lindblad systems: van Vleck's high-frequency expansion approach", SciPost Physics Core 4 4, 033 (2021).

[30] Antonio D'Abbruzzo, Vasco Cavina, and Vittorio Giovannetti, "A time-dependent regularization of the Redfield equation", SciPost Physics 15 3, 117 (2023).

[31] Devashish Tupkary, Abhishek Dhar, Manas Kulkarni, and Archak Purkayastha, "Searching for Lindbladians obeying local conservation laws and showing thermalization", Physical Review A 107 6, 062216 (2023).

[32] Roie Dann and Ronnie Kosloff, "Unification of the first law of quantum thermodynamics", New Journal of Physics 25 4, 043019 (2023).

[33] Roie Dann and Ronnie Kosloff, "Open system dynamics from thermodynamic compatibility", Physical Review Research 3 2, 023006 (2021).

[34] Patrick P Potts, Alex Arash Sand Kalaee, and Andreas Wacker, "A thermodynamically consistent Markovian master equation beyond the secular approximation", New Journal of Physics 23 12, 123013 (2021).

[35] Morten I. K. Munk, Jens Schulenborg, Reinhold Egger, and Karsten Flensberg, "Parity-to-charge conversion in Majorana qubit readout", Physical Review Research 2 3, 033254 (2020).

[36] Benjamin Yadin, Benjamin Morris, and Kay Brandner, "Thermodynamics of permutation-invariant quantum many-body systems: A group-theoretical framework", Physical Review Research 5 3, 033018 (2023).

[37] Marco Merkli, "Dynamics of Open Quantum Systems II, Markovian Approximation", Quantum 6, 616 (2022).

[38] Brecht Donvil and Paolo Muratore-Ginanneschi, "Quantum trajectory framework for general time-local master equations", Nature Communications 13 1, 4140 (2022).

[39] Huo Chen and Daniel A. Lidar, "Why and When Pausing is Beneficial in Quantum Annealing", Physical Review Applied 14 1, 014100 (2020).

[40] Vinay Tripathi, Huo Chen, Eli Levenson-Falk, and Daniel A. Lidar, "Modeling Low- and High-Frequency Noise in Transmon Qubits with Resource-Efficient Measurement", PRX Quantum 5 1, 010320 (2024).

[41] Elyana Crowder, Lance Lampert, Grihith Manchanda, Brian Shoffeitt, Srikar Gadamsetty, Yiting Pei, Shantanu Chaudhary, and Dragomir Davidović, "Invalidation of the Bloch-Redfield equation in the sub-Ohmic regime via a practical time-convolutionless fourth-order master equation", Physical Review A 109 5, 052205 (2024).

[42] Tobias Becker, Ling-Na Wu, and André Eckardt, "Lindbladian approximation beyond ultraweak coupling", Physical Review E 104 1, 014110 (2021).

[43] Huo Chen and Daniel A. Lidar, "Hamiltonian open quantum system toolkit", Communications Physics 5 1, 112 (2022).

[44] Archak Purkayastha and Klaus Mølmer, "Nonclassical radiation from a nonlinear oscillator driven solely by classical 1/f noise", Physical Review A 108 5, 053704 (2023).

[45] Elyana Crowder, Lance Lampert, Grihith Manchanda, Brian Shoffeitt, Srikar Gadamsetty, Yiting Pei, Shantanu Chaudhary, and Dragomir Davidović, "Invalidation of the Bloch-Redfield Equation in Sub-Ohmic Regime via a Practical Time-Convolutionless Fourth-Order Master Equation", arXiv:2310.15089, (2023).

[46] Brenden Bowen, Nishant Agarwal, and Archana Kamal, "Open system dynamics in interacting quantum field theories", arXiv:2403.18907, (2024).

[47] Brecht Donvil and Paolo Muratore-Ginanneschi, "Interference of Quantum Trajectories", arXiv:2102.10355, (2021).

[48] Owen Diba, Harry J. D. Miller, Jake Iles-Smith, and Ahsan Nazir, "Quantum work statistics at strong reservoir coupling", arXiv:2302.08395, (2023).

[49] Dragomir Davidović, "Geometric-arithmetic master equation in large and fast open quantum systems", Journal of Physics A Mathematical General 55 45, 455301 (2022).

[50] Donghyun Jin, Grihith Manchanda, and Dragomir Davidovic, "Hamiltonian Model for Fault Tolerant Singlet-Like Excitation: First Principles Approach", arXiv:2105.09766, (2021).

The above citations are from Crossref's cited-by service (last updated successfully 2024-05-15 12:20:15) and SAO/NASA ADS (last updated successfully 2024-05-15 12:20:16). The list may be incomplete as not all publishers provide suitable and complete citation data.