A change of perspective: switching quantum reference frames via a perspective-neutral framework

Augustin Vanrietvelde1, Philipp A. Hoehn1,2, Flaminia Giacomini1,2, and Esteban Castro-Ruiz1,2

1Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria
2Vienna Center for Quantum Science and Technology (VCQ), Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Treating reference frames fundamentally as quantum systems is inevitable in quantum gravity and also in quantum foundations once considering laboratories as physical systems. Both fields thereby face the question of how to describe physics relative to quantum reference systems and how the descriptions relative to different such choices are related. Here, we exploit a fruitful interplay of ideas from both fields to begin developing a unifying approach to transformations among quantum reference systems that ultimately aims at encompassing both quantum and gravitational physics. In particular, using a gravity inspired symmetry principle, which enforces physical observables to be relational and leads to an inherent redundancy in the description, we develop a perspective-neutral structure, which contains all frame perspectives at once and via which they are changed. We show that taking the perspective of a specific frame amounts to a fixing of the symmetry related redundancies in both the classical and quantum theory and that changing perspective corresponds to a symmetry transformation. We implement this using the language of constrained systems, which naturally encodes symmetries. Within a simple one-dimensional model, we recover some of the quantum frame transformations of [1], embedding them in a perspective-neutral framework. Using them, we illustrate how entanglement and classicality of an observed system depend on the quantum frame perspective. Our operational language also inspires a new interpretation of Dirac and reduced quantized theories within our model as perspective-neutral and perspectival quantum theories, respectively, and reveals the explicit link between them. In this light, we suggest a new take on the relation between a `quantum general covariance' and the diffeomorphism symmetry in quantum gravity.

► BibTeX data

► References

[1] F. Giacomini, E. Castro-Ruiz, and Č. Brukner, ``Quantum mechanics and the covariance of physical laws in quantum reference frames,'' Nature communications 10 no. 1, (2019) 494, arXiv:1712.07207 [quant-ph].
https:/​/​doi.org/​10.1038/​s41467-018-08155-0
arXiv:1712.07207

[2] A. Vanrietvelde, P. A. Höhn, and F. Giacomini, ``Switching quantum reference frames in the N-body problem and the absence of global relational perspectives,'' arXiv:1809.05093 [quant-ph].
arXiv:1809.05093

[3] P. A. Höhn and A. Vanrietvelde, ``How to switch between relational quantum clocks,'' arXiv:1810.04153 [gr-qc].
arXiv:1810.04153

[4] P. A. Höhn, ``Switching Internal Times and a New Perspective on the Wave Function of the Universe,'' Universe 5 no. 5, (2019) 116, arXiv:1811.00611 [gr-qc].
https:/​/​doi.org/​10.3390/​universe5050116
arXiv:1811.00611

[5] P. A. Höhn, ``Effective changes of quantum reference systems in quantum phase space,'' to appear (2020).

[6] Y. Aharonov and L. Susskind, ``Charge Superselection Rule,'' Phys. Rev. 155 (1967) 1428–1431.
https:/​/​doi.org/​10.1103/​PhysRev.155.1428

[7] B. S. DeWitt, ``Quantum theory of gravity. I. The canonical theory,'' Phys.Rev. 160 (1967) 1113–1148.
https:/​/​doi.org/​10.1103/​PhysRev.160.1113

[8] C. Rovelli, Quantum Gravity. Cambridge University Press, 2004.
https:/​/​doi.org/​10.1017/​CBO9780511755804

[9] J. Barbour and B. Bertotti, ``Mach's principle and the structure of dynamical theories,'' Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 382 no. 1783, (1982) 295–306.
https:/​/​doi.org/​10.1098/​rspa.1982.0102

[10] F. Mercati, Shape Dynamics: Relativity and Relationalism. Oxford University Press, 2018.
https:/​/​doi.org/​10.1093/​oso/​9780198789475.001.0001

[11] C. Rovelli, ``Quantum reference systems,'' Class.Quant.Grav. 8 (1991) 317–332.
https:/​/​doi.org/​10.1088/​0264-9381/​8/​2/​012

