Parameter regimes for surpassing the PLOB bound with error-corrected qudit repeaters
Institut für Theoretische Physik III, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
Published: | 2019-12-16, volume 3, page 216 |
Eprint: | arXiv:1906.05172v2 |
Doi: | https://doi.org/10.22331/q-2019-12-16-216 |
Citation: | Quantum 3, 216 (2019). |
Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.
Abstract
A potential quantum internet would open up the possibility of realizing numerous new applications, including provably secure communication. Since losses of photons limit long-distance, direct quantum communication and wide-spread quantum networks, quantum repeaters are needed. The so-called PLOB-repeaterless bound [Pirandola et al., Nat. Commun. 8, 15043 (2017)] is a fundamental limit on the quantum capacity of direct quantum communication. Here, we analytically derive the quantum-repeater gain for error-corrected, one-way quantum repeaters based on higher-dimensional qudits for two different physical encodings: Fock and multimode qudits. We identify parameter regimes in which such quantum repeaters can surpass the PLOB-repeaterless bound and systematically analyze how typical parameters manifest themselves in the quantum-repeater gain. This benchmarking provides a guideline for the implementation of error-corrected qudit repeaters.

► BibTeX data
► References
[1] M. Riedel, D. Binosi, R. Thew, and T. Calarco, The European quantum technologies flagship programme, Quantum Sci. Technol. 2, 030501 (2017).
https://doi.org/10.1088/2058-9565/aa6aca
[2] A. Acín, I. Bloch, H. Buhrman, T. Calarco, C. Eichler, J. Eisert, D. Esteve, N. Gisin, S. Glaser, F. Jelezko, S. Kuhr, M. Lewenstein, M. Riedel, P. Schmidt, R. Thew, A. Wallraff, I. Walmsley, and F. Wilhelm, The quantum technologies roadmap: a European community view, New J. Phys. 20, 080201 (2018).
https://doi.org/10.1088/1367-2630/aad1ea
[3] S. Wehner, D. Elkouss, and R. Hanson, Quantum internet: A vision for the road ahead, Science 362, 6412 (2018).
https://doi.org/10.1126/science.aam9288
[4] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum-enhanced positioning and clock synchronization, Nature 412, 417 (2001).
https://doi.org/10.1038/35086525
[5] M. Christandl and S. Wehner, Quantum Anonymous Transmissions, ASIACRYPT 2005, 217-235 (2005).
https://doi.org/10.1007/11593447_12
[6] D. Gottesman, T. Jennewein, and S. Croke, Longer-Baseline Telescopes Using Quantum Repeaters, Phys. Rev. Lett. 109, 070503 (2012).
https://doi.org/10.1103/PhysRevLett.109.070503
[7] E. Khabiboulline, J. Borregaard, K. De Greve, and M. Lukin, Optical Interferometry with Quantum Networks, Phys. Rev. Lett. 123, 070504 (2019).
https://doi.org/10.1103/PhysRevLett.123.070504
[8] C. Bennett, G. Brassard, Public Key Distribution and Coin Tossing, Theor. Comput. Sci. 560, 7 (2014).
https://doi.org/10.1016/j.tcs.2014.05.025
[9] A. Ekert, Quantum cryptography based on Bell's theorem, Phys. Rev. Lett. 67, 661 (1991).
https://doi.org/10.1103/PhysRevLett.67.661
[10] D. Bruß, Optimal Eavesdropping in Quantum Cryptography with Six States, Phys. Rev. Lett. 81, 3018 (1998).
https://doi.org/10.1103/PhysRevLett.81.3018
[11] A. Boaron, G. Boso, D. Rusca, C. Vulliez, C. Autebert, M. Caloz, M. Perrenoud, G. Gras, F. Bussières, M. Li, D. Nolan, A. Martin, and H. Zbinden, Secure Quantum Key Distribution over 421 km of Optical Fiber, Phys. Rev. Lett. 121, 190502, (2018).
