Graded-index optical fiber emulator of an interacting three-atom system: illumination control of particle statistics and classical non-separability

M.A. Garcia-March1,2, N.L. Harshman3, H. da Silva4, T. Fogarty5, Th. Busch5, M. Lewenstein1,6, and A. Ferrando7

1ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona), Spain
2Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, E-46022 València, Spain
3Department of Physics, American University, 4000 Massachusetts Avenue NW, Washington, DC 20016, USA
4Universidade Federal de Itajubá, Av. BPS 1303, Itajubá, Minas Gerais 37500-903, Brazil
5Quantum Systems Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
6ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain
7Department d'Optica. Universitat de València, Dr. Moliner, 50, E-46100 Burjassot (València), Spain

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


We show that a system of three trapped ultracold and strongly interacting atoms in one-dimension can be emulated using an optical fiber with a graded-index profile and thin metallic slabs. While the wave-nature of single quantum particles leads to direct and well known analogies with classical optics, for interacting many-particle systems with unrestricted statistics such analoga are not straightforward. Here we study the symmetries present in the fiber eigenstates by using discrete group theory and show that, by spatially modulating the incident field, one can select the atomic statistics, i.e., emulate a system of three bosons, fermions or two bosons or fermions plus an additional distinguishable particle. We also show that the optical system is able to produce classical non-separability resembling that found in the analogous atomic system.

Two properties often considered essentially quantum are entanglement and indistinguishability. Understanding their interplay is necessary for fundamental descriptions of the nature of matter and for applications to quantum technologies. Delicate and precise experiments with ultracold atoms in optical traps probe how these seemingly quantum properties interplay in interacting few-body systems. However, we show that both entanglement and indistinguishability in an interacting three-particle system can be simulated by classical light propagating down a structured optical fiber.
The structured optical fiber we propose has a graded-index of refraction with a parabolic profile and is sectioned longitudinally by three thin metallic foils. Optical modes in the fiber obey dynamics in exact analogy to the Schrödinger equation for the relative motion of three particles with short-range interactions in a one-dimensional harmonic trap. We find expressions for the optical modes of this fiber, and equivalently the energy eigenstates for the three-particle system, and classify these solutions by symmetry. By controlling the orbital angular momentum of the input beam, modes with different symmetries can be excited, and these symmetries correspond to different types of indistinguishable or partially indistinguishable particles.
Optical fibers have been previously proposed as simulators for quantum systems and have been used to identify a classical analog to entanglement called classical non-separability. However, the structured optical fiber we propose can simulate entanglement among a broader range of degrees of freedom, and the analogy to the three-particle interacting system allows us to probe interaction, entanglement and indistinguishability in a quantum system with classical optics.

► BibTeX data

► References

[1] S. Haroche, Rev. Mod. Phys. 85, 1083 (2013), URL https:/​/​​10.1103/​RevModPhys.85.1083.

[2] D. J. Wineland, Rev. Mod. Phys. 85, 1103 (2013), URL https:/​/​​10.1103/​RevModPhys.85.1103.

[3] T. Sowiński and M. A. García-March, Rep. Prog. Phys. 82, 104401 (2019), URL https:/​/​​10.1088/​1361-6633/​ab3a80.

[4] G. Nienhuis and L. Allen, Phys. Rev. A 48, 656 (1993), URL https:/​/​​10.1103/​PhysRevA.48.656.

[5] S. Chávez-Cerda, J. R. Moya-Cessa, and H. M. Moya-Cessa, J. Opt. Soc. Am. B, JOSAB 24, 404 (2007), ISSN 1520-8540, URL https:/​/​​10.1364/​JOSAB.24.000404.

[6] S. Longhi, Laser & Photonics Reviews 3, 243 (2008), URL https:/​/​​10.1002/​lpor.200810055.

[7] R. Fedele and M. A. Man’ko, Eur. Phys. J. D 27, 263 (2003), ISSN 1434-6060, 1434-6079, URL https:/​/​​10.1140/​epjd/​e2003-00274-6.