[12] C. Rovelli, ``What is observable in classical and quantum gravity?,'' Class.Quant.Grav. 8 (1991) 297–316.
https:/​/​doi.org/​10.1088/​0264-9381/​8/​2/​011

[13] K. Kuchař, ``Time and interpretations of quantum gravity,'' Int.J.Mod.Phys.Proc.Suppl. D20 (2011) 3–86. Originally published in the Proc. 4th Canadian Conf. on General Relativity and Relativistic Astrophysics, eds. G. Kunstatter, D. Vincent and J. Williams (World Scientific, Singapore, 1992).
https:/​/​doi.org/​10.1142/​S0218271811019347

[14] C. Isham, ``Canonical quantum gravity and the problem of time,'' in Integrable Systems, Quantum Groups, and Quantum Field Theories, pp. 157–287, Kluwer Academic Publishers, 1993, arXiv:gr-qc/​9210011 [gr-qc].
https:/​/​doi.org/​10.1007/​978-94-011-1980-1_6
arXiv:gr-qc/9210011

[15] J. D. Brown and K. V. Kuchař, ``Dust as a standard of space and time in canonical quantum gravity,'' Phys.Rev. D51 (1995) 5600–5629, arXiv:gr-qc/​9409001 [gr-qc].
https:/​/​doi.org/​10.1103/​PhysRevD.51.5600
arXiv:gr-qc/9409001

[16] B. Dittrich, ``Partial and complete observables for Hamiltonian constrained systems,'' Gen.Rel.Grav. 39 (2007) 1891–1927, arXiv:gr-qc/​0411013 [gr-qc].
https:/​/​doi.org/​10.1007/​s10714-007-0495-2
arXiv:gr-qc/0411013

[17] B. Dittrich, ``Partial and complete observables for canonical General Relativity,'' Class.Quant.Grav. 23 (2006) 6155–6184, arXiv:gr-qc/​0507106 [gr-qc].
https:/​/​doi.org/​10.1088/​0264-9381/​23/​22/​006
arXiv:gr-qc/0507106

[18] J. Tambornino, ``Relational observables in gravity: A review,'' SIGMA 8 (2012) 017, arXiv:1109.0740 [gr-qc].
https:/​/​doi.org/​10.3842/​SIGMA.2012.017
arXiv:1109.0740

[19] T. Thiemann, Modern Canonical Quantum General Relativity. Cambridge University Press, 2007.
https:/​/​doi.org/​10.1017/​CBO9780511755682

[20] B. Dittrich, P. A. Höhn, T. A. Koslowski, and M. I. Nelson, ``Can chaos be observed in quantum gravity?,'' Phys. Lett. B769 (2017) 554–560, arXiv:1602.03237 [gr-qc].
https:/​/​doi.org/​10.1016/​j.physletb.2017.02.038
arXiv:1602.03237

[21] B. Dittrich, P. A. Höhn, T. A. Koslowski, and M. I. Nelson, ``Chaos, Dirac observables and constraint quantization,'' arXiv:1508.01947 [gr-qc].
arXiv:1508.01947

[22] M. Bojowald, P. A. Höhn, and A. Tsobanjan, ``An Effective approach to the problem of time,'' Class. Quant. Grav. 28 (2011) 035006, arXiv:1009.5953 [gr-qc].
https:/​/​doi.org/​10.1088/​0264-9381/​28/​3/​035006
arXiv:1009.5953

[23] M. Bojowald, P. A. Höhn, and A. Tsobanjan, ``Effective approach to the problem of time: general features and examples,'' Phys.Rev. D83 (2011) 125023, arXiv:1011.3040 [gr-qc].
https:/​/​doi.org/​10.1103/​PhysRevD.83.125023
arXiv:1011.3040

[24] P. A. Höhn, E. Kubalova, and A. Tsobanjan, ``Effective relational dynamics of a nonintegrable cosmological model,'' Phys.Rev. D86 (2012) 065014, arXiv:1111.5193 [gr-qc].
https:/​/​doi.org/​10.1103/​PhysRevD.86.065014
arXiv:1111.5193

