An initialization strategy for addressing barren plateaus in parametrized quantum circuits

Edward Grant1, Leonard Wossnig1, Mateusz Ostaszewski2, and Marcello Benedetti3

1Rahko Limited & Department of Computer Science, University College London
2Institute of Theoretical and Applied Informatics, Polish Academy of Sciences
3Cambridge Quantum Computing Limited & Department of Computer Science, University College London

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Parametrized quantum circuits initialized with random initial parameter values are characterized by barren plateaus where the gradient becomes exponentially small in the number of qubits. In this technical note we theoretically motivate and empirically validate an initialization strategy which can resolve the barren plateau problem for practical applications. The technique involves randomly selecting some of the initial parameter values, then choosing the remaining values so that the circuit is a sequence of shallow blocks that each evaluates to the identity. This initialization limits the effective depth of the circuits used to calculate the first parameter update so that they cannot be stuck in a barren plateau at the start of training. In turn, this makes some of the most compact ansätze usable in practice, which was not possible before even for rather basic problems. We show empirically that variational quantum eigensolvers and quantum neural networks initialized using this strategy can be trained using a gradient based method.

► BibTeX data

► References

[1] Jarrod R McClean, Sergio Boixo, Vadim N Smelyanskiy, Ryan Babbush, and Hartmut Neven. Barren plateaus in quantum neural network training landscapes. Nature communications, 9(1):4812, 2018. https:/​/​​10.1038/​s41467-018-07090-4.

[2] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J Love, Alán Aspuru-Guzik, and Jeremy L O’brien. A variational eigenvalue solver on a photonic quantum processor. Nature communications, 5:4213, 2014. https:/​/​​10.1038/​ncomms5213.

[3] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M Chow, and Jay M Gambetta. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 549(7671):242, 2017. https:/​/​​10.1038/​nature23879.

[4] Maria Schuld, Alex Bocharov, Krysta Svore, and Nathan Wiebe. Circuit-centric quantum classifiers. arXiv preprint arXiv:1804.00633, 2018.

[5] Edward Grant, Marcello Benedetti, Shuxiang Cao, Andrew Hallam, Joshua Lockhart, Vid Stojevic, Andrew G Green, and Simone Severini. Hierarchical quantum classifiers. npj Quantum Information, 4(1):65, 2018. https:/​/​​10.1038/​s41534-018-0116-9.

[6] Hongxiang Chen, Leonard Wossnig, Simone Severini, Hartmut Neven, and Masoud Mohseni. Universal discriminative quantum neural networks. arXiv preprint arXiv:1805.08654, 2018.

[7] Dominic Verdon. Unitary 2-designs, variational quantum eigensolvers, and barren plateaus. https:/​/​​files/​2019/​02/​barrenplateausblogpost-1xqcazi.pdf, 2019. [Online; accessed 13-March-2019].

[8] Zbigniew Puchała and Jaroslaw Adam Miszczak. Symbolic integration with respect to the haar measure on the unitary groups. Bulletin of the Polish Academy of Sciences Technical Sciences, 65(1):21–27, 2017. https:/​/​​10.1515/​bpasts-2017-0003.

[9] Andris Ambainis and Joseph Emerson. Quantum t-designs: t-wise independence in the quantum world. In Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07), pages 129–140. IEEE, 2007. https:/​/​​10.1109/​CCC.2007.26.

[10] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

Cited by

[1] Andrew Arrasmith, M. Cerezo, Piotr Czarnik, Lukasz Cincio, and Patrick J. Coles, "Effect of barren plateaus on gradient-free optimization", Quantum 5, 558 (2021).

[2] Sam McArdle, Suguru Endo, Alán Aspuru-Guzik, Simon C. Benjamin, and Xiao Yuan, "Quantum computational chemistry", Reviews of Modern Physics 92 1, 015003 (2020).

[3] M. Cerezo, Akira Sone, Tyler Volkoff, Lukasz Cincio, and Patrick J. Coles, "Cost function dependent barren plateaus in shallow parametrized quantum circuits", Nature Communications 12, 1791 (2021).

[4] Marcello Benedetti, Erika Lloyd, Stefan Sack, and Mattia Fiorentini, "Parameterized quantum circuits as machine learning models", Quantum Science and Technology 4 4, 043001 (2019).

[5] Samson Wang, Enrico Fontana, M. Cerezo, Kunal Sharma, Akira Sone, Lukasz Cincio, and Patrick J. Coles, "Noise-induced barren plateaus in variational quantum algorithms", Nature Communications 12, 6961 (2021).

[6] Hsin-Yuan Huang, Michael Broughton, Masoud Mohseni, Ryan Babbush, Sergio Boixo, Hartmut Neven, and Jarrod R. McClean, "Power of data in quantum machine learning", Nature Communications 12, 2631 (2021).

