A change of perspective: switching quantum reference frames via a perspective-neutral framework

Augustin Vanrietvelde1, Philipp A. Hoehn1,2, Flaminia Giacomini1,2, and Esteban Castro-Ruiz1,2

1Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria
2Vienna Center for Quantum Science and Technology (VCQ), Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Treating reference frames fundamentally as quantum systems is inevitable in quantum gravity and also in quantum foundations once considering laboratories as physical systems. Both fields thereby face the question of how to describe physics relative to quantum reference systems and how the descriptions relative to different such choices are related. Here, we exploit a fruitful interplay of ideas from both fields to begin developing a unifying approach to transformations among quantum reference systems that ultimately aims at encompassing both quantum and gravitational physics. In particular, using a gravity inspired symmetry principle, which enforces physical observables to be relational and leads to an inherent redundancy in the description, we develop a perspective-neutral structure, which contains all frame perspectives at once and via which they are changed. We show that taking the perspective of a specific frame amounts to a fixing of the symmetry related redundancies in both the classical and quantum theory and that changing perspective corresponds to a symmetry transformation. We implement this using the language of constrained systems, which naturally encodes symmetries. Within a simple one-dimensional model, we recover some of the quantum frame transformations of [1], embedding them in a perspective-neutral framework. Using them, we illustrate how entanglement and classicality of an observed system depend on the quantum frame perspective. Our operational language also inspires a new interpretation of Dirac and reduced quantized theories within our model as perspective-neutral and perspectival quantum theories, respectively, and reveals the explicit link between them. In this light, we suggest a new take on the relation between a `quantum general covariance' and the diffeomorphism symmetry in quantum gravity.

► BibTeX data

► References

[1] F. Giacomini, E. Castro-Ruiz, and Č. Brukner, ``Quantum mechanics and the covariance of physical laws in quantum reference frames,'' Nature communications 10 no. 1, (2019) 494, arXiv:1712.07207 [quant-ph].

[2] A. Vanrietvelde, P. A. Höhn, and F. Giacomini, ``Switching quantum reference frames in the N-body problem and the absence of global relational perspectives,'' arXiv:1809.05093 [quant-ph].

[3] P. A. Höhn and A. Vanrietvelde, ``How to switch between relational quantum clocks,'' arXiv:1810.04153 [gr-qc].

[4] P. A. Höhn, ``Switching Internal Times and a New Perspective on the Wave Function of the Universe,'' Universe 5 no. 5, (2019) 116, arXiv:1811.00611 [gr-qc].

[5] P. A. Höhn, ``Effective changes of quantum reference systems in quantum phase space,'' to appear (2020).

[6] Y. Aharonov and L. Susskind, ``Charge Superselection Rule,'' Phys. Rev. 155 (1967) 1428–1431.

[7] B. S. DeWitt, ``Quantum theory of gravity. I. The canonical theory,'' Phys.Rev. 160 (1967) 1113–1148.

[8] C. Rovelli, Quantum Gravity. Cambridge University Press, 2004.

[9] J. Barbour and B. Bertotti, ``Mach's principle and the structure of dynamical theories,'' Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 382 no. 1783, (1982) 295–306.

[10] F. Mercati, Shape Dynamics: Relativity and Relationalism. Oxford University Press, 2018.

[11] C. Rovelli, ``Quantum reference systems,'' Class.Quant.Grav. 8 (1991) 317–332.

[12] C. Rovelli, ``What is observable in classical and quantum gravity?,'' Class.Quant.Grav. 8 (1991) 297–316.

[13] K. Kuchař, ``Time and interpretations of quantum gravity,'' Int.J.Mod.Phys.Proc.Suppl. D20 (2011) 3–86. Originally published in the Proc. 4th Canadian Conf. on General Relativity and Relativistic Astrophysics, eds. G. Kunstatter, D. Vincent and J. Williams (World Scientific, Singapore, 1992).

[14] C. Isham, ``Canonical quantum gravity and the problem of time,'' in Integrable Systems, Quantum Groups, and Quantum Field Theories, pp. 157–287, Kluwer Academic Publishers, 1993, arXiv:gr-qc/​9210011 [gr-qc].