[25] Y. Aharonov and L. Susskind, ``Observability of the sign change of spinors under $2{\pi}$ rotations,'' Phys. Rev. 158 (Jun, 1967) 1237–1238.
https:/​/​doi.org/​10.1103/​PhysRev.158.1237

[26] Y. Aharonov and T. Kaufherr, ``Quantum frames of reference,'' Phys. Rev. D 30 (Jul, 1984) 368–385.
https:/​/​doi.org/​10.1103/​PhysRevD.30.368

[27] S. D. Bartlett, T. Rudolph, and R. W. Spekkens, ``Reference frames, superselection rules, and quantum information,'' Rev. Mod. Phys. 79 (2007) 555–609, arXiv:quant-ph/​0610030.
https:/​/​doi.org/​10.1103/​RevModPhys.79.555
arXiv:quant-ph/0610030

[28] S. D. Bartlett, T. Rudolph, R. W. Spekkens, and P. S. Turner, ``Quantum communication using a bounded-size quantum reference frame,'' New Journal of Physics 11 no. 6, (2009) 063013, arXiv:0812.5040 [quant-ph].
https:/​/​doi.org/​10.1088/​1367-2630/​11/​6/​063013
arXiv:0812.5040

[29] G. Gour and R. W. Spekkens, ``The resource theory of quantum reference frames: manipulations and monotones,'' New Journal of Physics 10 no. 3, (2008) 033023, arXiv:0711.0043 [quant-ph].
https:/​/​doi.org/​%2010.1088/​1367-2630/​10/​3/​033023
arXiv:0711.0043

[30] M. C. Palmer, F. Girelli, and S. D. Bartlett, ``Changing quantum reference frames,'' Phys. Rev. A89 no. 5, (2014) 052121, arXiv:1307.6597 [quant-ph].
https:/​/​doi.org/​10.1103/​PhysRevA.89.052121
arXiv:1307.6597

[31] S. D. Bartlett, T. Rudolph, R. W. Spekkens, and P. S. Turner, ``Degradation of a quantum reference frame,'' New Journal of Physics 8 no. 4, (2006) 58, arXiv:1307.6597 [quant-ph].
https:/​/​doi.org/​%2010.1088/​1367-2630/​8/​4/​058
arXiv:quant-ph/0602069

[32] A. R. Smith, M. Piani, and R. B. Mann, ``Quantum reference frames associated with noncompact groups: The case of translations and boosts and the role of mass,'' Physical Review A 94 no. 1, (2016) 012333, arXiv:1602.07696 [quant-ph].
https:/​/​doi.org/​10.1103/​PhysRevA.94.012333
arXiv:1602.07696

[33] D. Poulin and J. Yard, ``Dynamics of a quantum reference frame,'' New Journal of Physics 9 no. 5, (2007) 156, arXiv:quant-ph/​0612126.
https:/​/​doi.org/​%2010.1088/​1367-2630/​9/​5/​156
arXiv:quant-ph/0612126

[34] M. Skotiniotis, B. Toloui, I. T. Durham, and B. C. Sanders, ``Quantum frameness for $cpt$ symmetry,'' Phys. Rev. Lett. 111 (Jul, 2013) 020504, arXiv:1306.6114 [quant-ph].
https:/​/​doi.org/​10.1103/​PhysRevLett.111.020504
arXiv:1306.6114

[35] L. Loveridge, P. Busch, and T. Miyadera, ``Relativity of quantum states and observables,'' EPL (Europhysics Letters) 117 no. 4, (2017) 40004, arXiv:arXiv:1604.02836 [quant-ph].
https:/​/​doi.org/​10.1209/​0295-5075/​117/​40004
arXiv:1604.02836

[36] J. Pienaar, ``A relational approach to quantum reference frames for spins,'' arXiv:1601.07320 [quant-ph] (2016).
arXiv:1601.07320