[7] Zoë Holmes, Kunal Sharma, M. Cerezo, and Patrick J. Coles, "Connecting Ansatz Expressibility to Gradient Magnitudes and Barren Plateaus", PRX Quantum 3 1, 010313 (2022).

[8] Guillaume Verdon, Michael Broughton, Jarrod R. McClean, Kevin J. Sung, Ryan Babbush, Zhang Jiang, Hartmut Neven, and Masoud Mohseni, "Learning to learn with quantum neural networks via classical neural networks", arXiv:1907.05415, (2019).

[9] Arthur G. Rattew, Shaohan Hu, Marco Pistoia, Richard Chen, and Steve Wood, "A Domain-agnostic, Noise-resistant, Hardware-efficient Evolutionary Variational Quantum Eigensolver", arXiv:1910.09694, (2019).

[10] Carlos Ortiz Marrero, Mária Kieferová, and Nathan Wiebe, "Entanglement-Induced Barren Plateaus", PRX Quantum 2 4, 040316 (2021).

[11] Ryan LaRose and Brian Coyle, "Robust data encodings for quantum classifiers", Physical Review A 102 3, 032420 (2020).

[12] Arthur Pesah, M. Cerezo, Samson Wang, Tyler Volkoff, Andrew T. Sornborger, and Patrick J. Coles, "Absence of Barren Plateaus in Quantum Convolutional Neural Networks", Physical Review X 11 4, 041011 (2021).

[13] Valentin Heyraud, Zejian Li, Kaelan Donatella, Alexandre Le Boité, and Cristiano Ciuti, "Efficient Estimation of Trainability for Variational Quantum Circuits", PRX Quantum 4 4, 040335 (2023).

[14] Tyler Volkoff and Patrick J. Coles, "Large gradients via correlation in random parameterized quantum circuits", Quantum Science and Technology 6 2, 025008 (2021).

[15] Sam McArdle, Suguru Endo, Alan Aspuru-Guzik, Simon Benjamin, and Xiao Yuan, "Quantum computational chemistry", arXiv:1808.10402, (2018).

[16] Alexey Melnikov, Mohammad Kordzanganeh, Alexander Alodjants, and Ray-Kuang Lee, "Quantum machine learning: from physics to software engineering", Advances in Physics X 8 1, 2165452 (2023).

[17] Taylor L. Patti, Khadijeh Najafi, Xun Gao, and Susanne F. Yelin, "Entanglement devised barren plateau mitigation", Physical Review Research 3 3, 033090 (2021).

[18] Dmitry A. Fedorov, Bo Peng, Niranjan Govind, and Yuri Alexeev, "VQE method: a short survey and recent developments", Materials Theory 6 1, 2 (2022).

[19] Martin Larocca, Piotr Czarnik, Kunal Sharma, Gopikrishnan Muraleedharan, Patrick J. Coles, and M. Cerezo, "Diagnosing Barren Plateaus with Tools from Quantum Optimal Control", Quantum 6, 824 (2022).

[20] A. V. Uvarov and J. D. Biamonte, "On barren plateaus and cost function locality in variational quantum algorithms", Journal of Physics A Mathematical General 54 24, 245301 (2021).

[21] M. Cerezo and Patrick J. Coles, "Higher order derivatives of quantum neural networks with barren plateaus", Quantum Science and Technology 6 3, 035006 (2021).

[22] Martín Larocca, Frédéric Sauvage, Faris M. Sbahi, Guillaume Verdon, Patrick J. Coles, and M. Cerezo, "Group-Invariant Quantum Machine Learning", PRX Quantum 3 3, 030341 (2022).

[23] Joe Gibbs, Kaitlin Gili, Zoë Holmes, Benjamin Commeau, Andrew Arrasmith, Lukasz Cincio, Patrick J. Coles, and Andrew Sornborger, "Long-time simulations for fixed input states on quantum hardware", npj Quantum Information 8, 135 (2022).

[24] Enrique Cervero Martín, Kirill Plekhanov, and Michael Lubasch, "Barren plateaus in quantum tensor network optimization", Quantum 7, 974 (2023).

[25] Jonathan Wei Zhong Lau, Kian Hwee Lim, Harshank Shrotriya, and Leong Chuan Kwek, "NISQ computing: where are we and where do we go?", Association of Asia Pacific Physical Societies Bulletin 32 1, 27 (2022).

[26] Stefan H. Sack, Raimel A. Medina, Alexios A. Michailidis, Richard Kueng, and Maksym Serbyn, "Avoiding Barren Plateaus Using Classical Shadows", PRX Quantum 3 2, 020365 (2022).