https://doi.org/10.1103/PhysRevLett.121.190502
[12] M. Takeoka, S. Guha, and M. Wilde, Fundamental rate-loss tradeoff for optical quantum key distribution, Nat. Comm. 5, 5235 (2014).
https://doi.org/10.1038/ncomms6235
[13] M. Christandl and A. Müller-Hermes, Relative Entropy Bounds on Quantum, Private and Repeater Capacities, Commun. Math. Phys. 353, 821 (2017).
https://doi.org/10.1007/s00220-017-2885-y
[14] S. Pirandola, R. Laurenza, C. Ottaviani, and L. Banchi, Fundamental limits of repeaterless quantum communications, Nat. Commun. 8, 15043 (2017).
https://doi.org/10.1038/ncomms15043
[15] H. Briegel, W. Dür, J. Cirac, and P. Zoller, Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication, Phys. Rev. Lett. 81, 5932 (1998).
https://doi.org/10.1103/PhysRevLett.81.5932
[16] P. van Loock, T. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. Munro, and Y. Yamamoto, Hybrid Quantum Repeater Using Bright Coherent Light, Phys. Rev. Lett. 96, 240501 (2006).
https://doi.org/10.1103/PhysRevLett.96.240501
[17] L. Jiang, J. Taylor, K. Nemoto, W. Munro, R. Van Meter, and M. Lukin, Quantum repeater with encoding, Phys. Rev. A 79, 032325 (2009).
https://doi.org/10.1103/PhysRevA.79.032325
[18] A. Fowler, D. Wang, C. Hill, T. Ladd, R. Van Meter, and L. Hollenberg, Surface Code Quantum Communication, Phys. Rev. Lett. 104, 180503 (2010).
https://doi.org/10.1103/PhysRevLett.104.180503
[19] S. Muralidharan, J. Kim, N. Lütkenhaus, M Lukin, and L. Jiang, Ultrafast and Fault-Tolerant Quantum Communication across Long Distances, Phys. Rev. Lett. 112, 250501 (2014).
https://doi.org/10.1103/PhysRevLett.112.250501
[20] S. Muralidharan, L. Li, J. Kim, N. Lütkenhaus, M. Lukin and L. Jiang, Optimal architectures for long distance quantum communication, Sci Rep. 6, 20463 (2016).
https://doi.org/10.1038/srep20463
[21] D. Luong, L. Jiang, J. Kim, and N. Lütkenhaus, Overcoming lossy channel bounds using a single quantum repeater node, Appl. Phys. B 112: 96 (2016).
https://doi.org/10.1007/s00340-016-6373-4
[22] F. Rozpędek., K. Goodenough, J. Ribeiro, N. Kalb, V. Caprara Vivoli, A. Reiserer, R. Hanson, S. Wehner, and D. Elkouss, Parameter regimes for a single sequential quantum repeater, Quantum Sci. Technol. 3, 034002 (2018).
https://doi.org/10.1088/2058-9565/aab31b
[23] F. Rozpędek, R. Yehia, K. Goodenough, M. Ruf, P. Humphreys, R. Hanson, S. Wehner, and D. Elkouss, Near-term quantum-repeater experiments with nitrogen-vacancy centers: Overcoming the limitations of direct transmission, Phys. Rev. A 99, 052330 (2019).
https://doi.org/10.1103/PhysRevA.99.052330
[24] M. Lucamarini, Z. Yuan, J. Dynes, and A. Shields, Overcoming the rate-distance limit of quantum key distribution without quantum repeaters, Nature 557, 400 (2018).
https://doi.org/10.1038/s41586-018-0066-6
[25] M. Curty, K. Azuma, and H. Lo, Simple security proof of twin-field type quantum key distribution protocol, npj Quantum Inf. 5, 64 (2019).
https://doi.org/10.1038/s41534-019-0175-6
[26] F. Grasselli and M. Curty, Practical decoy-state method for twin-field quantum key distribution, New J. Phys. 21, 073001 (2019).