[37] R. M. Angelo, N. Brunner, S. Popescu, A. J. Short, and P. Skrzypczyk, ``Physics within a quantum reference frame,'' Journal of Physics A: Mathematical and Theoretical 44 no. 14, (2011) 145304, arXiv:1007.2292 [quant-ph].
https:/​/​doi.org/​10.1088/​1751-8113/​44/​14/​145304
arXiv:1007.2292

[38] P. A. Höhn and M. P. Müller, ``An operational approach to spacetime symmetries: Lorentz transformations from quantum communication,'' New J. Phys. 18 no. 6, (2016) 063026, arXiv:1412.8462 [quant-ph].
https:/​/​doi.org/​10.1088/​1367-2630/​18/​6/​063026
arXiv:1412.8462

[39] P. A. Guérin and Č. Brukner, ``Observer-dependent locality of quantum events,'' New J. Phys. 20, 103031 (2018), arXiv:1805.12429 [quant-ph].
https:/​/​doi.org/​10.1088/​1367-2630/​aae742
arXiv:1805.12429

[40] O. Oreshkov, F. Costa, and Č. Brukner, ``Quantum correlations with no causal order,'' Nature communications 3 (2012) 1092, arXiv:1105.4464 [quant-ph].
https:/​/​doi.org/​10.1038/​ncomms2076
arXiv:1105.4464

[41] L. Hardy, ``The Construction Interpretation: Conceptual Roads to Quantum Gravity,'' arXiv:1807.10980 [quant-ph].
arXiv:1807.10980

[42] P. A. Höhn, ``Reflections on the information paradigm in quantum and gravitational physics,'' J. Phys. Conf. Ser. 880 no. 1, (2017) 012014, arXiv:1706.06882 [hep-th].
https:/​/​doi.org/​10.1088/​1742-6596/​880/​1/​012014
arXiv:1706.06882

[43] P. A. Dirac, Lectures on Quantum Mechanics. Yeshiva University Press, 1964.
https:/​/​doi.org/​10.1142/​6093

[44] M. Henneaux and C. Teitelboim, Quantization of Gauge Systems. Princeton University Press, 1992.

[45] C. Rovelli, ``Why Gauge?,'' Found. Phys. 44 no. 1, (2014) 91–104, arXiv:1308.5599 [hep-th].
https:/​/​doi.org/​10.1007/​s10701-013-9768-7
arXiv:1308.5599

[46] H. Gomes, F. Hopfmüller, and A. Riello, ``A unified geometric framework for boundary charges and dressings: non-Abelian theory and matter,'' Nuclear Physics B 941 (2019) 249-315, arXiv:1808.02074 [hep-th].
https:/​/​doi.org/​10.1016/​j.nuclphysb.2019.02.020
arXiv:1808.02074

[47] V. Guillemin and S. Sternberg, ``Geometric quantization and multiplicities of group representations,'' Inventiones mathematicae 67 no. 3, (1982) 515–538.
https:/​/​doi.org/​10.1007/​BF01398934

[48] Y. Tian and W. Zhang, ``An analytic proof of the geometric quantization conjecture of guillemin-sternberg,'' Inventiones mathematicae 132 no. 2, (1998) 229–259.
https:/​/​doi.org/​10.1007/​s002220050223

[49] P. Hochs and N. Landsman, ``The guillemin–sternberg conjecture for noncompact groups and spaces,'' Journal of K-theory 1 no. 3, (2008) 473–533, arXiv:math-ph/​0512022.
https:/​/​doi.org/​10.1017/​is008001002jkt022
arXiv:math-ph/0512022

[50] M. J. Gotay, ``Constraints, reduction, and quantization,'' Journal of mathematical physics 27 no. 8, (1986) 2051–2066.
https:/​/​doi.org/​10.1063/​1.527026

[51] A. Ashtekar and G. t. Horowitz, ``On the canonical approach to quantum gravity,'' Phys. Rev. D26 (1982) 3342–3353.
https:/​/​doi.org/​10.1103/​PhysRevD.26.3342

[52] K. Kuchař, ``Covariant factor ordering of gauge systems,'' Physical Review D 34 no. 10, (1986) 3044.
https:/​/​doi.org/​10.1103/​physrevd.34.3044