[27] Shiro Tamiya and Hayata Yamasaki, "Stochastic gradient line Bayesian optimization for efficient noise-robust optimization of parameterized quantum circuits", npj Quantum Information 8, 90 (2022).

[28] Andrew Arrasmith, Zoë Holmes, M. Cerezo, and Patrick J. Coles, "Equivalence of quantum barren plateaus to cost concentration and narrow gorges", Quantum Science and Technology 7 4, 045015 (2022).

[29] Yong-Xin Yao, Niladri Gomes, Feng Zhang, Cai-Zhuang Wang, Kai-Ming Ho, Thomas Iadecola, and Peter P. Orth, "Adaptive Variational Quantum Dynamics Simulations", PRX Quantum 2 3, 030307 (2021).

[30] Shuo Liu, Shi-Xin Zhang, Shao-Kai Jian, and Hong Yao, "Training variational quantum algorithms with random gate activation", Physical Review Research 5 3, L032040 (2023).

[31] Mateusz Ostaszewski, Edward Grant, and Marcello Benedetti, "Structure optimization for parameterized quantum circuits", Quantum 5, 391 (2021).

[32] Stefano Barison, Filippo Vicentini, and Giuseppe Carleo, "An efficient quantum algorithm for the time evolution of parameterized circuits", Quantum 5, 512 (2021).

[33] Carlos Bravo-Prieto, Diego García-Martín, and José I. Latorre, "Quantum singular value decomposer", Physical Review A 101 6, 062310 (2020).

[34] Zidu Liu, Li-Wei Yu, L. -M. Duan, and Dong-Ling Deng, "Presence and Absence of Barren Plateaus in Tensor-Network Based Machine Learning", Physical Review Letters 129 27, 270501 (2022).

[35] Jiahao Yao, Lin Lin, and Marin Bukov, "Reinforcement Learning for Many-Body Ground-State Preparation Inspired by Counterdiabatic Driving", Physical Review X 11 3, 031070 (2021).

[36] Gian-Luca R. Anselmetti, David Wierichs, Christian Gogolin, and Robert M. Parrish, "Local, expressive, quantum-number-preserving VQE ansätze for fermionic systems", New Journal of Physics 23 11, 113010 (2021).

[37] Tobias Haug, Kishor Bharti, and M. S. Kim, "Capacity and Quantum Geometry of Parametrized Quantum Circuits", PRX Quantum 2 4, 040309 (2021).

[38] Barnaby van Straaten and Bálint Koczor, "Measurement Cost of Metric-Aware Variational Quantum Algorithms", PRX Quantum 2 3, 030324 (2021).

[39] N. N. Hegade, P. Chandarana, K. Paul, Xi Chen, F. Albarrán-Arriagada, and E. Solano, "Portfolio optimization with digitized counterdiabatic quantum algorithms", Physical Review Research 4 4, 043204 (2022).

[40] Jacques Carolan, Masoud Mohseni, Jonathan P. Olson, Mihika Prabhu, Changchen Chen, Darius Bunandar, Murphy Yuezhen Niu, Nicholas C. Harris, Franco N. C. Wong, Michael Hochberg, Seth Lloyd, and Dirk Englund, "Variational quantum unsampling on a quantum photonic processor", Nature Physics 16 3, 322 (2020).

[41] Iordanis Kerenidis and Alessandro Luongo, "Classification of the MNIST data set with quantum slow feature analysis", Physical Review A 101 6, 062327 (2020).

[42] Kouhei Nakaji and Naoki Yamamoto, "Expressibility of the alternating layered ansatz for quantum computation", Quantum 5, 434 (2021).

[43] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, Shan You, and Dacheng Tao, "Learnability of Quantum Neural Networks", PRX Quantum 2 4, 040337 (2021).

[44] Xia Liu, Geng Liu, Jiaxin Huang, Hao-Kai Zhang, and Xin Wang, "Mitigating barren plateaus of variational quantum eigensolvers", arXiv:2205.13539, (2022).

[45] Johannes Bausch, "Recurrent Quantum Neural Networks", arXiv:2006.14619, (2020).

[46] Patrick Huembeli and Alexandre Dauphin, "Characterizing the loss landscape of variational quantum circuits", Quantum Science and Technology 6 2, 025011 (2021).

[47] Xin Wang, Zhixin Song, and Youle Wang, "Variational Quantum Singular Value Decomposition", Quantum 5, 483 (2021).

[48] Sukin Sim, Jonathan Romero, Jérôme F. Gonthier, and Alexander A. Kunitsa, "Adaptive pruning-based optimization of parameterized quantum circuits", Quantum Science and Technology 6 2, 025019 (2021).