[8] M. A. Man'ko, J. Phys.: Conf. Ser. 99, 012012 (2008), URL https:/​/​​10.1088/​1742-6596/​99/​1/​012012.

[9] D. Gloge and E. A. J. Marcatili, Bell System Technical Journal 52, 1563 (1973), URL https:/​/​​10.1002/​j.1538-7305.1973.tb02033.x.

[10] A. Ghatak and M. S. Sodha, Inhomogeneous Optical Waveguides (Optical Physics and Engineering) (Springer, New York, 1977), URL https:/​/​​10.1007/​978-1-4615-8762-0.

[11] A. W. Snyder and J. D. Love, Optical waveguide theory, vol. Science paperbacks ; 190 (Chapman and Hall, London ; New York, 1983), URL https:/​/​​10.1007/​978-1-4613-2813-1.

[12] S. Longhi, Opt. Lett. 28, 2363 (2003), URL https:/​/​​10.1364/​OL.28.002363.

[13] A. Mafi, Journal of Lightwave Technology 30, 2803 (2012), URL https:/​/​​10.1109/​JLT.2012.2208215.

[14] W. Renninger and F. Wise, Nature Communications 4, 1719 (2013), URL https:/​/​​10.1038/​ncomms2739.

[15] L. G. Wright, D. N. Christodoulides, and F. W. Wise, Nature Photonics 9, 306 (2015), URL https:/​/​​10.1038/​nphoton.2015.61.

[16] L. G. Wright, Z. Liu, D. A. Nolan, M.-J. Li, D. N. Christodoulides, and F. W. Wise, Nature Photonics 10, 771 (2016), URL https:/​/​​10.1038/​nphoton.2016.227.

[17] K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, Nature Photonics 11, 237 (2017), URL https:/​/​​10.1038/​nphoton.2017.32.

[18] M. Conforti, C. Mas Arabi, A. Mussot, and A. Kudlinski, Optics Letters 42, 4004 (2017), URL https:/​/​​10.1364/​OL.42.004004.

[19] R. J. C. Spreeuw, Foundations of Physics 28, 361 (1998), URL https:/​/​​10.1023/​A:1018703709245.

[20] R. J. C. Spreeuw, Phys. Rev. A 63, 062302 (2001), URL https:/​/​​10.1103/​PhysRevA.63.062302.

[21] P. Ghose and A. Mukherjee, Reviews in Theoretical Science 2, 274 (2014), URL https:/​/​​10.1166/​rits.2014.1024.

[22] N. Korolokova and G. Leuchs, Rep. Prog. Phys. 82, 056001 (2019), URL https:/​/​​10.1088/​1361-6633/​ab0c6b.

[23] A. Aiello, F. Töppel, C. Marquardt, E. Giacobino, and G. Leuchs, New J. Phys. 17, 043024 (2015), URL https:/​/​​10.1088/​1367-2630/​17/​4/​043024.

[24] A. Luis, Optics Communications 282, 3665 (2009), URL https:/​/​​10.1016/​j.optcom.2009.06.024.

[25] E. Karimi and R. W. Boyd, Science 350, 1172 (2015), URL https:/​/​​10.1126/​science.aad7174.

[26] N. L. Harshman and S. Wickramasekara, Open Syst Inf Dyn 14, 341 (2007), URL https:/​/​​10.1007/​s11080-007-9057-z.

[27] W. F. Balthazar, C. E. R. Souza, D. P. Caetano, E. F. G. ao, J. A. O. Huguenin, and A. Z. Khoury, Opt. Lett. 41, 5797 (2016), URL https:/​/​​10.1364/​OL.41.005797.

[28] K. F. Lee and J. E. Thomas, Phys. Rev. Lett. 88, 097902 (2002), URL https:/​/​​10.1103/​PhysRevLett.88.097902.

[29] J. Fu, Z. Si, S. Tang, and J. Deng, Phys. Rev. A 70, 042313 (2004), URL https:/​/​​10.1103/​PhysRevA.70.042313.