[15] J. D. Brown and K. V. Kuchař, ``Dust as a standard of space and time in canonical quantum gravity,'' Phys.Rev. D51 (1995) 5600–5629, arXiv:gr-qc/​9409001 [gr-qc].

[16] B. Dittrich, ``Partial and complete observables for Hamiltonian constrained systems,'' Gen.Rel.Grav. 39 (2007) 1891–1927, arXiv:gr-qc/​0411013 [gr-qc].

[17] B. Dittrich, ``Partial and complete observables for canonical General Relativity,'' Class.Quant.Grav. 23 (2006) 6155–6184, arXiv:gr-qc/​0507106 [gr-qc].

[18] J. Tambornino, ``Relational observables in gravity: A review,'' SIGMA 8 (2012) 017, arXiv:1109.0740 [gr-qc].

[19] T. Thiemann, Modern Canonical Quantum General Relativity. Cambridge University Press, 2007.

[20] B. Dittrich, P. A. Höhn, T. A. Koslowski, and M. I. Nelson, ``Can chaos be observed in quantum gravity?,'' Phys. Lett. B769 (2017) 554–560, arXiv:1602.03237 [gr-qc].

[21] B. Dittrich, P. A. Höhn, T. A. Koslowski, and M. I. Nelson, ``Chaos, Dirac observables and constraint quantization,'' arXiv:1508.01947 [gr-qc].

[22] M. Bojowald, P. A. Höhn, and A. Tsobanjan, ``An Effective approach to the problem of time,'' Class. Quant. Grav. 28 (2011) 035006, arXiv:1009.5953 [gr-qc].

[23] M. Bojowald, P. A. Höhn, and A. Tsobanjan, ``Effective approach to the problem of time: general features and examples,'' Phys.Rev. D83 (2011) 125023, arXiv:1011.3040 [gr-qc].

[24] P. A. Höhn, E. Kubalova, and A. Tsobanjan, ``Effective relational dynamics of a nonintegrable cosmological model,'' Phys.Rev. D86 (2012) 065014, arXiv:1111.5193 [gr-qc].

[25] Y. Aharonov and L. Susskind, ``Observability of the sign change of spinors under $2{\pi}$ rotations,'' Phys. Rev. 158 (Jun, 1967) 1237–1238.

[26] Y. Aharonov and T. Kaufherr, ``Quantum frames of reference,'' Phys. Rev. D 30 (Jul, 1984) 368–385.

[27] S. D. Bartlett, T. Rudolph, and R. W. Spekkens, ``Reference frames, superselection rules, and quantum information,'' Rev. Mod. Phys. 79 (2007) 555–609, arXiv:quant-ph/​0610030.

[28] S. D. Bartlett, T. Rudolph, R. W. Spekkens, and P. S. Turner, ``Quantum communication using a bounded-size quantum reference frame,'' New Journal of Physics 11 no. 6, (2009) 063013, arXiv:0812.5040 [quant-ph].

[29] G. Gour and R. W. Spekkens, ``The resource theory of quantum reference frames: manipulations and monotones,'' New Journal of Physics 10 no. 3, (2008) 033023, arXiv:0711.0043 [quant-ph].

[30] M. C. Palmer, F. Girelli, and S. D. Bartlett, ``Changing quantum reference frames,'' Phys. Rev. A89 no. 5, (2014) 052121, arXiv:1307.6597 [quant-ph].

[31] S. D. Bartlett, T. Rudolph, R. W. Spekkens, and P. S. Turner, ``Degradation of a quantum reference frame,'' New Journal of Physics 8 no. 4, (2006) 58, arXiv:1307.6597 [quant-ph].

[32] A. R. Smith, M. Piani, and R. B. Mann, ``Quantum reference frames associated with noncompact groups: The case of translations and boosts and the role of mass,'' Physical Review A 94 no. 1, (2016) 012333, arXiv:1602.07696 [quant-ph].