[49] Antonio A. Mele, Glen B. Mbeng, Giuseppe E. Santoro, Mario Collura, and Pietro Torta, "Avoiding barren plateaus via transferability of smooth solutions in a Hamiltonian variational ansatz", Physical Review A 106 6, L060401 (2022).

[50] James Dborin, Fergus Barratt, Vinul Wimalaweera, Lewis Wright, and Andrew G. Green, "Matrix product state pre-training for quantum machine learning", Quantum Science and Technology 7 3, 035014 (2022).

[51] Chen Zhao and Xiao-Shan Gao, "Analyzing the barren plateau phenomenon in training quantum neural networks with the ZX-calculus", Quantum 5, 466 (2021).

[52] Reza Haghshenas, Johnnie Gray, Andrew C. Potter, and Garnet Kin-Lic Chan, "Variational Power of Quantum Circuit Tensor Networks", Physical Review X 12 1, 011047 (2022).

[53] Oriel Kiss, Michele Grossi, Pavel Lougovski, Federico Sanchez, Sofia Vallecorsa, and Thomas Papenbrock, "Quantum computing of the <SUP>6</SUP>Li nucleus via ordered unitary coupled clusters", Physical Review C 106 3, 034325 (2022).

[54] Tatiana A. Bespalova and Oleksandr Kyriienko, "Hamiltonian Operator Approximation for Energy Measurement and Ground-State Preparation", PRX Quantum 2 3, 030318 (2021).

[55] George S. Barron, Bryan T. Gard, Orien J. Altman, Nicholas J. Mayhall, Edwin Barnes, and Sophia E. Economou, "Preserving Symmetries for Variational Quantum Eigensolvers in the Presence of Noise", Physical Review Applied 16 3, 034003 (2021).

[56] Manuel S. Rudolph, Jacob Miller, Danial Motlagh, Jing Chen, Atithi Acharya, and Alejandro Perdomo-Ortiz, "Synergistic pretraining of parametrized quantum circuits via tensor networks", Nature Communications 14, 8367 (2023).

[57] Dylan G. Stone and Carlo Bradac, "Machine and quantum learning for diamond-based quantum applications", Materials for Quantum Technology 3 1, 012001 (2023).

[58] M. Cerezo, Kunal Sharma, Andrew Arrasmith, and Patrick J. Coles, "Variational quantum state eigensolver", npj Quantum Information 8, 113 (2022).

[59] P. Chandarana, N. N. Hegade, K. Paul, F. Albarrán-Arriagada, E. Solano, A. del Campo, and Xi Chen, "Digitized-counterdiabatic quantum approximate optimization algorithm", Physical Review Research 4 1, 013141 (2022).

[60] Alejandro Sopena, Max Hunter Gordon, Diego García-Martín, Germán Sierra, and Esperanza López, "Algebraic Bethe Circuits", Quantum 6, 796 (2022).

[61] Lorenzo Leone, Salvatore F. E. Oliviero, Stefano Piemontese, Sarah True, and Alioscia Hamma, "Retrieving information from a black hole using quantum machine learning", Physical Review A 106 6, 062434 (2022).

[62] Yuxuan Du, Yibo Yang, Dacheng Tao, and Min-Hsiu Hsieh, "Problem-Dependent Power of Quantum Neural Networks on Multiclass Classification", Physical Review Letters 131 14, 140601 (2023).

[63] Lucas Friedrich and Jonas Maziero, "Evolution strategies: application in hybrid quantum-classical neural networks", Quantum Information Processing 22 3, 132 (2023).

[64] Sukin Sim, Peter D. Johnson, and Alan Aspuru-Guzik, "Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms", arXiv:1905.10876, (2019).

[65] Yuxuan Du, Tao Huang, Shan You, Min-Hsiu Hsieh, and Dacheng Tao, "Quantum circuit architecture search for variational quantum algorithms", npj Quantum Information 8, 62 (2022).

[66] Joonho Kim, Jaedeok Kim, and Dario Rosa, "Universal effectiveness of high-depth circuits in variational eigenproblems", Physical Review Research 3 2, 023203 (2021).

[67] Daniel Herr, Benjamin Obert, and Matthias Rosenkranz, "Anomaly detection with variational quantum generative adversarial networks", Quantum Science and Technology 6 4, 045004 (2021).

[68] Brian Coyle, Maxwell Henderson, Justin Chan Jin Le, Niraj Kumar, Marco Paini, and Elham Kashefi, "Quantum versus classical generative modelling in finance", Quantum Science and Technology 6 2, 024013 (2021).

[69] Lucas Slattery, Benjamin Villalonga, and Bryan K. Clark, "Unitary block optimization for variational quantum algorithms", Physical Review Research 4 2, 023072 (2022).