[53] A. Ashtekar, Lectures on Nonperturbative Canonical Gravity, No. 6 in Advances series in astrophysics and cosmology. World Scientific, 1991.
https:/​/​doi.org/​10.1142/​1321

[54] K. Schleich, ``Is reduced phase space quantization equivalent to Dirac quantization?,'' Class. Quant. Grav. 7 (1990) 1529–1538.
https:/​/​doi.org/​10.1088/​0264-9381/​7/​8/​028

[55] G. Kunstatter, ``Dirac versus reduced quantization: A Geometrical approach,'' Class. Quant. Grav. 9 (1992) 1469–1486.
https:/​/​doi.org/​10.1088/​0264-9381/​9/​6/​005

[56] P. Hajicek and K. V. Kuchar, ``Constraint quantization of parametrized relativistic gauge systems in curved space-times,'' Phys. Rev. D41 (1990) 1091–1104.
https:/​/​doi.org/​10.1103/​PhysRevD.41.1091

[57] J. D. Romano and R. S. Tate, ``Dirac Versus Reduced Space Quantization of Simple Constrained Systems,'' Class. Quant. Grav. 6 (1989) 1487.
https:/​/​doi.org/​10.1088/​0264-9381/​6/​10/​017

[58] R. Loll, ``Noncommutativity of constraining and quantizing: A U(1) gauge model,'' Phys. Rev. D41 (1990) 3785–3791.
https:/​/​doi.org/​10.1103/​PhysRevD.41.3785

[59] M. S. Plyushchay and A. V. Razumov, ``Dirac versus reduced phase space quantization for systems admitting no gauge conditions,'' International Journal of Modern Physics A 11 no. 08, (1996) 1427–1462, arXiv:hep-th/​9306017.
https:/​/​doi.org/​10.1142/​S0217751X96000663
arXiv:hep-th/9306017

[60] P. A. Höhn, ``Toolbox for reconstructing quantum theory from rules on information acquisition,'' Quantum 1 no. 38, (2017) , arXiv:1412.8323 [quant-ph].
https:/​/​doi.org/​10.22331/​q-2017-12-14-38
arXiv:1412.8323

[61] C. Rovelli, ``Relational quantum mechanics,'' Int.J.Theor.Phys. 35 (1996) 1637–1678, arXiv:quant-ph/​9609002 [quant-ph].
https:/​/​doi.org/​10.1007/​BF02302261
arXiv:quant-ph/9609002

[62] C. Rovelli, ``Space is blue and birds fly through it,'' Phil. Trans. R. Soc. A 376 no. 2123, (2018) 20170312, arXiv:1712.02894 [physics.hist-ph].
https:/​/​doi.org/​10.1098/​rsta.2017.0312
arXiv:1712.02894

[63] H. Gomes, S. Gryb, and T. Koslowski, ``Einstein gravity as a 3D conformally invariant theory,'' Class.Quant.Grav. 28 (2011) 045005, arXiv:1010.2481 [gr-qc].
https:/​/​doi.org/​10.1088/​0264-9381/​28/​4/​045005
arXiv:1010.2481

[64] H. Gomes and T. Koslowski, ``The Link between General Relativity and Shape Dynamics,'' Class. Quant. Grav. 29 (2012) 075009, arXiv:1101.5974 [gr-qc].
https:/​/​doi.org/​10.1088/​0264-9381/​29/​7/​075009
arXiv:1101.5974

[65] P. A. Höhn, M. P. Müller, C. Pfeifer, and D. Rätzel, ``A local quantum Mach principle and the metricity of spacetime,'' arXiv:1811.02555 [gr-qc].
arXiv:1811.02555

[66] J. Barbour, T. Koslowski, and F. Mercati, ``Identification of a gravitational arrow of time,'' Phys. Rev. Lett. 113 no. 18, (2014) 181101, arXiv:1409.0917 [gr-qc].
https:/​/​doi.org/​10.1103/​PhysRevLett.113.181101
arXiv:1409.0917