[33] D. Poulin and J. Yard, ``Dynamics of a quantum reference frame,'' New Journal of Physics 9 no. 5, (2007) 156, arXiv:quant-ph/​0612126.

[34] M. Skotiniotis, B. Toloui, I. T. Durham, and B. C. Sanders, ``Quantum frameness for $cpt$ symmetry,'' Phys. Rev. Lett. 111 (Jul, 2013) 020504, arXiv:1306.6114 [quant-ph].

[35] L. Loveridge, P. Busch, and T. Miyadera, ``Relativity of quantum states and observables,'' EPL (Europhysics Letters) 117 no. 4, (2017) 40004, arXiv:arXiv:1604.02836 [quant-ph].

[36] J. Pienaar, ``A relational approach to quantum reference frames for spins,'' arXiv:1601.07320 [quant-ph] (2016).

[37] R. M. Angelo, N. Brunner, S. Popescu, A. J. Short, and P. Skrzypczyk, ``Physics within a quantum reference frame,'' Journal of Physics A: Mathematical and Theoretical 44 no. 14, (2011) 145304, arXiv:1007.2292 [quant-ph].

[38] P. A. Höhn and M. P. Müller, ``An operational approach to spacetime symmetries: Lorentz transformations from quantum communication,'' New J. Phys. 18 no. 6, (2016) 063026, arXiv:1412.8462 [quant-ph].

[39] P. A. Guérin and Č. Brukner, ``Observer-dependent locality of quantum events,'' New J. Phys. 20, 103031 (2018), arXiv:1805.12429 [quant-ph].

[40] O. Oreshkov, F. Costa, and Č. Brukner, ``Quantum correlations with no causal order,'' Nature communications 3 (2012) 1092, arXiv:1105.4464 [quant-ph].

[41] L. Hardy, ``The Construction Interpretation: Conceptual Roads to Quantum Gravity,'' arXiv:1807.10980 [quant-ph].

[42] P. A. Höhn, ``Reflections on the information paradigm in quantum and gravitational physics,'' J. Phys. Conf. Ser. 880 no. 1, (2017) 012014, arXiv:1706.06882 [hep-th].

[43] P. A. Dirac, Lectures on Quantum Mechanics. Yeshiva University Press, 1964.

[44] M. Henneaux and C. Teitelboim, Quantization of Gauge Systems. Princeton University Press, 1992.

[45] C. Rovelli, ``Why Gauge?,'' Found. Phys. 44 no. 1, (2014) 91–104, arXiv:1308.5599 [hep-th].

[46] H. Gomes, F. Hopfmüller, and A. Riello, ``A unified geometric framework for boundary charges and dressings: non-Abelian theory and matter,'' Nuclear Physics B 941 (2019) 249-315, arXiv:1808.02074 [hep-th].

[47] V. Guillemin and S. Sternberg, ``Geometric quantization and multiplicities of group representations,'' Inventiones mathematicae 67 no. 3, (1982) 515–538.

[48] Y. Tian and W. Zhang, ``An analytic proof of the geometric quantization conjecture of guillemin-sternberg,'' Inventiones mathematicae 132 no. 2, (1998) 229–259.

[49] P. Hochs and N. Landsman, ``The guillemin–sternberg conjecture for noncompact groups and spaces,'' Journal of K-theory 1 no. 3, (2008) 473–533, arXiv:math-ph/​0512022.

[50] M. J. Gotay, ``Constraints, reduction, and quantization,'' Journal of mathematical physics 27 no. 8, (1986) 2051–2066.

[51] A. Ashtekar and G. t. Horowitz, ``On the canonical approach to quantum gravity,'' Phys. Rev. D26 (1982) 3342–3353.

[52] K. Kuchař, ``Covariant factor ordering of gauge systems,'' Physical Review D 34 no. 10, (1986) 3044.

[53] A. Ashtekar, Lectures on Nonperturbative Canonical Gravity, No. 6 in Advances series in astrophysics and cosmology. World Scientific, 1991.

[54] K. Schleich, ``Is reduced phase space quantization equivalent to Dirac quantization?,'' Class. Quant. Grav. 7 (1990) 1529–1538.