[70] Max Wilson, Sam Stromswold, Filip Wudarski, Stuart Hadfield, Norm M. Tubman, and Eleanor Rieffel, "Optimizing quantum heuristics with meta-learning", arXiv:1908.03185, (2019).

[71] Kun Wang, Zhixin Song, Xuanqiang Zhao, Zihe Wang, and Xin Wang, "Detecting and quantifying entanglement on near-term quantum devices", npj Quantum Information 8, 52 (2022).

[72] Francesco Tacchino, Panagiotis Barkoutsos, Chiara Macchiavello, Ivano Tavernelli, Dario Gerace, and Daniele Bajoni, "Quantum implementation of an artificial feed-forward neural network", Quantum Science and Technology 5 4, 044010 (2020).

[73] Kouhei Nakaji, Shumpei Uno, Yohichi Suzuki, Rudy Raymond, Tamiya Onodera, Tomoki Tanaka, Hiroyuki Tezuka, Naoki Mitsuda, and Naoki Yamamoto, "Approximate amplitude encoding in shallow parameterized quantum circuits and its application to financial market indicators", Physical Review Research 4 2, 023136 (2022).

[74] Brian Coyle, Mina Doosti, Elham Kashefi, and Niraj Kumar, "Progress toward practical quantum cryptanalysis by variational quantum cloning", Physical Review A 105 4, 042604 (2022).

[75] Hongxiang Chen, Max Nusspickel, Jules Tilly, and George H. Booth, "Variational quantum eigensolver for dynamic correlation functions", Physical Review A 104 3, 032405 (2021).

[76] Zhide Lu, Pei-Xin Shen, and Dong-Ling Deng, "Markovian Quantum Neuroevolution for Machine Learning", Physical Review Applied 16 4, 044039 (2021).

[77] Mo Kordzanganeh, Pavel Sekatski, Leonid Fedichkin, and Alexey Melnikov, "An exponentially-growing family of universal quantum circuits", Machine Learning: Science and Technology 4 3, 035036 (2023).

[78] Riccardo Porotti, Vittorio Peano, and Florian Marquardt, "Gradient-Ascent Pulse Engineering with Feedback", PRX Quantum 4 3, 030305 (2023).

[79] Ranyiliu Chen, Zhixin Song, Xuanqiang Zhao, and Xin Wang, "Variational quantum algorithms for trace distance and fidelity estimation", Quantum Science and Technology 7 1, 015019 (2022).

[80] Pranav Chandarana, Pablo Suárez Vieites, Narendra N. Hegade, Enrique Solano, Yue Ban, and Xi Chen, "Meta-learning digitized-counterdiabatic quantum optimization", Quantum Science and Technology 8 4, 045007 (2023).

[81] Maxwell T West, Martin Sevior, and Muhammad Usman, "Reflection equivariant quantum neural networks for enhanced image classification", Machine Learning: Science and Technology 4 3, 035027 (2023).

[82] Tyson Jones and Simon C. Benjamin, "Robust quantum compilation and circuit optimisation via energy minimisation", Quantum 6, 628 (2022).

[83] Wenyang Qian, Robert Basili, Soham Pal, Glenn Luecke, and James P. Vary, "Solving hadron structures using the basis light-front quantization approach on quantum computers", Physical Review Research 4 4, 043193 (2022).

[84] Sergio Altares-López, Angela Ribeiro, and Juan José García-Ripoll, "Automatic design of quantum feature maps", Quantum Science and Technology 6 4, 045015 (2021).

[85] Christa Zoufal, Ryan V. Mishmash, Nitin Sharma, Niraj Kumar, Aashish Sheshadri, Amol Deshmukh, Noelle Ibrahim, Julien Gacon, and Stefan Woerner, "Variational quantum algorithm for unconstrained black box binary optimization: Application to feature selection", Quantum 7, 909 (2023).

[86] Xu-Dan Xie, Xingyu Guo, Hongxi Xing, Zheng-Yuan Xue, Dan-Bo Zhang, Shi-Liang Zhu, and QuNu Collaboration, "Variational thermal quantum simulation of the lattice Schwinger model", Physical Review D 106 5, 054509 (2022).

[87] Shiro Tamiya, Sho Koh, and Yuya O. Nakagawa, "Calculating nonadiabatic couplings and Berry's phase by variational quantum eigensolvers", Physical Review Research 3 2, 023244 (2021).

[88] Chufan Lyu, Xusheng Xu, Man-Hong Yung, and Abolfazl Bayat, "Symmetry enhanced variational quantum spin eigensolver", Quantum 7, 899 (2023).

[89] Hiroyuki Tezuka, Kouhei Nakaji, Takahiko Satoh, and Naoki Yamamoto, "Grover search revisited: Application to image pattern matching", Physical Review A 105 3, 032440 (2022).