[67] J. Barbour, T. Koslowski, and F. Mercati, ``Entropy and the Typicality of Universes,'' arXiv:1507.06498 [gr-qc].
arXiv:1507.06498

[68] P. Hájíček, ``Origin of nonunitarity in quantum gravity,'' Phys.Rev. D34 (1986) 1040.
https:/​/​doi.org/​10.1103/​PhysRevD.34.1040

[69] A. Kempf and J. R. Klauder, ``On the implementation of constraints through projection operators,'' J. Phys. A34 (2001) 1019–1036, arXiv:quant-ph/​0009072 [quant-ph].
https:/​/​doi.org/​10.1088/​0305-4470/​34/​5/​307
arXiv:quant-ph/0009072

[70] D. Marolf, ``Refined algebraic quantization: Systems with a single constraint,'' arXiv:gr-qc/​9508015 [gr-qc].
arXiv:gr-qc/9508015

[71] D. Marolf, ``Group averaging and refined algebraic quantization: Where are we now?,'' arXiv:gr-qc/​0011112 [gr-qc].
arXiv:gr-qc/0011112

[72] L. D. Faddeev and V. N. Popov, ``Feynman Diagrams for the Yang-Mills Field,'' Phys. Lett. B 25 (1967) 29–30.
https:/​/​doi.org/​10.1016/​0370-2693(67)90067-6

[73] E. S. Fradkin and G. A. Vilkovisky, ``Quantization of relativistic systems with constraints,'' Phys. Lett. 55B (1975) 224–226.
https:/​/​doi.org/​10.1016/​0370-2693(75)90448-7

[74] I. A. Batalin and G. A. Vilkovisky, ``Relativistic S Matrix of Dynamical Systems with Boson and Fermion Constraints,'' Phys. Lett. 69B (1977) 309–312.
https:/​/​doi.org/​10.1016/​0370-2693(77)90553-6

[75] E. S. Fradkin and T. E. Fradkina, ``Quantization of Relativistic Systems with Boson and Fermion First and Second Class Constraints,'' Phys. Lett. 72B (1978) 343–348.
https:/​/​doi.org/​10.1016/​0370-2693(78)90135-1

[76] B. Dittrich and P. A. Höhn, ``Canonical simplicial gravity,'' Class.Quant.Grav. 29 (2012) 115009, arXiv:1108.1974 [gr-qc].
https:/​/​doi.org/​10.1088/​0264-9381/​29/​11/​115009
arXiv:1108.1974

[77] B. Dittrich and P. A. Höhn, ``Constraint analysis for variational discrete systems,'' J. Math. Phys. 54 (2013) 093505, arXiv:1303.4294 [math-ph].
https:/​/​doi.org/​10.1063/​1.4818895
arXiv:1303.4294

[78] P. A. Höhn, ``Classification of constraints and degrees of freedom for quadratic discrete actions,'' J.Math.Phys. 55 (2014) 113506, arXiv:1407.6641 [math-ph].
https:/​/​doi.org/​10.1063/​1.4900926
arXiv:1407.6641

[79] P. A. Höhn, ``Canonical linearized Regge Calculus: counting lattice gravitons with Pachner moves,'' Phys. Rev. D91 no. 12, (2015) 124034, arXiv:1411.5672 [gr-qc].
https:/​/​doi.org/​10.1103/​PhysRevD.91.124034
arXiv:1411.5672

[80] P. A. Höhn, ``Quantization of systems with temporally varying discretization II: Local evolution moves,'' J.Math.Phys. 55 (2014) 103507, arXiv:1401.7731 [gr-qc].
https:/​/​doi.org/​10.1063/​1.4898764
arXiv:1401.7731

[81] D. N. Page and W. K. Wootters, ``Evolution without evolution: Dynamics described by stationary observables,'' Phys. Rev. D27 (1983) 2885.
https:/​/​doi.org/​10.1103/​PhysRevD.27.2885

[82] F. Giacomini, E. Castro-Ruiz, and Č. Brukner, ``Relativistic quantum reference frames: the operational meaning of spin,'' Physical review letters 123 no. 9, (2019) 090404, arXiv:1811.08228 [quant-ph].
https:/​/​doi.org/​10.1103/​PhysRevLett.123.090404
arXiv:1811.08228