https://doi.org/10.1088/1367-2630/ab2b00
[27] M. Minder, M. Pittaluga, G. Roberts, M. Lucamarini, J. Dynes, Z. Yuan, and A. Shields, Experimental quantum key distribution beyond the repeaterless secret key capacity, Nat. Photonics 13, 334 (2019).
https://doi.org/10.1038/s41566-019-0377-7
[28] S. Wang, D. He, Z. Yin, F. Lu, C. Cui, W. Chen, Z. Zhou, G. Guo, and Z. Han, Beating the Fundamental Rate-Distance Limit in a Proof-of-Principle Quantum Key Distribution System, Phys. Rev. X 9, 021046 (2019).
https://doi.org/10.1103/PhysRevX.9.021046
[29] X. Zhong, J. Hu, M. Curty, L. Qian, and H. Lo, Proof-of-Principle Experimental Demonstration of Twin-Field Type Quantum Key Distribution, Phys. Rev. Lett. 123, 100506 (2019).
https://doi.org/10.1103/PhysRevLett.123.100506
[30] F. Ewert and P. van Loock, Ultrafast fault-tolerant long-distance quantum communication with static linear optics, Phys. Rev. A 95, 012327 (2017).
https://doi.org/10.1103/PhysRevA.95.012327
[31] F. Schmidt and P. van Loock, Efficiencies of logical Bell measurements on Calderbank-Shor-Steane codes with static linear optics, Phys. Rev. A 99, 062308 (2019).
https://doi.org/10.1103/PhysRevA.99.062308
[32] S. Ecker, F. Bouchard, L. Bulla, F. Brandt, O. Kohout, F. Steinlechner, R. Fickler, M. Malik, Y. Guryanova, R. Ursin, and M. Huber, Entanglement distribution beyond qubits or: How I stopped worrying and learned to love the noise, Phys. Rev. X 9, 041042 (2019).
https://doi.org/10.1103/PhysRevX.9.041042
[33] S. Muralidharan, C. Zou, L. Li, J. Wen, and L. Jiang, Overcoming erasure errors with multilevel systems, New J. Phys. 19, 013026 (2017).
https://doi.org/10.1088/1367-2630/aa573a
[34] S. Muralidharan, C. Zou, L. Li, and L. Jiang, One-way quantum repeaters with quantum Reed-Solomon codes, Phys. Rev. A 97, 052316 (2018).
https://doi.org/10.1103/PhysRevA.97.052316
[35] D. Miller, T. Holz, H. Kampermann, and D. Bruß, Propagation of generalized Pauli errors in qudit Clifford circuits, Phys. Rev. A 98, 052316 (2018).
https://doi.org/10.1103/PhysRevA.98.052316
[36] M. Bergmann and P. van Loock, Hybrid quantum repeater for qudits, Phys. Rev. A 99, 032349 (2019).
https://doi.org/10.1103/PhysRevA.99.032349
[37] S. Abruzzo, S. Bratzik, N. Bernardes, H. Kampermann, P. van Loock, and D. Bruß, Quantum repeaters and quantum key distribution: Analysis of secret-key rates, Phys. Rev. A 87, 052315 (2013).
https://doi.org/10.1103/PhysRevA.87.052315
[38] S. Bratzik, H. Kampermann, and D. Bruß, Secret key rates for an encoded quantum repeater, Phys. Rev. A 89, 032335 (2014).
https://doi.org/10.1103/PhysRevA.89.032335
[39] M. Epping, H. Kampermann, and D. Bruß, On the error analysis of quantum repeaters with encoding, Appl. Phys. B 122: 54 (2016).
https://doi.org/10.1007/s00340-015-6314-7
[40] M. Epping, H. Kampermann, and D. Bruß, Large-scale quantum networks based on graphs, New J. Phys. 18, 53036 (2016).
https://doi.org/10.1088/1367-2630/18/5/053036
[41] M. Epping, H. Kampermann, and D. Bruß, Robust entanglement distribution via quantum network coding, New J. Phys. 18, 103052 (2016).