[55] G. Kunstatter, ``Dirac versus reduced quantization: A Geometrical approach,'' Class. Quant. Grav. 9 (1992) 1469–1486.

[56] P. Hajicek and K. V. Kuchar, ``Constraint quantization of parametrized relativistic gauge systems in curved space-times,'' Phys. Rev. D41 (1990) 1091–1104.

[57] J. D. Romano and R. S. Tate, ``Dirac Versus Reduced Space Quantization of Simple Constrained Systems,'' Class. Quant. Grav. 6 (1989) 1487.

[58] R. Loll, ``Noncommutativity of constraining and quantizing: A U(1) gauge model,'' Phys. Rev. D41 (1990) 3785–3791.

[59] M. S. Plyushchay and A. V. Razumov, ``Dirac versus reduced phase space quantization for systems admitting no gauge conditions,'' International Journal of Modern Physics A 11 no. 08, (1996) 1427–1462, arXiv:hep-th/​9306017.

[60] P. A. Höhn, ``Toolbox for reconstructing quantum theory from rules on information acquisition,'' Quantum 1 no. 38, (2017) , arXiv:1412.8323 [quant-ph].

[61] C. Rovelli, ``Relational quantum mechanics,'' Int.J.Theor.Phys. 35 (1996) 1637–1678, arXiv:quant-ph/​9609002 [quant-ph].

[62] C. Rovelli, ``Space is blue and birds fly through it,'' Phil. Trans. R. Soc. A 376 no. 2123, (2018) 20170312, arXiv:1712.02894 [physics.hist-ph].

[63] H. Gomes, S. Gryb, and T. Koslowski, ``Einstein gravity as a 3D conformally invariant theory,'' Class.Quant.Grav. 28 (2011) 045005, arXiv:1010.2481 [gr-qc].

[64] H. Gomes and T. Koslowski, ``The Link between General Relativity and Shape Dynamics,'' Class. Quant. Grav. 29 (2012) 075009, arXiv:1101.5974 [gr-qc].

[65] P. A. Höhn, M. P. Müller, C. Pfeifer, and D. Rätzel, ``A local quantum Mach principle and the metricity of spacetime,'' arXiv:1811.02555 [gr-qc].

[66] J. Barbour, T. Koslowski, and F. Mercati, ``Identification of a gravitational arrow of time,'' Phys. Rev. Lett. 113 no. 18, (2014) 181101, arXiv:1409.0917 [gr-qc].

[67] J. Barbour, T. Koslowski, and F. Mercati, ``Entropy and the Typicality of Universes,'' arXiv:1507.06498 [gr-qc].

[68] P. Hájíček, ``Origin of nonunitarity in quantum gravity,'' Phys.Rev. D34 (1986) 1040.

[69] A. Kempf and J. R. Klauder, ``On the implementation of constraints through projection operators,'' J. Phys. A34 (2001) 1019–1036, arXiv:quant-ph/​0009072 [quant-ph].

[70] D. Marolf, ``Refined algebraic quantization: Systems with a single constraint,'' arXiv:gr-qc/​9508015 [gr-qc].

[71] D. Marolf, ``Group averaging and refined algebraic quantization: Where are we now?,'' arXiv:gr-qc/​0011112 [gr-qc].

[72] L. D. Faddeev and V. N. Popov, ``Feynman Diagrams for the Yang-Mills Field,'' Phys. Lett. B 25 (1967) 29–30.

[73] E. S. Fradkin and G. A. Vilkovisky, ``Quantization of relativistic systems with constraints,'' Phys. Lett. 55B (1975) 224–226.

[74] I. A. Batalin and G. A. Vilkovisky, ``Relativistic S Matrix of Dynamical Systems with Boson and Fermion Constraints,'' Phys. Lett. 69B (1977) 309–312.

[75] E. S. Fradkin and T. E. Fradkina, ``Quantization of Relativistic Systems with Boson and Fermion First and Second Class Constraints,'' Phys. Lett. 72B (1978) 343–348.