[83] E. P. Wigner, ``Remarks on the mind-body question,'' in Philosophical reflections and syntheses, pp. 247–260. Springer, 1995.
https:/​/​doi.org/​10.1007/​978-3-642-78374-6_20

[84] D. Deutsch, ``Quantum theory as a universal physical theory,'' International Journal of Theoretical Physics 24 no. 1, (1985) 1–41.
https:/​/​doi.org/​10.1007/​BF00670071

[85] Č. Brukner, ``On the quantum measurement problem,'' in Quantum [Un] Speakables II, pp. 95–117. Springer, 2017, arXiv:1507.05255 [quant-ph].
https:/​/​doi.org/​10.1007/​978-3-319-38987-5_5
arXiv:1507.05255

[86] D. Frauchiger and R. Renner, ``Quantum theory cannot consistently describe the use of itself,'' Nature Communications 9 no. 3711, (2018) , arXiv:1604.07422 [quant-ph].
https:/​/​doi.org/​10.1038/​s41467-018-05739-8
arXiv:1604.07422

[87] P. A. Höhn and C. S. P. Wever, ``Quantum theory from questions,'' Phys. Rev. A95 no. 1, (2017) 012102, arXiv:1511.01130 [quant-ph].
https:/​/​doi.org/​10.1103/​PhysRevA.95.012102
arXiv:1511.01130

[88] P. A. Höhn, ``Quantum theory from rules on information acquisition,'' Entropy 19 (2017) 98, arXiv:1612.06849 [quant-ph].
https:/​/​doi.org/​10.3390/​e19030098
arXiv:1612.06849

[89] L. Hardy, ``Quantum theory from five reasonable axioms,'' arXiv:quant-ph/​0101012 [quant-ph].
arXiv:quant-ph/0101012

[90] B. Dakic and C. Brukner, ``Quantum theory and beyond: Is entanglement special?,'' Deep Beauty: Understanding the Quantum World through Mathematical Innovation, Ed. H. Halvorson (Cambridge University Press, 2011) 365-392 (11, 2009) , arXiv:0911.0695 [quant-ph].
https:/​/​doi.org/​10.1017/​CBO9780511976971.011
arXiv:0911.0695

[91] L. Masanes and M. P. Müller, ``A derivation of quantum theory from physical requirements,'' New Journal of Physics 13 no. 6, (2011) 063001, arXiv:1004.1483 [quant-ph].
https:/​/​doi.org/​%2010.1088/​1367-2630/​13/​6/​063001
arXiv:1004.1483

[92] G. Chiribella, G. M. D'Ariano, and P. Perinotti, ``Informational derivation of quantum theory,'' Physical Review A 84 no. 1, (2011) 012311, arXiv:1011.6451 [quant-ph].
https:/​/​doi.org/​10.1103/​PhysRevA.84.012311
arXiv:1011.6451

[93] H. Barnum, M. P. Müller, and C. Ududec, ``Higher-order interference and single-system postulates characterizing quantum theory,'', New Journal of Physics 16, (2011) 123029, arXiv:1403.4147 [quant-ph].
https:/​/​doi.org/​10.1088/​1367-2630/​16/​12/​123029
arXiv:1403.4147

[94] P. Goyal, ``From information geometry to quantum theory,'' New Journal of Physics 12 no. 2, (2010) 023012, arXiv:0805.2770 [quant-ph].
https:/​/​doi.org/​10.1088/​1367-2630/​12/​2/​023012
arXiv:0805.2770

[95] M. P. Müller, ``Law without law: from observer states to physics via algorithmic information theory,'' arXiv:1712.01826 [quant-ph].
arXiv:1712.01826

[96] M. P. Müller, ``Could the physical world be emergent instead of fundamental, and why should we ask? (short version),'' arXiv:1712.01816 [quant-ph].
arXiv:1712.01816

Cited by

[1] Garrett Wendel, Luis Martínez, and Martin Bojowald, "Physical Implications of a Fundamental Period of Time", Physical Review Letters 124 24, 241301 (2020).