https://doi.org/10.1088/1367-2630/18/10/103052
[42] K. Vollbrecht and M. Wolf, Efficient distillation beyond qubits, Phys. Rev. A 67, 012303 (2003).
https://doi.org/10.1103/PhysRevA.67.012303
[43] S. Braunstein and P. van Loock, Quantum information with continuous variables, Rev. Mod. Phys. 77, 513 (2005).
https://doi.org/10.1103/RevModPhys.77.513
[44] C. Weedbrook, S. Pirandola, R. García-Patrón, N. Cerf, T. Ralph, J. Shapiro, and S. Lloyd, Gaussian quantum information, Rev. Mod. Phys. 84, 621 (2012).
https://doi.org/10.1103/RevModPhys.84.621
[45] J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication, Phys. Rev. Lett. 82, 2594 (1999).
https://doi.org/10.1103/PhysRevLett.82.2594
[46] H. de Riedmatten, I. Marcikic, H. Zbinden, and N. Gisin, Creating high dimensional time-bin entanglement using mode-locked lasers, Quant. Inf. Comp. 2, 425 (2002).
https://doi.org/10.26421/QIC2.6
[47] T. Zhong, H. Zhou, R. Horansky, C. Lee, V. Verma, A. Lita, A. Restelli, J. Bienfang, R. Mirin, T. Gerrits, S. Nam, F. Marsili, M. Shaw, Z. Zhang, L. Wang, D. Englund, G. Wornell, J. Shapiro, and F. Wong, Photon-efficient quantum key distribution using time-energy entanglement with high-dimensional encoding, New J. Phys. 17, 022002 (2015).
https://doi.org/10.1088/1367-2630/17/2/022002
[48] N. Montaut, O. Magaña-Loaiza, T. Bartley, V. Verma, S. Nam, R. Mirin, C. Silberhorn, and T. Gerrits, Compressive characterization of telecom photon pairs in the spatial and spectral degrees of freedom, Optica 5, 1418 (2018).
https://doi.org/10.1364/OPTICA.5.001418
[49] B. Brecht, D. Reddy, C. Silberhorn and M. Raymer, Photon Temporal Modes: A Complete Framework for Quantum Information Science, Phys. Rev. X 5, 041017 (2015).
https://doi.org/10.1103/PhysRevX.5.041017
[50] V. Ansari, J. Donohue, M. Allgaier, L. Sansoni, B. Brecht, J. Roslund, N. Treps, G. Harder, and C. Silberhorn, Tomography and Purification of the Temporal-Mode Structure of Quantum Light, Phys. Rev. Lett. 120, 213601 (2018).
https://doi.org/10.1103/PhysRevLett.120.213601
[51] L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman, Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes, Phys. Rev. A 45, 8185 (1992).
https://doi.org/10.1103/PhysRevA.45.8185
[52] G. Calvo, A. Picón, and E. Bagan, Quantum field theory of photons with orbital angular momentum, Phys. Rev. A 73, 013805 (2006).
https://doi.org/10.1103/PhysRevA.73.013805
[53] W. Plick, M. Krenn, R. Fickler, S. Ramelow, and A. Zeilinger, Quantum orbital angular momentum of elliptically symmetric light, Phys. Rev. A 87, (2013).
https://doi.org/10.1103/PhysRevA.87.033806
[54] M. Krenn, M. Malik, M. Erhard, and A. Zeilinger, Orbital angular momentum of photons and the entanglement of Laguerre–Gaussian modes, Phil. Trans. R. Soc. A 375: 20150442 (2017).
https://doi.org/10.1098/rsta.2015.0442
[55] E. Knill, Group Representations, Error Bases and Quantum Codes, Technical Report LAUR-96-2807, Los Alamos National Laboratory, arXiv:9608049 [quant-ph] (1996).
arXiv:quant-ph/9608049
[56] D. Gottesman, Fault-Tolerant Quantum Computation with Higher-Dimensional Systems, Chaos Solitons Fractals 10, 1749-1758 (1999).