[30] K. F. Lee and J. E. Thomas, Phys. Rev. A 69, 052311 (2004), URL https:/​/​​10.1103/​PhysRevA.69.052311.

[31] F. D. Zela, Optica 5, 243 (2018), URL https:/​/​​10.1364/​OPTICA.5.000243.

[32] B. Stoklasa, L. Motka, J. Rehacek, Z. Hradil, L. L. Sánchez-Soto, and G. S. Agarwal, New Journal of Physics 17, 113046 (2015), URL https:/​/​​10.1088/​1367-2630/​17/​11/​113046.

[33] X.-F. Qian, B. Little, J. C. Howell, and J. H. Eberly, Optica 2, 611 (2015), URL https:/​/​​10.1364/​OPTICA.2.000611.

[34] S. G. Krivoshlykov and I. N. Sissakian, Opt Quant Electron 12, 463 (1980), ISSN 0306-8919, 1572-817X, URL https:/​/​​10.1007/​BF00619920.

[35] S. K. Joseph, J. Sabuco, L. Y. Chew, and M. A. F. Sanjuán, Opt. Express, OE 23, 32191 (2015), ISSN 1094-4087, URL https:/​/​​10.1364/​OE.23.032191.

[36] M. A. Man'ko, V. I. Man'ko, and R. Vilela Mendes, Physics Letters A 288, 132 (2001), ISSN 0375-9601, URL https:/​/​​10.1016/​S0375-9601(01)00517-5.

[37] M. Hamermesh, Group Theory and Its Application to Physical Problems (Dover Publications, New York, 1989), reprint edition ed., ISBN 978-0-486-66181-0.

[38] P. McIsaac, IEEE Transactions on Microwave Theory and Techniques 23, 421 (1975), URL https:/​/​​10.1109/​TMTT.1975.1128584.

[39] R. Guobin, W. Zhi, L. Shuqin, and J. Shuisheng, Opt. Express, OE 11, 1310 (2003), URL https:/​/​​10.1364/​OE.11.001310.

[40] A. Ferrando, Phys. Rev. E 72, 036612 (2005), URL https:/​/​​10.1103/​PhysRevE.72.036612.

[41] M. Á. García-March, A. Ferrando, M. Zacarés, J. Vijande, and L. D. Carr, Physica D: Nonlinear Phenomena 238, 1432 (2009a), ISSN 0167-2789, URL https:/​/​​10.1016/​j.physd.2008.12.007.

[42] M.-Á. García-March, A. Ferrando, M. Zacarés, S. Sahu, and D. E. Ceballos-Herrera, Phys. Rev. A 79, 053820 (2009b), URL https:/​/​​10.1103/​PhysRevA.79.053820.

[43] L. D. Landau and E. M. Lifshitz, in Quantum Mechanics (Third Edition) (Pergamon, 1977), pp. 50 – 81, third edition ed., ISBN 978-0-08-020940-1, URL https:/​/​​10.1016/​B978-0-08-020940-1.50010-4.

[44] Molte Emil Strange Andersen, N. L. Harshman, and N. T. Zinner, Phys. Rev. A 96, 033616 (2017), URL https:/​/​​10.1103/​PhysRevA.96.033616.

[45] F. Serwane, G. Zürn, T. Lompe, T. B. Ottenstein, A. N. Wenz, and S. Jochim, Science 332, 336 (2011), URL http:/​/​​10.1126/​science.1201351.

[46] A. N. Wenz, G. Zürn, S. Murmann, I. Brouzos, T. Lompe, and S. Jochim, Science 342, 457 (2013), URL http:/​/​​10.1126/​science.1240516/​.

[47] M. A. García-March, B. Juliá-Díaz, G. E. Astrakharchik, J. Boronat, and A. Polls, Phys. Rev. A 90, 063605 (2014), URL https:/​/​​10.1103/​PhysRevA.90.063605.

[48] N. L. Harshman, Phys. Rev. A 86, 052122 (2012), URL https:/​/​​10.1103/​PhysRevA.86.052122.