[2] Pierre Martin-Dussaud, "Perspective on: Switching Quantum Reference Frames for Quantum Measurement", Quantum Views 4, 40 (2020).

[3] Esteban Castro-Ruiz, Flaminia Giacomini, Alessio Belenchia, and Časlav Brukner, "Quantum clocks and the temporal localisability of events in the presence of gravitating quantum systems", Nature Communications 11 1, 2672 (2020).

[4] Leonardo Chataignier, "Construction of quantum Dirac observables and the emergence of WKB time", Physical Review D 101 8, 086001 (2020).

[5] Jianhao M. Yang, "Switching Quantum Reference Frames for Quantum Measurement", arXiv:1911.04903, Quantum 4, 283 (2020).

[6] Philipp A. Höhn, "Switching Internal Times and a New Perspective on the `Wave Function of the Universe'", Universe 5 5, 116 (2019).

[7] Philipp A Hoehn and Augustin Vanrietvelde, "How to switch between relational quantum clocks", arXiv:1810.04153.

[8] Flaminia Giacomini, Esteban Castro-Ruiz, and Časlav Brukner, "Relativistic Quantum Reference Frames: The Operational Meaning of Spin", Physical Review Letters 123 9, 090404 (2019).

[9] Lucien Hardy, "Implementation of the Quantum Equivalence Principle", arXiv:1903.01289.

[10] Augustin Vanrietvelde, Philipp A Hoehn, and Flaminia Giacomini, "Switching quantum reference frames in the N-body problem and the absence of global relational perspectives", arXiv:1809.05093.

[11] Alexander R. H. Smith and Mehdi Ahmadi, "Relativistic quantum clocks observe classical and quantum time dilation", arXiv:1904.12390.

[12] Ted Jacobson and Phuc Nguyen, "Diffeomorphism invariance and the black hole information paradox", Physical Review D 100 4, 046002 (2019).

[13] Alexander R. H. Smith, "Communicating without shared reference frames", Physical Review A 99 5, 052315 (2019).

[14] Rodolfo Gambini, Luis Pedro García-Pintos, and Jorge Pullin, "Single-world consistent interpretation of quantum mechanics from fundamental time and length uncertainties", Physical Review A 100 1, 012113 (2019).

[15] Jianhao M. Yang, "Quantum Entanglement Induced by Gravitational Potential", arXiv:1903.04896.

[16] Philipp A. Hoehn, Alexander R. H. Smith, and Maximilian P. E. Lock, "The Trinity of Relational Quantum Dynamics", arXiv:1912.00033.

[17] Yigit Yargic, "Path Integral in Modular Space", arXiv:2002.01604.

[18] Anne-Catherine de la Hamette and Thomas D. Galley, "Quantum reference frames for general symmetry groups", arXiv:2004.14292.

[19] Steffen Gielen and Axel Polaczek, "Generalised effective cosmology from group field theory", arXiv:1912.06143.

[20] Veronika Baumann, Flavio Del Santo, Alexander R. H. Smith, Flaminia Giacomini, Esteban Castro-Ruiz, and Caslav Brukner, "Generalized probability rules from a timeless formulation of Wigner's friend scenarios", arXiv:1911.09696.

[21] Leonardo Chataignier, "Relational observables, reference frames and conditional probabilities", arXiv:2006.05526.

[22] Steffen Gielen and Lucía Menéndez-Pidal, "Singularity resolution depends on the clock", arXiv:2005.05357.

[23] Martin Bojowald, "Non-covariance of the dressed-metric approach in loop quantum cosmology", arXiv:2002.04986.

[24] Ashmeet Singh, "Quantum Space, Quantum Time, and Relativistic Quantum Mechanics", arXiv:2004.09139.

The above citations are from Crossref's cited-by service (last updated successfully 2020-07-14 05:41:36) and SAO/NASA ADS (last updated successfully 2020-07-14 05:41:37). The list may be incomplete as not all publishers provide suitable and complete citation data.