[76] B. Dittrich and P. A. Höhn, ``Canonical simplicial gravity,'' Class.Quant.Grav. 29 (2012) 115009, arXiv:1108.1974 [gr-qc].

[77] B. Dittrich and P. A. Höhn, ``Constraint analysis for variational discrete systems,'' J. Math. Phys. 54 (2013) 093505, arXiv:1303.4294 [math-ph].

[78] P. A. Höhn, ``Classification of constraints and degrees of freedom for quadratic discrete actions,'' J.Math.Phys. 55 (2014) 113506, arXiv:1407.6641 [math-ph].

[79] P. A. Höhn, ``Canonical linearized Regge Calculus: counting lattice gravitons with Pachner moves,'' Phys. Rev. D91 no. 12, (2015) 124034, arXiv:1411.5672 [gr-qc].

[80] P. A. Höhn, ``Quantization of systems with temporally varying discretization II: Local evolution moves,'' J.Math.Phys. 55 (2014) 103507, arXiv:1401.7731 [gr-qc].

[81] D. N. Page and W. K. Wootters, ``Evolution without evolution: Dynamics described by stationary observables,'' Phys. Rev. D27 (1983) 2885.

[82] F. Giacomini, E. Castro-Ruiz, and Č. Brukner, ``Relativistic quantum reference frames: the operational meaning of spin,'' Physical review letters 123 no. 9, (2019) 090404, arXiv:1811.08228 [quant-ph].

[83] E. P. Wigner, ``Remarks on the mind-body question,'' in Philosophical reflections and syntheses, pp. 247–260. Springer, 1995.

[84] D. Deutsch, ``Quantum theory as a universal physical theory,'' International Journal of Theoretical Physics 24 no. 1, (1985) 1–41.

[85] Č. Brukner, ``On the quantum measurement problem,'' in Quantum [Un] Speakables II, pp. 95–117. Springer, 2017, arXiv:1507.05255 [quant-ph].

[86] D. Frauchiger and R. Renner, ``Quantum theory cannot consistently describe the use of itself,'' Nature Communications 9 no. 3711, (2018) , arXiv:1604.07422 [quant-ph].

[87] P. A. Höhn and C. S. P. Wever, ``Quantum theory from questions,'' Phys. Rev. A95 no. 1, (2017) 012102, arXiv:1511.01130 [quant-ph].

[88] P. A. Höhn, ``Quantum theory from rules on information acquisition,'' Entropy 19 (2017) 98, arXiv:1612.06849 [quant-ph].

[89] L. Hardy, ``Quantum theory from five reasonable axioms,'' arXiv:quant-ph/​0101012 [quant-ph].

[90] B. Dakic and C. Brukner, ``Quantum theory and beyond: Is entanglement special?,'' Deep Beauty: Understanding the Quantum World through Mathematical Innovation, Ed. H. Halvorson (Cambridge University Press, 2011) 365-392 (11, 2009) , arXiv:0911.0695 [quant-ph].

[91] L. Masanes and M. P. Müller, ``A derivation of quantum theory from physical requirements,'' New Journal of Physics 13 no. 6, (2011) 063001, arXiv:1004.1483 [quant-ph].

[92] G. Chiribella, G. M. D'Ariano, and P. Perinotti, ``Informational derivation of quantum theory,'' Physical Review A 84 no. 1, (2011) 012311, arXiv:1011.6451 [quant-ph].

[93] H. Barnum, M. P. Müller, and C. Ududec, ``Higher-order interference and single-system postulates characterizing quantum theory,'', New Journal of Physics 16, (2011) 123029, arXiv:1403.4147 [quant-ph].

[94] P. Goyal, ``From information geometry to quantum theory,'' New Journal of Physics 12 no. 2, (2010) 023012, arXiv:0805.2770 [quant-ph].

[95] M. P. Müller, ``Law without law: from observer states to physics via algorithmic information theory,'' arXiv:1712.01826 [quant-ph].

[96] M. P. Müller, ``Could the physical world be emergent instead of fundamental, and why should we ask? (short version),'' arXiv:1712.01816 [quant-ph].