https://doi.org/10.1016/S0960-0779(98)00218-5
[57] D. Lidar and T. Brun, Quantum Error Correction, Cambridge University Press (2013).
https://doi.org/10.1017/CBO9781139034807
[58] R. Cleve, D. Gottesman and H. Lo, How to share a quantum secret, Phys. Rev. Lett. 83, 648 (1999).
https://doi.org/10.1103/PhysRevLett.83.648
[59] D. Aharonov and M. Ben-Or, Fault-Tolerant Quantum Computation with Constant Error Rate, SIAM J. Comput. 38(4), 1207 (2008).
https://doi.org/10.1137/S0097539799359385
[60] A. Ketkar, A. Klappenecker, S. Kumar and P. Sarvepalli, Nonbinary stabilizer codes over finite fields, IEEE Trans. Inf. Theory, 52(11), 4892 (2006).
https://doi.org/10.1109/TIT.2006.883612
[61] A. Cross, Fault-tolerant quantum computer architectures using hierarchies of quantum error-correcting codes, MIT 1721.1/44407 (2008).
http://hdl.handle.net/1721.1/44407
[62] N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, Quantum cryptography, Rev. Mod. Phys. 74, 145 (2002).
https://doi.org/10.1103/RevModPhys.74.145
[63] R. Hadfield, Single-photon detectors for optical quantum information applications, Nat. Photonics 3, 696 (2009).
https://doi.org/10.1038/nphoton.2009.230
[64] B. Hacker, S. Welte, G. Rempe, and S. Ritter, A photon–photon quantum gate based on a single atom in an optical resonator Nature 536, 193 (2016).
https://doi.org/10.1038/nature18592
[65] G. Alber, A. Delgado, N. Gisin, and I. Jex, Efficient bipartite quantum state purification in arbitrary dimensional Hilbert spaces, J. Phys. A: Math. Gen. 34 8821 (2001).
https://doi.org/10.1088/0305-4470/34/42/307
[66] R. Heeres, B. Vlastakis, E. Holland, S. Krastanov, V. Albert, L. Frunzio, L. Jiang, and R. Schoelkopf, Cavity State Manipulation Using Photon-Number Selective Phase Gates, Phys. Rev. Lett. 115, 137002 (2015).
https://doi.org/10.1103/PhysRevLett.115.137002
[67] Y. Cho, G. Campbell, J. Everett, J. Bernu, D. Higginbottom, M. Cao, J. Geng, N. Robins, P. Lam, and B. Buchler, Highly efficient optical quantum memory with long coherence time in cold atoms, Optica 3, 100 (2016).
https://doi.org/10.1364/OPTICA.3.000100
[68] P. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Yao, S. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. Twitchen, J. Cirac, and M. Lukin, Room-Temperature Quantum Bit Memory Exceeding One Second, Sci Rep. 336, 6086 1283 (2012).
https://doi.org/10.1126/science.1220513
[69] M. Abobeih, J. Cramer, M. Bakker, N. Kalb, M. Markham, D. Twitchen, and T. Taminiau, One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment, Nat. Comm. 9, 2552 (2018).
https://doi.org/10.1038/s41467-018-04916-z
[70] C. Bradley, J. Randall, M. Abobeih, R. Berrevoets, M. Degen, M. Bakker, M. Markham, D. Twitchen, T. Taminiau, A Ten-Qubit Solid-State Spin Register with Quantum Memory up to One Minute, Phys. Rev. X 9, 031045 (2019).
https://doi.org/10.1103/PhysRevX.9.031045
[71] Y. Wang, M. Um, J. Zhang, S. An, M. Lyu, J. Zhang, L. Duan, D. Yum, and K. Kim, Single-qubit quantum memory exceeding ten-minute coherence time, Nat. Photonics 11, 646 (2017).
https://doi.org/10.1038/s41566-017-0007-1
[72] M. Körber, O. Morin, S. Langenfeld, A. Neuzner, S. Ritter, and G. Rempe, Decoherence-protected memory for a single-photon qubit, Nat. Photonics 12, 18 (2018).