[90] Hao-Kai Zhang, Chengkai Zhu, Geng Liu, and Xin Wang, "Fundamental limitations on optimization in variational quantum algorithms", arXiv:2205.05056, (2022).

[91] Jinfeng Zeng, Chenfeng Cao, Chao Zhang, Pengxiang Xu, and Bei Zeng, "A variational quantum algorithm for Hamiltonian diagonalization", Quantum Science and Technology 6 4, 045009 (2021).

[92] Manpreet Singh Jattana, Fengping Jin, Hans De Raedt, and Kristel Michielsen, "Improved Variational Quantum Eigensolver Via Quasidynamical Evolution", Physical Review Applied 19 2, 024047 (2023).

[93] Bobak Toussi Kiani, Giacomo De Palma, Milad Marvian, Zi-Wen Liu, and Seth Lloyd, "Learning quantum data with the quantum earth mover's distance", Quantum Science and Technology 7 4, 045002 (2022).

[94] B. Jaderberg, L. W. Anderson, W. Xie, S. Albanie, M. Kiffner, and D. Jaksch, "Quantum self-supervised learning", Quantum Science and Technology 7 3, 035005 (2022).

[95] Stefano Barison, Filippo Vicentini, Ignacio Cirac, and Giuseppe Carleo, "Variational dynamics as a ground-state problem on a quantum computer", Physical Review Research 4 4, 043161 (2022).

[96] Yusen Wu, Zigeng Huang, Jinzhao Sun, Xiao Yuan, Jingbo B. Wang, and Dingshun Lv, "Orbital expansion variational quantum eigensolver", Quantum Science and Technology 8 4, 045030 (2023).

[97] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, Yong-Jian Han, and Guo-Ping Guo, "Mitigating barren plateaus with transfer-learning-inspired parameter initializations", New Journal of Physics 25 1, 013039 (2023).

[98] Jacob L. Cybulski and Thanh Nguyen, "Impact of barren plateaus countermeasures on the quantum neural network capacity to learn", Quantum Information Processing 22 12, 442 (2023).

[99] Tyler Volkoff, Zoë Holmes, and Andrew Sornborger, "Universal Compiling and (No-)Free-Lunch Theorems for Continuous-Variable Quantum Learning", PRX Quantum 2 4, 040327 (2021).

[100] Zidu Liu, Pei-Xin Shen, Weikang Li, L. -M. Duan, and Dong-Ling Deng, "Quantum capsule networks", Quantum Science and Technology 8 1, 015016 (2023).

[101] G. Xu, Y. B. Guo, X. Li, K. Wang, Z. Fan, Z. S. Zhou, H. J. Liao, and T. Xiang, "Concurrent quantum eigensolver for multiple low-energy eigenstates", Physical Review A 107 5, 052423 (2023).

[102] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo, "Variational Quantum Algorithms for the Steady States of Open Quantum Systems", Chinese Physics Letters 38 8, 080301 (2021).

[103] Michael R. Geller, Zoë Holmes, Patrick J. Coles, and Andrew Sornborger, "Experimental quantum learning of a spectral decomposition", Physical Review Research 3 3, 033200 (2021).

[104] Wenjie Liu, Jiaojiao Zhao, and Qingshan Wu, "A hybrid quantum-classical generative adversarial networks algorithm based on inherited layerwise learning with circle-connectivity circuit", Quantum Information Processing 21 11, 372 (2022).

[105] Marco Maronese, Claudio Destri, and Enrico Prati, "Quantum activation functions for quantum neural networks", Quantum Information Processing 21 4, 128 (2022).

[106] Yusen Wu and Jingbo B. Wang, "Estimating Gibbs partition function with quantum Clifford sampling", Quantum Science and Technology 7 2, 025006 (2022).

[107] Cenk Tüysüz, Kristiane Novotny, Carla Rieger, Federico Carminati, Bilge Demirköz, Daniel Dobos, Fabio Fracas, Karolos Potamianos, Sofia Vallecorsa, and Jean-Roch Vlimant, "Performance of Particle Tracking Using a Quantum Graph Neural Network", arXiv:2012.01379, (2020).

[108] Roy J. Garcia, Chen Zhao, Kaifeng Bu, and Arthur Jaffe, "Barren plateaus from learning scramblers with local cost functions", Journal of High Energy Physics 2023 1, 90 (2023).

[109] Kosuke Mitarai, Yasunari Suzuki, Wataru Mizukami, Yuya O. Nakagawa, and Keisuke Fujii, "Quadratic Clifford expansion for efficient benchmarking and initialization of variational quantum algorithms", Physical Review Research 4 3, 033012 (2022).