Cited by

[1] Angel Ballesteros, Flaminia Giacomini, and Giulia Gubitosi, "The group structure of dynamical transformations between quantum reference frames", Quantum 5, 470 (2021).

[2] Veronika Baumann, Flavio Del Santo, Alexander R. H. Smith, Flaminia Giacomini, Esteban Castro-Ruiz, and Caslav Brukner, "Generalized probability rules from a timeless formulation of Wigner's friend scenarios", Quantum 5, 524 (2021).

[3] Philipp A Höhn and Augustin Vanrietvelde, "How to switch between relational quantum clocks", arXiv:1810.04153, New Journal of Physics 22 12, 123048 (2020).

[4] Luciano Gabbanelli and Silvia De Bianchi, "Cosmological implications of the hydrodynamical phase of group field theory", General Relativity and Gravitation 53 7, 66 (2021).

[5] Flaminia Giacomini, "Spacetime Quantum Reference Frames and superpositions of proper times", Quantum 5, 508 (2021).

[6] Philipp A. Höhn, Alexander R. H. Smith, and Maximilian P. E. Lock, "Equivalence of Approaches to Relational Quantum Dynamics in Relativistic Settings", Frontiers in Physics 9, 587083 (2021).

[7] Anne-Catherine de la Hamette and Thomas D. Galley, "Quantum reference frames for general symmetry groups", Quantum 4, 367 (2020).

[8] Garrett Wendel, Luis Martínez, and Martin Bojowald, "Physical Implications of a Fundamental Period of Time", Physical Review Letters 124 24, 241301 (2020).

[9] Martin Bojowald, "Noncovariance of the dressed-metric approach in loop quantum cosmology", Physical Review D 102 2, 023532 (2020).

[10] Leon Loveridge, "A relational perspective on the Wigner-Araki-Yanase theorem", Journal of Physics: Conference Series 1638, 012009 (2020).

[11] Alexander R. H. Smith and Mehdi Ahmadi, "Quantum clocks observe classical and quantum time dilation", Nature Communications 11 1, 5360 (2020).

[12] M. F. Savi and R. M. Angelo, "Quantum resource covariance", Physical Review A 103 2, 022220 (2021).

[13] Achim Kempf, "Replacing the Notion of Spacetime Distance by the Notion of Correlation", Frontiers in Physics 9, 655857 (2021).

[14] Marius Krumm, Philipp A. Höhn, and Markus P. Müller, "Quantum reference frame transformations as symmetries and the paradox of the third particle", Quantum 5, 530 (2021).

[15] Pierre Martin-Dussaud, "Perspective on: Switching Quantum Reference Frames for Quantum Measurement", Quantum Views 4, 40 (2020).

[16] Steffen Gielen and Axel Polaczek, "Hamiltonian group field theory with multiple scalar matter fields", Physical Review D 103 8, 086011 (2021).

[17] Steffen Gielen and Axel Polaczek, "Generalised effective cosmology from group field theory", Classical and Quantum Gravity 37 16, 165004 (2020).

[18] Jianhao M. Yang, "Path integral implementation of relational quantum mechanics", Scientific Reports 11 1, 8613 (2021).

[19] Leonardo Chataignier and Manuel Krämer, "Unitarity of quantum-gravitational corrections to primordial fluctuations in the Born-Oppenheimer approach", Physical Review D 103 6, 066005 (2021).

[20] Leonardo Chataignier, "Relational observables, reference frames, and conditional probabilities", Physical Review D 103 2, 026013 (2021).

[21] Leonardo Chataignier, "Construction of quantum Dirac observables and the emergence of WKB time", Physical Review D 101 8, 086001 (2020).

[22] Alexander Yu Kamenshchik, Jeinny Nallely Pérez Rodríguez, and Tereza Vardanyan, "Time and Evolution in Quantum and Classical Cosmology", Universe 7 7, 219 (2021).

[23] Włodzimierz Piechocki and Tim Schmitz, "Quantum Oppenheimer-Snyder model", Physical Review D 102 4, 046004 (2020).