https://doi.org/10.1038/s41566-017-0050-y
[73] K. Brown, K. Dani, D. Stamper-Kurn, and K. Whaley, Deterministic optical Fock-state generation, Phys. Rev. A 67, 043818 (2003).
https://doi.org/10.1103/PhysRevA.67.043818
[74] E. Waks, E. Diamanti, and Y. Yamamoto, Generation of photon number states, New J. Phys. 8, 4 (2006).
https://doi.org/10.1088/1367-2630/8/1/004
[75] J. Tiedau, T. Bartley, G. Harder, A. Lita, S. Nam, T. Gerrits, and C. Silberhorn, On the scalability of parametric down-conversion for generating higher-order Fock states, Phys. Rev. A 100, 041802(R) (2019).
https://doi.org/10.1103/PhysRevA.100.041802
[76] N. Brown, M. Newman, and K. Brown, Handling Leakage with Subsystem Codes, New J. Phys. 21 073055 (2019).
https://doi.org/10.1088/1367-2630/ab3372
[77] P. Shor, Scheme for reducing decoherence in quantum computer memory, Phys. Rev. A 52, R2493(R) (1995).
https://doi.org/10.1103/PhysRevA.52.R2493
[78] D. Bacon, Operator quantum error-correcting subsystems for self-correcting quantum memories, Phys. Rev. A 73, 012340 (2006).
https://doi.org/10.1103/PhysRevA.73.012340
[79] P. Aliferis and A. Cross, Subsystem Fault Tolerance with the Bacon-Shor Code, Phys. Rev. Lett. 98, 220502 (2007).
https://doi.org/10.1103/PhysRevLett.98.220502
[80] S. Bravyi, G. Duclos-Cianci, D. Poulin, and M. Suchara, Subsystem surface codes with three-qubit check operators, Quant. Inf. Comp. 13, 963 (2013).
https://doi.org/10.26421/QIC13.11-12
[81] M. Li, D. Miller, M. Newman, Y. Wu, and K. Brown, 2D Compass Codes, Phys. Rev. X 9, 021041 (2019).
https://doi.org/10.1103/PhysRevX.9.021041
[82] T. Yoder, Optimal quantum subsystem codes in 2-dimensions, Phys. Rev. A 99, 052333 (2019).
https://doi.org/10.1103/PhysRevA.99.052333
[83] D. Gottesman, A. Kitaev, and J. Preskill, Encoding a qubit in an oscillator, Phys. Rev. A 64, 012310 (2001).
https://doi.org/10.1103/PhysRevA.64.012310
[84] C. Vuillot, H. Asasi, Y. Wang, L. Pryadko, and B. Terhal, Quantum error correction with the toric Gottesman-Kitaev-Preskill code, Phys. Rev. A 99, 032344 (2019).
https://doi.org/10.1103/PhysRevA.99.032344
Cited by
[1] Kexin Liang, Geng Chai, Zhengwen Cao, Yang Yuan, Xinlei Chen, Yuan Lu, and Jinye Peng, "Bayesian Parameter Estimation for Continuous-Variable Quantum Key Distribution", Physical Review Applied 18 5, 054077 (2022).
[2] S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. L. Pereira, M. Razavi, J. Shamsul Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden, "Advances in quantum cryptography", Advances in Optics and Photonics 12 4, 1012 (2020).
[3] Daniel Miller, "Small quantum networks in the qudit stabilizer formalism", arXiv:1910.09551, (2019).
[4] Daniele Cozzolino, Beatrice Da Lio, Davide Bacco, and Leif Katsuo Oxenløwe, "High-dimensional quantum communication: benefits, progress, and future challenges", arXiv:1910.07220, (2019).
The above citations are from Crossref's cited-by service (last updated successfully 2023-12-07 03:52:52) and SAO/NASA ADS (last updated successfully 2023-12-07 03:52:54). The list may be incomplete as not all publishers provide suitable and complete citation data.
This Paper is published in Quantum under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Copyright remains with the original copyright holders such as the authors or their institutions.