[110] Chiara Leadbeater, Louis Sharrock, Brian Coyle, and Marcello Benedetti, "F-Divergences and Cost Function Locality in Generative Modelling with Quantum Circuits", Entropy 23 10, 1281 (2021).

[111] Ryan LaRose, Arkin Tikku, Étude O'Neel-Judy, Lukasz Cincio, and Patrick J. Coles, "Variational Quantum State Diagonalization", arXiv:1810.10506, (2018).

[112] Michael L. Wall, Paraj Titum, Gregory Quiroz, Michael Foss-Feig, and Kaden R. A. Hazzard, "Tensor-network discriminator architecture for classification of quantum data on quantum computers", Physical Review A 105 6, 062439 (2022).

[113] Tomislav Piskor, Jan-Michael Reiner, Sebastian Zanker, Nicolas Vogt, Michael Marthaler, Frank K. Wilhelm, and Florian G. Eich, "Using gradient-based algorithms to determine ground-state energies on a quantum computer", Physical Review A 105 6, 062415 (2022).

[114] Alexey Uvarov, "Variational quantum algorithms for local Hamiltonian problems", arXiv:2208.11220, (2022).

[115] Lucas Friedrich and Jonas Maziero, "Quantum neural network cost function concentration dependency on the parametrization expressivity", Scientific Reports 13, 9978 (2023).

[116] Lewis W. Anderson, Martin Kiffner, Panagiotis Kl. Barkoutsos, Ivano Tavernelli, Jason Crain, and Dieter Jaksch, "Coarse-grained intermolecular interactions on quantum processors", Physical Review A 105 6, 062409 (2022).

[117] Yu-Cheng Chen, Yu-Qin Chen, Alice Hu, Chang-Yu Hsieh, and Shengyu Zhang, "Quantum imaginary-time control for accelerating the ground-state preparation", Physical Review Research 5 2, 023087 (2023).

[118] Laura Gentini, Alessandro Cuccoli, and Leonardo Banchi, "Variational Adiabatic Gauge Transformation on Real Quantum Hardware for Effective Low-Energy Hamiltonians and Accurate Diagonalization", Physical Review Applied 18 3, 034025 (2022).

[119] Ruhan Wang, Philip Richerme, and Fan Chen, "A hybrid quantum-classical neural network for learning transferable visual representation", Quantum Science and Technology 8 4, 045021 (2023).

[120] Stefano Markidis, "Programming Quantum Neural Networks on NISQ Systems: An Overview of Technologies and Methodologies", Entropy 25 4, 694 (2023).

[121] Ju-Young Ryu, Eyuel Elala, and June-Koo Kevin Rhee, "Quantum Graph Neural Network Models for Materials Search", Materials 16 12, 4300 (2023).

[122] David A. Herrera-Martí, "Policy Gradient Approach to Compilation of Variational Quantum Circuits", Quantum 6, 797 (2022).

[123] Mushrafi Munim Sushmit and Islam Mohammed Mahbubul, "Forecasting solar irradiance with hybrid classical-quantum models: A comprehensive evaluation of deep learning and quantum-enhanced techniques", Energy Conversion and Management 294, 117555 (2023).

[124] Philip Easom-Mccaldin, Ahmed Bouridane, Ammar Belatreche, and Richard Jiang, "On Depth, Robustness and Performance Using the Data Re-Uploading Single-Qubit Classifier", IEEE Access 9, 65127 (2021).

[125] Carlos Bravo-Prieto, Ryan LaRose, M. Cerezo, Yigit Subasi, Lukasz Cincio, and Patrick J. Coles, "Variational Quantum Linear Solver", Quantum 7, 1188 (2023).

[126] Panagiotis G. Anastasiou, Yanzhu Chen, Nicholas J. Mayhall, Edwin Barnes, and Sophia E. Economou, "TETRIS-ADAPT-VQE: An adaptive algorithm that yields shallower, denser circuit Ansätze", Physical Review Research 6 1, 013254 (2024).

[127] Louis Schatzki, Martín Larocca, Quynh T. Nguyen, Frédéric Sauvage, and M. Cerezo, "Theoretical guarantees for permutation-equivariant quantum neural networks", npj Quantum Information 10, 12 (2024).

[128] Kouhei Nakaji, Hiroyuki Tezuka, and Naoki Yamamoto, "Quantum-classical hybrid neural networks in the neural tangent kernel regime", Quantum Science and Technology 9 1, 015022 (2024).

[129] Benjamin Y. L. Tan, Beng Yee Gan, Daniel Leykam, and Dimitris G. Angelakis, "Landscape approximation of low-energy solutions to binary optimization problems", Physical Review A 109 1, 012433 (2024).

[130] Shu Kanno, Hajime Nakamura, Takao Kobayashi, Shigeki Gocho, Miho Hatanaka, Naoki Yamamoto, and Qi Gao, "Quantum computing quantum Monte Carlo with hybrid tensor network for electronic structure calculations", arXiv:2303.18095, (2023).