[24] Pierre Martin-Dussaud, "Relational Structures of Fundamental Theories", Foundations of Physics 51 1, 24 (2021).

[25] Steffen Gielen and Lucía Menéndez-Pidal, "Singularity resolution depends on the clock", Classical and Quantum Gravity 37 20, 205018 (2020).

[26] Esteban Castro-Ruiz, Flaminia Giacomini, Alessio Belenchia, and Časlav Brukner, "Quantum clocks and the temporal localisability of events in the presence of gravitating quantum systems", Nature Communications 11 1, 2672 (2020).

[27] Philipp A. Höhn, Alexander R. H. Smith, and Maximilian P. E. Lock, "Trinity of relational quantum dynamics", Physical Review D 104 6, 066001 (2021).

[28] Aleksandra Dimić, Marko Milivojević, Dragoljub Gočanin, Natália S. Móller, and Časlav Brukner, "Simulating Indefinite Causal Order With Rindler Observers", Frontiers in Physics 8, 525333 (2020).

[29] Wolfgang Wieland, "Null infinity as an open Hamiltonian system", Journal of High Energy Physics 2021 4, 95 (2021).

[30] Jianhao M. Yang, "Switching Quantum Reference Frames for Quantum Measurement", arXiv:1911.04903, Quantum 4, 283 (2020).

[31] Martin Bojowald and Artur Tsobanjan, "Quantization of Dynamical Symplectic Reduction", Communications in Mathematical Physics 382 1, 547 (2021).

[32] Eric G. Cavalcanti, "The View from a Wigner Bubble", Foundations of Physics 51 2, 39 (2021).

[33] Philipp A. Höhn, "Switching Internal Times and a New Perspective on the `Wave Function of the Universe'", Universe 5 5, 116 (2019).

[34] Augustin Vanrietvelde, Philipp A Hoehn, and Flaminia Giacomini, "Switching quantum reference frames in the N-body problem and the absence of global relational perspectives", arXiv:1809.05093.

[35] Flaminia Giacomini, Esteban Castro-Ruiz, and Časlav Brukner, "Relativistic Quantum Reference Frames: The Operational Meaning of Spin", Physical Review Letters 123 9, 090404 (2019).

[36] Ted Jacobson and Phuc Nguyen, "Diffeomorphism invariance and the black hole information paradox", Physical Review D 100 4, 046002 (2019).

[37] Lucien Hardy, "Implementation of the Quantum Equivalence Principle", arXiv:1903.01289.

[38] Aldo Riello, "Edge modes without edge modes", arXiv:2104.10182.

[39] Alexander R. H. Smith, "Communicating without shared reference frames", Physical Review A 99 5, 052315 (2019).

[40] Rodolfo Gambini, Luis Pedro García-Pintos, and Jorge Pullin, "Single-world consistent interpretation of quantum mechanics from fundamental time and length uncertainties", Physical Review A 100 1, 012113 (2019).

[41] Ashmeet Singh, "Quantum Space, Quantum Time, and Relativistic Quantum Mechanics", arXiv:2004.09139.

[42] Yigit Yargic, "Path Integral in Modular Space", arXiv:2002.01604.

[43] Jianhao M. Yang, "Quantum Mechanics from Relational Properties, Part III: Path Integral Implementation", arXiv:1807.01583.

[44] Wolfgang Wieland, "Barnich-Troessaert Bracket as a Dirac Bracket on the Covariant Phase Space", arXiv:2104.08377.

[45] Sylvain Carrozza and Philipp A. Hoehn, "Edge modes as reference frames and boundary actions from post-selection", arXiv:2109.06184.

[46] Jianhao M. Yang, "Quantum Entanglement Induced by Gravitational Potential", arXiv:1903.04896.

[47] Lee Smolin, "Quantum reference frames and triality", arXiv:2007.05957.

The above citations are from Crossref's cited-by service (last updated successfully 2021-10-19 23:48:36) and SAO/NASA ADS (last updated successfully 2021-10-19 23:48:37). The list may be incomplete as not all publishers provide suitable and complete citation data.