[49] N. L. Harshman, Few-Body Syst 57, 11 (2016), ISSN 0177-7963, 1432-5411, URL https:/​/​​10.1007/​s00601-015-1024-6.

[50] M. Girardeau, Journal of Mathematical Physics 1, 516 (1960), ISSN 00222488, URL https:/​/​​10.1063/​1.1703687.

[51] K. Banaszek and K. Wódkiewicz, Phys. Rev. A 58, 4345 (1998), URL https:/​/​​10.1103/​PhysRevA.58.4345.

[52] T. Fogarty, T. Busch, J. Goold, and M. Paternostro, New Journal of Physics 13, 023016 (2011), URL https:/​/​​10.1088/​1367-2630/​13/​2/​023016.

[53] J. Li, T. Fogarty, C. Cormick, J. Goold, T. Busch, and M. Paternostro, Phys. Rev. A 84, 022321 (2011), URL https:/​/​​10.1103/​PhysRevA.84.022321.

[54] N. Bhattacharya, H. B. van Linden van den Heuvell, and R. J. C. Spreeuw, Phys. Rev. Lett. 88, 137901 (2002), URL https:/​/​​10.1103/​PhysRevLett.88.137901.

[55] B. Perez-Garcia, J. Francis, M. McLaren, R. I. Hernandez-Aranda, A. Forbes, and T. Konrad, Physics Letters A 379, 1675 (2015), ISSN 0375-9601, URL https:/​/​​10.1016/​j.physleta.2015.04.034.

[56] D. Guzman-Silva, R. Brüning, F. Zimmermann, C. Vetter, M. Gräfe, M. Heinrich, S. Nolte, M. Duparré, A. Aiello, M. Ornigotti, et al., Laser & Photonics Reviews 10, 317 (2016), URL https:/​/​​10.1002/​lpor.201500252.

[57] F. Toeppel, A. Aiello, C. Marquardt, E. Giacobino, and G. Leuchs, New Journal of Physics 16, 073019 (2014), URL https:/​/​​10.1088/​1367-2630/​16/​7/​073019.

[58] S. Berg-Johansen, F. Töppel, B. Stiller, P. Banzer, M. Ornigotti, E. Giacobino, G. Leuchs, A. Aiello, and C. Marquardt, Optica 2, 864 (2015), URL https:/​/​​10.1364/​OPTICA.2.000864.

[59] V. Doya, O. Legrand, F. Mortessagne, and C. Miniatura, Phys. Rev. E 65, 056223 (2002), URL https:/​/​​10.1103/​PhysRevE.65.056223.

[60] P. L. Knight, E. Roldán, and J. E. Sipe, Phys. Rev. A 68, 020301(R) (2003), URL https:/​/​​10.1103/​PhysRevA.68.020301.

[61] V. D'Ambrosio, G. Carvacho, F. Graffitti, C. Vitelli, B. Piccirillo, L. Marrucci, and F. Sciarrino, Phys. Rev. A 94, 030304(R) (2016), URL https:/​/​​10.1103/​PhysRevA.94.030304.

Cited by

[1] S.I. Mistakidis, A.G. Volosniev, R.E. Barfknecht, T. Fogarty, Th. Busch, A. Foerster, P. Schmelcher, and N.T. Zinner, "Few-body Bose gases in low dimensions—A laboratory for quantum dynamics", Physics Reports 1042, 1 (2023).

[2] Tomasz Sowiński and Miguel Ángel García-March, "One-dimensional mixtures of several ultracold atoms: a review", Reports on Progress in Physics 82 10, 104401 (2019).

[3] R. Vilela Mendes, "Modular quantum computing and quantum-like devices", International Journal of Quantum Information 19 3, 2150020-69 (2021).

The above citations are from Crossref's cited-by service (last updated successfully 2024-05-26 03:07:36) and SAO/NASA ADS (last updated successfully 2024-05-26 03:07:37). The list may be incomplete as not all publishers provide suitable and complete citation data.