[131] Xiaosi Xu and Ying Li, "Quantum-assisted Monte Carlo algorithms for fermions", Quantum 7, 1072 (2023).

[132] Keerthi Kumaran, Manas Sajjan, Sangchul Oh, and Sabre Kais, "Random projection using random quantum circuits", Physical Review Research 6 1, 013010 (2024).

[133] Chae-Yeun Park and Nathan Killoran, "Hamiltonian variational ansatz without barren plateaus", Quantum 8, 1239 (2024).

[134] Stefano Mangini, "Variational quantum algorithms for machine learning: theory and applications", arXiv:2306.09984, (2023).

[135] Julien Gacon, Jannes Nys, Riccardo Rossi, Stefan Woerner, and Giuseppe Carleo, "Variational quantum time evolution without the quantum geometric tensor", Physical Review Research 6 1, 013143 (2024).

[136] Roeland Wiersema, Dylan Lewis, David Wierichs, Juan Carrasquilla, and Nathan Killoran, "Here comes the SU(N): multivariate quantum gates and gradients", Quantum 8, 1275 (2024).

[137] Julien Gacon, "Scalable Quantum Algorithms for Noisy Quantum Computers", arXiv:2403.00940, (2024).

[138] Weiyuan Gong, Dong Yuan, Weikang Li, and Dong-Ling Deng, "Enhancing quantum adversarial robustness by randomized encodings", Physical Review Research 6 2, 023020 (2024).

[139] Xinglan Zhang, Feng Zhang, Yankun Guo, and Fei Chen, "Variational quantum multidimensional scaling algorithm", Quantum Information Processing 23 3, 77 (2024).

[140] Albha O'Dwyer Boyle and Reza Nikandish, "A Hybrid Quantum-Classical Generative Adversarial Network for Near-Term Quantum Processors", arXiv:2307.03269, (2023).

[141] L. Zambrano, A. D. Muñoz-Moller, M. Muñoz, L. Pereira, and A. Delgado, "Avoiding barren plateaus in the variational determination of geometric entanglement", Quantum Science and Technology 9 2, 025016 (2024).

[142] Lucas Friedrich and Jonas Maziero, "Restricting to the chip architecture maintains the quantum neural network accuracy", Quantum Information Processing 23 4, 131 (2024).

[143] Roeland Wiersema, Cunlu Zhou, Juan Felipe Carrasquilla, and Yong Baek Kim, "Measurement-induced entanglement phase transitions in variational quantum circuits", SciPost Physics 14 6, 147 (2023).

[144] Sonny Rappaport, Gaurav Gyawali, Tiago Sereno, and Michael J. Lawler, "Measurement-induced landscape transitions in hybrid variational quantum circuits", arXiv:2312.09135, (2023).

[145] Marco Ballarin, Stefano Mangini, Simone Montangero, Chiara Macchiavello, and Riccardo Mengoni, "Entanglement entropy production in Quantum Neural Networks", Quantum 7, 1023 (2023).

[146] Noah L. Wach, Manuel S. Rudolph, Fred Jendrzejewski, and Sebastian Schmitt, "Data re-uploading with a single qudit", arXiv:2302.13932, (2023).

[147] Mingrui Jing, Geng Liu, Hongbin Ren, and Xin Wang, "Quantum sequential scattering model for quantum state learning", arXiv:2310.07797, (2023).

[148] Elias X. Huber, Benjamin Y. L. Tan, Paul R. Griffin, and Dimitris G. Angelakis, "Exponential Qubit Reduction in Optimization for Financial Transaction Settlement", arXiv:2307.07193, (2023).

[149] G. Paradezhenko, A. Pervishko, and D. Yudin, "Quantum-assisted Open-pit Optimization", Soviet Journal of Experimental and Theoretical Physics Letters (2024).

[150] Anqi Zhang, Chunhui Wu, and Shengmei Zhao, "Gray code based gradient-free optimization algorithm for parameterized quantum circuit", Chinese Physics B 33 2, 020311 (2024).

[151] Ryo Watanabe, Keisuke Fujii, and Hiroshi Ueda, "Variational quantum eigensolver with embedded entanglement using a tensor-network ansatz", Physical Review Research 6 2, 023009 (2024).

The above citations are from SAO/NASA ADS (last updated successfully 2024-04-15 05:22:14). The list may be incomplete as not all publishers provide suitable and complete citation data.

Could not fetch Crossref cited-by data during last attempt 2024-04-15 05:22:05: Encountered the unhandled forward link type postedcontent_cite while looking for citations to DOI 10.22331/q-2019-12-09-214.